/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread_list.h" #include #include #include #include #include #include #include #include "base/histogram-inl.h" #include "base/mutex-inl.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "debugger.h" #include "gc/collector/concurrent_copying.h" #include "jni_internal.h" #include "lock_word.h" #include "monitor.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "trace.h" #include "well_known_classes.h" #if ART_USE_FUTEXES #include "linux/futex.h" #include "sys/syscall.h" #ifndef SYS_futex #define SYS_futex __NR_futex #endif #endif // ART_USE_FUTEXES namespace art { static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5); static constexpr uint64_t kThreadSuspendTimeoutMs = 30 * 1000; // 30s. // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time. static constexpr useconds_t kThreadSuspendInitialSleepUs = 0; static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000; static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000; // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for // some history. // Turned off again. b/29248079 static constexpr bool kDumpUnattachedThreadNativeStack = false; ThreadList::ThreadList() : suspend_all_count_(0), debug_suspend_all_count_(0), unregistering_count_(0), suspend_all_historam_("suspend all histogram", 16, 64), long_suspend_(false) { CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U))); } ThreadList::~ThreadList() { ScopedTrace trace(__PRETTY_FUNCTION__); // Detach the current thread if necessary. If we failed to start, there might not be any threads. // We need to detach the current thread here in case there's another thread waiting to join with // us. bool contains = false; Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::thread_list_lock_); contains = Contains(self); } if (contains) { Runtime::Current()->DetachCurrentThread(); } WaitForOtherNonDaemonThreadsToExit(); // Disable GC and wait for GC to complete in case there are still daemon threads doing // allocations. gc::Heap* const heap = Runtime::Current()->GetHeap(); heap->DisableGCForShutdown(); // In case a GC is in progress, wait for it to finish. heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current()); // TODO: there's an unaddressed race here where a thread may attach during shutdown, see // Thread::Init. SuspendAllDaemonThreadsForShutdown(); } bool ThreadList::Contains(Thread* thread) { return find(list_.begin(), list_.end(), thread) != list_.end(); } bool ThreadList::Contains(pid_t tid) { for (const auto& thread : list_) { if (thread->GetTid() == tid) { return true; } } return false; } pid_t ThreadList::GetLockOwner() { return Locks::thread_list_lock_->GetExclusiveOwnerTid(); } void ThreadList::DumpNativeStacks(std::ostream& os) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); std::unique_ptr map(BacktraceMap::Create(getpid())); for (const auto& thread : list_) { os << "DUMPING THREAD " << thread->GetTid() << "\n"; DumpNativeStack(os, thread->GetTid(), map.get(), "\t"); os << "\n"; } } void ThreadList::DumpForSigQuit(std::ostream& os) { { ScopedObjectAccess soa(Thread::Current()); // Only print if we have samples. if (suspend_all_historam_.SampleSize() > 0) { Histogram::CumulativeData data; suspend_all_historam_.CreateHistogram(&data); suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend. } } bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit(); Dump(os, dump_native_stack); DumpUnattachedThreads(os, dump_native_stack); } static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack) NO_THREAD_SAFETY_ANALYSIS { // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should // refactor DumpState to avoid skipping analysis. Thread::DumpState(os, nullptr, tid); DumpKernelStack(os, tid, " kernel: ", false); if (dump_native_stack && kDumpUnattachedThreadNativeStack) { DumpNativeStack(os, tid, nullptr, " native: "); } os << "\n"; } void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) { DIR* d = opendir("/proc/self/task"); if (!d) { return; } Thread* self = Thread::Current(); dirent* e; while ((e = readdir(d)) != nullptr) { char* end; pid_t tid = strtol(e->d_name, &end, 10); if (!*end) { bool contains; { MutexLock mu(self, *Locks::thread_list_lock_); contains = Contains(tid); } if (!contains) { DumpUnattachedThread(os, tid, dump_native_stack); } } } closedir(d); } // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be // overloaded with ANR dumps. static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000; // A closure used by Thread::Dump. class DumpCheckpoint FINAL : public Closure { public: DumpCheckpoint(std::ostream* os, bool dump_native_stack) : os_(os), barrier_(0), backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr), dump_native_stack_(dump_native_stack) {} void Run(Thread* thread) OVERRIDE { // Note thread and self may not be equal if thread was already suspended at the point of the // request. Thread* self = Thread::Current(); std::ostringstream local_os; { ScopedObjectAccess soa(self); thread->Dump(local_os, dump_native_stack_, backtrace_map_.get()); } local_os << "\n"; { // Use the logging lock to ensure serialization when writing to the common ostream. MutexLock mu(self, *Locks::logging_lock_); *os_ << local_os.str(); } barrier_.Pass(self); } void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) { Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout); if (timed_out) { // Avoid a recursive abort. LOG((kIsDebugBuild && (gAborting == 0)) ? FATAL : ERROR) << "Unexpected time out during dump checkpoint."; } } private: // The common stream that will accumulate all the dumps. std::ostream* const os_; // The barrier to be passed through and for the requestor to wait upon. Barrier barrier_; // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately. std::unique_ptr backtrace_map_; // Whether we should dump the native stack. const bool dump_native_stack_; }; void ThreadList::Dump(std::ostream& os, bool dump_native_stack) { { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); os << "DALVIK THREADS (" << list_.size() << "):\n"; } DumpCheckpoint checkpoint(&os, dump_native_stack); size_t threads_running_checkpoint; { // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time. ScopedObjectAccess soa(Thread::Current()); threads_running_checkpoint = RunCheckpoint(&checkpoint); } if (threads_running_checkpoint != 0) { checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint); } } void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { if (thread != ignore1 && thread != ignore2) { CHECK(thread->IsSuspended()) << "\nUnsuspended thread: <<" << *thread << "\n" << "self: <<" << *Thread::Current(); } } } #if HAVE_TIMED_RWLOCK // Attempt to rectify locks so that we dump thread list with required locks before exiting. NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() { Runtime* runtime = Runtime::Current(); std::ostringstream ss; ss << "Thread suspend timeout\n"; Locks::mutator_lock_->Dump(ss); ss << "\n"; runtime->GetThreadList()->Dump(ss); LOG(FATAL) << ss.str(); exit(0); } #endif // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then // we use sched_yield instead of calling usleep. static void ThreadSuspendSleep(useconds_t delay_us) { if (delay_us == 0) { sched_yield(); } else { usleep(delay_us); } } size_t ThreadList::RunCheckpoint(Closure* checkpoint_function) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); std::vector suspended_count_modified_threads; size_t count = 0; { // Call a checkpoint function for each thread, threads which are suspend get their checkpoint // manually called. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); count = list_.size(); for (const auto& thread : list_) { if (thread != self) { while (true) { if (thread->RequestCheckpoint(checkpoint_function)) { // This thread will run its checkpoint some time in the near future. break; } else { // We are probably suspended, try to make sure that we stay suspended. // The thread switched back to runnable. if (thread->GetState() == kRunnable) { // Spurious fail, try again. continue; } thread->ModifySuspendCount(self, +1, nullptr, false); suspended_count_modified_threads.push_back(thread); break; } } } } } // Run the checkpoint on ourself while we wait for threads to suspend. checkpoint_function->Run(self); // Run the checkpoint on the suspended threads. for (const auto& thread : suspended_count_modified_threads) { if (!thread->IsSuspended()) { if (ATRACE_ENABLED()) { std::ostringstream oss; thread->ShortDump(oss); ATRACE_BEGIN((std::string("Waiting for suspension of thread ") + oss.str()).c_str()); } // Busy wait until the thread is suspended. const uint64_t start_time = NanoTime(); do { ThreadSuspendSleep(kThreadSuspendInitialSleepUs); } while (!thread->IsSuspended()); const uint64_t total_delay = NanoTime() - start_time; // Shouldn't need to wait for longer than 1000 microseconds. constexpr uint64_t kLongWaitThreshold = MsToNs(1); ATRACE_END(); if (UNLIKELY(total_delay > kLongWaitThreshold)) { LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for " << *thread << " suspension!"; } } // We know for sure that the thread is suspended at this point. checkpoint_function->Run(thread); { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); thread->ModifySuspendCount(self, -1, nullptr, false); } } { // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their // suspend count. Now the suspend_count_ is lowered so we must do the broadcast. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } return count; } // Request that a checkpoint function be run on all active (non-suspended) // threads. Returns the number of successful requests. size_t ThreadList::RunCheckpointOnRunnableThreads(Closure* checkpoint_function) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); CHECK_NE(self->GetState(), kRunnable); size_t count = 0; { // Call a checkpoint function for each non-suspended thread. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { if (thread != self) { if (thread->RequestCheckpoint(checkpoint_function)) { // This thread will run its checkpoint some time in the near future. count++; } } } } // Return the number of threads that will run the checkpoint function. return count; } // A checkpoint/suspend-all hybrid to switch thread roots from // from-space to to-space refs. Used to synchronize threads at a point // to mark the initiation of marking while maintaining the to-space // invariant. size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback, gc::collector::GarbageCollector* collector) { TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings()); const uint64_t start_time = NanoTime(); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); CHECK_NE(self->GetState(), kRunnable); SuspendAllInternal(self, self, nullptr); // Run the flip callback for the collector. Locks::mutator_lock_->ExclusiveLock(self); flip_callback->Run(self); Locks::mutator_lock_->ExclusiveUnlock(self); collector->RegisterPause(NanoTime() - start_time); // Resume runnable threads. std::vector runnable_threads; std::vector other_threads; { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); --suspend_all_count_; for (const auto& thread : list_) { if (thread == self) { continue; } // Set the flip function for both runnable and suspended threads // because Thread::DumpState/DumpJavaStack() (invoked by a // checkpoint) may cause the flip function to be run for a // runnable/suspended thread before a runnable threads runs it // for itself or we run it for a suspended thread below. thread->SetFlipFunction(thread_flip_visitor); if (thread->IsSuspendedAtSuspendCheck()) { // The thread will resume right after the broadcast. thread->ModifySuspendCount(self, -1, nullptr, false); runnable_threads.push_back(thread); } else { other_threads.push_back(thread); } } Thread::resume_cond_->Broadcast(self); } // Run the closure on the other threads and let them resume. { ReaderMutexLock mu(self, *Locks::mutator_lock_); for (const auto& thread : other_threads) { Closure* flip_func = thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(thread); } } // Run it for self. thread_flip_visitor->Run(self); } // Resume other threads. { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : other_threads) { thread->ModifySuspendCount(self, -1, nullptr, false); } Thread::resume_cond_->Broadcast(self); } return runnable_threads.size() + other_threads.size() + 1; // +1 for self. } void ThreadList::SuspendAll(const char* cause, bool long_suspend) { Thread* self = Thread::Current(); if (self != nullptr) { VLOG(threads) << *self << " SuspendAll for " << cause << " starting..."; } else { VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting..."; } { ScopedTrace trace("Suspending mutator threads"); const uint64_t start_time = NanoTime(); SuspendAllInternal(self, self); // All threads are known to have suspended (but a thread may still own the mutator lock) // Make sure this thread grabs exclusive access to the mutator lock and its protected data. #if HAVE_TIMED_RWLOCK while (true) { if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self, kThreadSuspendTimeoutMs, 0)) { break; } else if (!long_suspend_) { // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this // could result in a thread suspend timeout. // Timeout if we wait more than kThreadSuspendTimeoutMs seconds. UnsafeLogFatalForThreadSuspendAllTimeout(); } } #else Locks::mutator_lock_->ExclusiveLock(self); #endif long_suspend_ = long_suspend; const uint64_t end_time = NanoTime(); const uint64_t suspend_time = end_time - start_time; suspend_all_historam_.AdjustAndAddValue(suspend_time); if (suspend_time > kLongThreadSuspendThreshold) { LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time); } if (kDebugLocking) { // Debug check that all threads are suspended. AssertThreadsAreSuspended(self, self); } } ATRACE_BEGIN((std::string("Mutator threads suspended for ") + cause).c_str()); if (self != nullptr) { VLOG(threads) << *self << " SuspendAll complete"; } else { VLOG(threads) << "Thread[null] SuspendAll complete"; } } // Ensures all threads running Java suspend and that those not running Java don't start. // Debugger thread might be set to kRunnable for a short period of time after the // SuspendAllInternal. This is safe because it will be set back to suspended state before // the SuspendAll returns. void ThreadList::SuspendAllInternal(Thread* self, Thread* ignore1, Thread* ignore2, bool debug_suspend) { Locks::mutator_lock_->AssertNotExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); Locks::thread_suspend_count_lock_->AssertNotHeld(self); if (kDebugLocking && self != nullptr) { CHECK_NE(self->GetState(), kRunnable); } // First request that all threads suspend, then wait for them to suspend before // returning. This suspension scheme also relies on other behaviour: // 1. Threads cannot be deleted while they are suspended or have a suspend- // request flag set - (see Unregister() below). // 2. When threads are created, they are created in a suspended state (actually // kNative) and will never begin executing Java code without first checking // the suspend-request flag. // The atomic counter for number of threads that need to pass the barrier. AtomicInteger pending_threads; uint32_t num_ignored = 0; if (ignore1 != nullptr) { ++num_ignored; } if (ignore2 != nullptr && ignore1 != ignore2) { ++num_ignored; } { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. ++suspend_all_count_; if (debug_suspend) ++debug_suspend_all_count_; pending_threads.StoreRelaxed(list_.size() - num_ignored); // Increment everybody's suspend count (except those that should be ignored). for (const auto& thread : list_) { if (thread == ignore1 || thread == ignore2) { continue; } VLOG(threads) << "requesting thread suspend: " << *thread; while (true) { if (LIKELY(thread->ModifySuspendCount(self, +1, &pending_threads, debug_suspend))) { break; } else { // Failure means the list of active_suspend_barriers is full, we should release the // thread_suspend_count_lock_ (to avoid deadlock) and wait till the target thread has // executed Thread::PassActiveSuspendBarriers(). Note that we could not simply wait for // the thread to change to a suspended state, because it might need to run checkpoint // function before the state change, which also needs thread_suspend_count_lock_. // This is very unlikely to happen since more than kMaxSuspendBarriers threads need to // execute SuspendAllInternal() simultaneously, and target thread stays in kRunnable // in the mean time. Locks::thread_suspend_count_lock_->ExclusiveUnlock(self); NanoSleep(100000); Locks::thread_suspend_count_lock_->ExclusiveLock(self); } } // Must install the pending_threads counter first, then check thread->IsSuspend() and clear // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended() // that can lead a thread to miss a call to PassActiveSuspendBarriers(). if (thread->IsSuspended()) { // Only clear the counter for the current thread. thread->ClearSuspendBarrier(&pending_threads); pending_threads.FetchAndSubSequentiallyConsistent(1); } } } // Wait for the barrier to be passed by all runnable threads. This wait // is done with a timeout so that we can detect problems. #if ART_USE_FUTEXES timespec wait_timeout; InitTimeSpec(true, CLOCK_MONOTONIC, 10000, 0, &wait_timeout); #endif while (true) { int32_t cur_val = pending_threads.LoadRelaxed(); if (LIKELY(cur_val > 0)) { #if ART_USE_FUTEXES if (futex(pending_threads.Address(), FUTEX_WAIT, cur_val, &wait_timeout, nullptr, 0) != 0) { // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning. if ((errno != EAGAIN) && (errno != EINTR)) { if (errno == ETIMEDOUT) { LOG(kIsDebugBuild ? FATAL : ERROR) << "Unexpected time out during suspend all."; } else { PLOG(FATAL) << "futex wait failed for SuspendAllInternal()"; } } } else { cur_val = pending_threads.LoadRelaxed(); CHECK_EQ(cur_val, 0); break; } #else // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set. #endif } else { CHECK_EQ(cur_val, 0); break; } } } void ThreadList::ResumeAll() { Thread* self = Thread::Current(); if (self != nullptr) { VLOG(threads) << *self << " ResumeAll starting"; } else { VLOG(threads) << "Thread[null] ResumeAll starting"; } ATRACE_END(); ScopedTrace trace("Resuming mutator threads"); if (kDebugLocking) { // Debug check that all threads are suspended. AssertThreadsAreSuspended(self, self); } long_suspend_ = false; Locks::mutator_lock_->ExclusiveUnlock(self); { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. --suspend_all_count_; // Decrement the suspend counts for all threads. for (const auto& thread : list_) { if (thread == self) { continue; } thread->ModifySuspendCount(self, -1, nullptr, false); } // Broadcast a notification to all suspended threads, some or all of // which may choose to wake up. No need to wait for them. if (self != nullptr) { VLOG(threads) << *self << " ResumeAll waking others"; } else { VLOG(threads) << "Thread[null] ResumeAll waking others"; } Thread::resume_cond_->Broadcast(self); } if (self != nullptr) { VLOG(threads) << *self << " ResumeAll complete"; } else { VLOG(threads) << "Thread[null] ResumeAll complete"; } } void ThreadList::Resume(Thread* thread, bool for_debugger) { // This assumes there was an ATRACE_BEGIN when we suspended the thread. ATRACE_END(); Thread* self = Thread::Current(); DCHECK_NE(thread, self); VLOG(threads) << "Resume(" << reinterpret_cast(thread) << ") starting..." << (for_debugger ? " (debugger)" : ""); { // To check Contains. MutexLock mu(self, *Locks::thread_list_lock_); // To check IsSuspended. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); DCHECK(thread->IsSuspended()); if (!Contains(thread)) { // We only expect threads within the thread-list to have been suspended otherwise we can't // stop such threads from delete-ing themselves. LOG(ERROR) << "Resume(" << reinterpret_cast(thread) << ") thread not within thread list"; return; } thread->ModifySuspendCount(self, -1, nullptr, for_debugger); } { VLOG(threads) << "Resume(" << reinterpret_cast(thread) << ") waking others"; MutexLock mu(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } VLOG(threads) << "Resume(" << reinterpret_cast(thread) << ") complete"; } static void ThreadSuspendByPeerWarning(Thread* self, LogSeverity severity, const char* message, jobject peer) { JNIEnvExt* env = self->GetJniEnv(); ScopedLocalRef scoped_name_string(env, static_cast(env->GetObjectField( peer, WellKnownClasses::java_lang_Thread_name))); ScopedUtfChars scoped_name_chars(env, scoped_name_string.get()); if (scoped_name_chars.c_str() == nullptr) { LOG(severity) << message << ": " << peer; env->ExceptionClear(); } else { LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str(); } } Thread* ThreadList::SuspendThreadByPeer(jobject peer, bool request_suspension, bool debug_suspension, bool* timed_out) { const uint64_t start_time = NanoTime(); useconds_t sleep_us = kThreadSuspendInitialSleepUs; *timed_out = false; Thread* const self = Thread::Current(); Thread* suspended_thread = nullptr; VLOG(threads) << "SuspendThreadByPeer starting"; while (true) { Thread* thread; { // Note: this will transition to runnable and potentially suspend. We ensure only one thread // is requesting another suspend, to avoid deadlock, by requiring this function be called // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather // than request thread suspension, to avoid potential cycles in threads requesting each other // suspend. ScopedObjectAccess soa(self); MutexLock thread_list_mu(self, *Locks::thread_list_lock_); thread = Thread::FromManagedThread(soa, peer); if (thread == nullptr) { if (suspended_thread != nullptr) { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); // If we incremented the suspend count but the thread reset its peer, we need to // re-decrement it since it is shutting down and may deadlock the runtime in // ThreadList::WaitForOtherNonDaemonThreadsToExit. suspended_thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension); } ThreadSuspendByPeerWarning(self, WARNING, "No such thread for suspend", peer); return nullptr; } if (!Contains(thread)) { CHECK(suspended_thread == nullptr); VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: " << reinterpret_cast(thread); return nullptr; } VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread; { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); if (request_suspension) { if (self->GetSuspendCount() > 0) { // We hold the suspend count lock but another thread is trying to suspend us. Its not // safe to try to suspend another thread in case we get a cycle. Start the loop again // which will allow this thread to be suspended. continue; } CHECK(suspended_thread == nullptr); suspended_thread = thread; suspended_thread->ModifySuspendCount(self, +1, nullptr, debug_suspension); request_suspension = false; } else { // If the caller isn't requesting suspension, a suspension should have already occurred. CHECK_GT(thread->GetSuspendCount(), 0); } // IsSuspended on the current thread will fail as the current thread is changed into // Runnable above. As the suspend count is now raised if this is the current thread // it will self suspend on transition to Runnable, making it hard to work with. It's simpler // to just explicitly handle the current thread in the callers to this code. CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger"; // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend // count, or else we've waited and it has self suspended) or is the current thread, we're // done. if (thread->IsSuspended()) { VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread; if (ATRACE_ENABLED()) { std::string name; thread->GetThreadName(name); ATRACE_BEGIN(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(), peer).c_str()); } return thread; } const uint64_t total_delay = NanoTime() - start_time; if (total_delay >= MsToNs(kThreadSuspendTimeoutMs)) { ThreadSuspendByPeerWarning(self, FATAL, "Thread suspension timed out", peer); if (suspended_thread != nullptr) { CHECK_EQ(suspended_thread, thread); suspended_thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension); } *timed_out = true; return nullptr; } else if (sleep_us == 0 && total_delay > static_cast(kThreadSuspendMaxYieldUs) * 1000) { // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent // excessive CPU usage. sleep_us = kThreadSuspendMaxYieldUs / 2; } } // Release locks and come out of runnable state. } VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend"; ThreadSuspendSleep(sleep_us); // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at // all if possible. This shouldn't be an issue since time to suspend should always be small. sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs); } } static void ThreadSuspendByThreadIdWarning(LogSeverity severity, const char* message, uint32_t thread_id) { LOG(severity) << StringPrintf("%s: %d", message, thread_id); } Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id, bool debug_suspension, bool* timed_out) { const uint64_t start_time = NanoTime(); useconds_t sleep_us = kThreadSuspendInitialSleepUs; *timed_out = false; Thread* suspended_thread = nullptr; Thread* const self = Thread::Current(); CHECK_NE(thread_id, kInvalidThreadId); VLOG(threads) << "SuspendThreadByThreadId starting"; while (true) { { // Note: this will transition to runnable and potentially suspend. We ensure only one thread // is requesting another suspend, to avoid deadlock, by requiring this function be called // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather // than request thread suspension, to avoid potential cycles in threads requesting each other // suspend. ScopedObjectAccess soa(self); MutexLock thread_list_mu(self, *Locks::thread_list_lock_); Thread* thread = nullptr; for (const auto& it : list_) { if (it->GetThreadId() == thread_id) { thread = it; break; } } if (thread == nullptr) { CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread << " no longer in thread list"; // There's a race in inflating a lock and the owner giving up ownership and then dying. ThreadSuspendByThreadIdWarning(WARNING, "No such thread id for suspend", thread_id); return nullptr; } VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread; DCHECK(Contains(thread)); { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); if (suspended_thread == nullptr) { if (self->GetSuspendCount() > 0) { // We hold the suspend count lock but another thread is trying to suspend us. Its not // safe to try to suspend another thread in case we get a cycle. Start the loop again // which will allow this thread to be suspended. continue; } thread->ModifySuspendCount(self, +1, nullptr, debug_suspension); suspended_thread = thread; } else { CHECK_EQ(suspended_thread, thread); // If the caller isn't requesting suspension, a suspension should have already occurred. CHECK_GT(thread->GetSuspendCount(), 0); } // IsSuspended on the current thread will fail as the current thread is changed into // Runnable above. As the suspend count is now raised if this is the current thread // it will self suspend on transition to Runnable, making it hard to work with. It's simpler // to just explicitly handle the current thread in the callers to this code. CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger"; // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend // count, or else we've waited and it has self suspended) or is the current thread, we're // done. if (thread->IsSuspended()) { if (ATRACE_ENABLED()) { std::string name; thread->GetThreadName(name); ATRACE_BEGIN(StringPrintf("SuspendThreadByThreadId suspended %s id=%d", name.c_str(), thread_id).c_str()); } VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread; return thread; } const uint64_t total_delay = NanoTime() - start_time; if (total_delay >= MsToNs(kThreadSuspendTimeoutMs)) { ThreadSuspendByThreadIdWarning(WARNING, "Thread suspension timed out", thread_id); if (suspended_thread != nullptr) { thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension); } *timed_out = true; return nullptr; } else if (sleep_us == 0 && total_delay > static_cast(kThreadSuspendMaxYieldUs) * 1000) { // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent // excessive CPU usage. sleep_us = kThreadSuspendMaxYieldUs / 2; } } // Release locks and come out of runnable state. } VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend"; ThreadSuspendSleep(sleep_us); sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs); } } Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) { for (const auto& thread : list_) { if (thread->GetThreadId() == thread_id) { return thread; } } return nullptr; } void ThreadList::SuspendAllForDebugger() { Thread* self = Thread::Current(); Thread* debug_thread = Dbg::GetDebugThread(); VLOG(threads) << *self << " SuspendAllForDebugger starting..."; SuspendAllInternal(self, self, debug_thread, true); // Block on the mutator lock until all Runnable threads release their share of access then // immediately unlock again. #if HAVE_TIMED_RWLOCK // Timeout if we wait more than 30 seconds. if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) { UnsafeLogFatalForThreadSuspendAllTimeout(); } else { Locks::mutator_lock_->ExclusiveUnlock(self); } #else Locks::mutator_lock_->ExclusiveLock(self); Locks::mutator_lock_->ExclusiveUnlock(self); #endif // Disabled for the following race condition: // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock. // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected). // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable // state (from SetStateUnsafe). // AssertThreadsAreSuspended(self, self, debug_thread); VLOG(threads) << *self << " SuspendAllForDebugger complete"; } void ThreadList::SuspendSelfForDebugger() { Thread* const self = Thread::Current(); self->SetReadyForDebugInvoke(true); // The debugger thread must not suspend itself due to debugger activity! Thread* debug_thread = Dbg::GetDebugThread(); CHECK(self != debug_thread); CHECK_NE(self->GetState(), kRunnable); Locks::mutator_lock_->AssertNotHeld(self); // The debugger may have detached while we were executing an invoke request. In that case, we // must not suspend ourself. DebugInvokeReq* pReq = self->GetInvokeReq(); const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive()); if (!skip_thread_suspension) { // Collisions with other suspends aren't really interesting. We want // to ensure that we're the only one fiddling with the suspend count // though. MutexLock mu(self, *Locks::thread_suspend_count_lock_); self->ModifySuspendCount(self, +1, nullptr, true); CHECK_GT(self->GetSuspendCount(), 0); VLOG(threads) << *self << " self-suspending (debugger)"; } else { // We must no longer be subject to debugger suspension. MutexLock mu(self, *Locks::thread_suspend_count_lock_); CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us"; VLOG(threads) << *self << " not self-suspending because debugger detached during invoke"; } // If the debugger requested an invoke, we need to send the reply and clear the request. if (pReq != nullptr) { Dbg::FinishInvokeMethod(pReq); self->ClearDebugInvokeReq(); pReq = nullptr; // object has been deleted, clear it for safety. } // Tell JDWP that we've completed suspension. The JDWP thread can't // tell us to resume before we're fully asleep because we hold the // suspend count lock. Dbg::ClearWaitForEventThread(); { MutexLock mu(self, *Locks::thread_suspend_count_lock_); while (self->GetSuspendCount() != 0) { Thread::resume_cond_->Wait(self); if (self->GetSuspendCount() != 0) { // The condition was signaled but we're still suspended. This // can happen when we suspend then resume all threads to // update instrumentation or compute monitor info. This can // also happen if the debugger lets go while a SIGQUIT thread // dump event is pending (assuming SignalCatcher was resumed for // just long enough to try to grab the thread-suspend lock). VLOG(jdwp) << *self << " still suspended after undo " << "(suspend count=" << self->GetSuspendCount() << ", " << "debug suspend count=" << self->GetDebugSuspendCount() << ")"; } } CHECK_EQ(self->GetSuspendCount(), 0); } self->SetReadyForDebugInvoke(false); VLOG(threads) << *self << " self-reviving (debugger)"; } void ThreadList::ResumeAllForDebugger() { Thread* self = Thread::Current(); Thread* debug_thread = Dbg::GetDebugThread(); VLOG(threads) << *self << " ResumeAllForDebugger starting..."; // Threads can't resume if we exclusively hold the mutator lock. Locks::mutator_lock_->AssertNotExclusiveHeld(self); { MutexLock thread_list_mu(self, *Locks::thread_list_lock_); { MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. DCHECK_GE(suspend_all_count_, debug_suspend_all_count_); if (debug_suspend_all_count_ > 0) { --suspend_all_count_; --debug_suspend_all_count_; } else { // We've been asked to resume all threads without being asked to // suspend them all before. That may happen if a debugger tries // to resume some suspended threads (with suspend count == 1) // at once with a VirtualMachine.Resume command. Let's print a // warning. LOG(WARNING) << "Debugger attempted to resume all threads without " << "having suspended them all before."; } // Decrement everybody's suspend count (except our own). for (const auto& thread : list_) { if (thread == self || thread == debug_thread) { continue; } if (thread->GetDebugSuspendCount() == 0) { // This thread may have been individually resumed with ThreadReference.Resume. continue; } VLOG(threads) << "requesting thread resume: " << *thread; thread->ModifySuspendCount(self, -1, nullptr, true); } } } { MutexLock mu(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } VLOG(threads) << *self << " ResumeAllForDebugger complete"; } void ThreadList::UndoDebuggerSuspensions() { Thread* self = Thread::Current(); VLOG(threads) << *self << " UndoDebuggerSuspensions starting"; { MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); // Update global suspend all state for attaching threads. suspend_all_count_ -= debug_suspend_all_count_; debug_suspend_all_count_ = 0; // Update running threads. for (const auto& thread : list_) { if (thread == self || thread->GetDebugSuspendCount() == 0) { continue; } thread->ModifySuspendCount(self, -thread->GetDebugSuspendCount(), nullptr, true); } } { MutexLock mu(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete"; } void ThreadList::WaitForOtherNonDaemonThreadsToExit() { ScopedTrace trace(__PRETTY_FUNCTION__); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); while (true) { { // No more threads can be born after we start to shutdown. MutexLock mu(self, *Locks::runtime_shutdown_lock_); CHECK(Runtime::Current()->IsShuttingDownLocked()); CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U); } MutexLock mu(self, *Locks::thread_list_lock_); // Also wait for any threads that are unregistering to finish. This is required so that no // threads access the thread list after it is deleted. TODO: This may not work for user daemon // threads since they could unregister at the wrong time. bool done = unregistering_count_ == 0; if (done) { for (const auto& thread : list_) { if (thread != self && !thread->IsDaemon()) { done = false; break; } } } if (done) { break; } // Wait for another thread to exit before re-checking. Locks::thread_exit_cond_->Wait(self); } } void ThreadList::SuspendAllDaemonThreadsForShutdown() { ScopedTrace trace(__PRETTY_FUNCTION__); Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); size_t daemons_left = 0; { // Tell all the daemons it's time to suspend. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); for (const auto& thread : list_) { // This is only run after all non-daemon threads have exited, so the remainder should all be // daemons. CHECK(thread->IsDaemon()) << *thread; if (thread != self) { thread->ModifySuspendCount(self, +1, nullptr, false); ++daemons_left; } // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be // the sleep forever one. thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions(); } } // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they // are about to access runtime state and are not in a runnable state. Examples: Monitor code // or waking up from a condition variable. TODO: Try and see if there is a better way to wait // for daemon threads to be in a blocked state. if (daemons_left > 0) { static constexpr size_t kDaemonSleepTime = 200 * 1000; usleep(kDaemonSleepTime); } // Give the threads a chance to suspend, complaining if they're slow. bool have_complained = false; static constexpr size_t kTimeoutMicroseconds = 2000 * 1000; static constexpr size_t kSleepMicroseconds = 1000; for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) { bool all_suspended = true; for (const auto& thread : list_) { if (thread != self && thread->GetState() == kRunnable) { if (!have_complained) { LOG(WARNING) << "daemon thread not yet suspended: " << *thread; have_complained = true; } all_suspended = false; } } if (all_suspended) { return; } usleep(kSleepMicroseconds); } LOG(WARNING) << "timed out suspending all daemon threads"; } void ThreadList::Register(Thread* self) { DCHECK_EQ(self, Thread::Current()); if (VLOG_IS_ON(threads)) { std::ostringstream oss; self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump. LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str(); } // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing // SuspendAll requests. MutexLock mu(self, *Locks::thread_list_lock_); MutexLock mu2(self, *Locks::thread_suspend_count_lock_); CHECK_GE(suspend_all_count_, debug_suspend_all_count_); // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While // this isn't particularly efficient the suspend counts are most commonly 0 or 1. for (int delta = debug_suspend_all_count_; delta > 0; delta--) { self->ModifySuspendCount(self, +1, nullptr, true); } for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) { self->ModifySuspendCount(self, +1, nullptr, false); } CHECK(!Contains(self)); list_.push_back(self); if (kUseReadBarrier) { // Initialize according to the state of the CC collector. bool is_gc_marking = Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsMarking(); self->SetIsGcMarking(is_gc_marking); bool weak_ref_access_enabled = Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsWeakRefAccessEnabled(); self->SetWeakRefAccessEnabled(weak_ref_access_enabled); } } void ThreadList::Unregister(Thread* self) { DCHECK_EQ(self, Thread::Current()); CHECK_NE(self->GetState(), kRunnable); Locks::mutator_lock_->AssertNotHeld(self); VLOG(threads) << "ThreadList::Unregister() " << *self; { MutexLock mu(self, *Locks::thread_list_lock_); ++unregistering_count_; } // Any time-consuming destruction, plus anything that can call back into managed code or // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what // causes the threads to join. It is important to do this after incrementing unregistering_count_ // since we want the runtime to wait for the daemon threads to exit before deleting the thread // list. self->Destroy(); // If tracing, remember thread id and name before thread exits. Trace::StoreExitingThreadInfo(self); uint32_t thin_lock_id = self->GetThreadId(); while (true) { // Remove and delete the Thread* while holding the thread_list_lock_ and // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended. // Note: deliberately not using MutexLock that could hold a stale self pointer. MutexLock mu(self, *Locks::thread_list_lock_); if (!Contains(self)) { std::string thread_name; self->GetThreadName(thread_name); std::ostringstream os; DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr); LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str(); break; } else { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); if (!self->IsSuspended()) { list_.remove(self); break; } } // We failed to remove the thread due to a suspend request, loop and try again. } delete self; // Release the thread ID after the thread is finished and deleted to avoid cases where we can // temporarily have multiple threads with the same thread id. When this occurs, it causes // problems in FindThreadByThreadId / SuspendThreadByThreadId. ReleaseThreadId(nullptr, thin_lock_id); // Clear the TLS data, so that the underlying native thread is recognizably detached. // (It may wish to reattach later.) #ifdef __ANDROID__ __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr; #else CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self"); #endif // Signal that a thread just detached. MutexLock mu(nullptr, *Locks::thread_list_lock_); --unregistering_count_; Locks::thread_exit_cond_->Broadcast(nullptr); } void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) { for (const auto& thread : list_) { callback(thread, context); } } void ThreadList::VisitRoots(RootVisitor* visitor) const { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (const auto& thread : list_) { thread->VisitRoots(visitor); } } uint32_t ThreadList::AllocThreadId(Thread* self) { MutexLock mu(self, *Locks::allocated_thread_ids_lock_); for (size_t i = 0; i < allocated_ids_.size(); ++i) { if (!allocated_ids_[i]) { allocated_ids_.set(i); return i + 1; // Zero is reserved to mean "invalid". } } LOG(FATAL) << "Out of internal thread ids"; return 0; } void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) { MutexLock mu(self, *Locks::allocated_thread_ids_lock_); --id; // Zero is reserved to mean "invalid". DCHECK(allocated_ids_[id]) << id; allocated_ids_.reset(id); } ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) { Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend); } ScopedSuspendAll::~ScopedSuspendAll() { Runtime::Current()->GetThreadList()->ResumeAll(); } } // namespace art