/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stack_map.h" #include #include #include "art_method.h" #include "base/indenter.h" #include "base/stats.h" #include "oat_quick_method_header.h" #include "scoped_thread_state_change-inl.h" namespace art { CodeInfo::CodeInfo(const OatQuickMethodHeader* header, DecodeFlags flags) : CodeInfo(header->GetOptimizedCodeInfoPtr(), flags) { } // Returns true if the decoded table was deduped. template ALWAYS_INLINE static bool DecodeTable(BitTable& table, BitMemoryReader& reader) { bool is_deduped = reader.ReadBit(); if (is_deduped) { ssize_t bit_offset = reader.NumberOfReadBits() - reader.ReadVarint(); BitMemoryReader reader2(reader.data(), bit_offset); // The offset is negative. table.Decode(reader2); } else { table.Decode(reader); } return is_deduped; } void CodeInfo::Decode(const uint8_t* data, DecodeFlags flags) { BitMemoryReader reader(data); ForEachHeaderField([this, &reader](auto member_pointer) { this->*member_pointer = reader.ReadVarint(); }); ForEachBitTableField([this, &reader](auto member_pointer) { DecodeTable(this->*member_pointer, reader); }, flags); size_in_bits_ = reader.NumberOfReadBits(); } size_t CodeInfo::Deduper::Dedupe(const uint8_t* code_info_data) { writer_.ByteAlign(); size_t deduped_offset = writer_.NumberOfWrittenBits() / kBitsPerByte; BitMemoryReader reader(code_info_data); CodeInfo code_info; // Temporary storage for decoded data. ForEachHeaderField([this, &reader, &code_info](auto member_pointer) { code_info.*member_pointer = reader.ReadVarint(); writer_.WriteVarint(code_info.*member_pointer); }); ForEachBitTableField([this, &reader, &code_info](auto member_pointer) { bool is_deduped = reader.ReadBit(); DCHECK(!is_deduped); size_t bit_table_start = reader.NumberOfReadBits(); (code_info.*member_pointer).Decode(reader); BitMemoryRegion region = reader.GetReadRegion().Subregion(bit_table_start); auto it = dedupe_map_.insert(std::make_pair(region, /* placeholder */ 0)); if (it.second /* new bit table */ || region.size_in_bits() < 32) { writer_.WriteBit(false); // Is not deduped. it.first->second = writer_.NumberOfWrittenBits(); writer_.WriteRegion(region); } else { writer_.WriteBit(true); // Is deduped. size_t bit_offset = writer_.NumberOfWrittenBits(); writer_.WriteVarint(bit_offset - it.first->second); } }); if (kIsDebugBuild) { CodeInfo old_code_info(code_info_data); CodeInfo new_code_info(writer_.data() + deduped_offset); ForEachHeaderField([&old_code_info, &new_code_info](auto member_pointer) { DCHECK_EQ(old_code_info.*member_pointer, new_code_info.*member_pointer); }); ForEachBitTableField([&old_code_info, &new_code_info](auto member_pointer) { DCHECK((old_code_info.*member_pointer).Equals(new_code_info.*member_pointer)); }); } return deduped_offset; } BitTable::const_iterator CodeInfo::BinarySearchNativePc(uint32_t packed_pc) const { return std::partition_point( stack_maps_.begin(), stack_maps_.end(), [packed_pc](const StackMap& sm) { return sm.GetPackedNativePc() < packed_pc && sm.GetKind() != StackMap::Kind::Catch; }); } StackMap CodeInfo::GetStackMapForNativePcOffset(uint32_t pc, InstructionSet isa) const { auto it = BinarySearchNativePc(StackMap::PackNativePc(pc, isa)); // Start at the lower bound and iterate over all stack maps with the given native pc. for (; it != stack_maps_.end() && (*it).GetNativePcOffset(isa) == pc; ++it) { StackMap::Kind kind = static_cast((*it).GetKind()); if (kind == StackMap::Kind::Default || kind == StackMap::Kind::OSR) { return *it; } } return stack_maps_.GetInvalidRow(); } // Scan backward to determine dex register locations at given stack map. // All registers for a stack map are combined - inlined registers are just appended, // therefore 'first_dex_register' allows us to select a sub-range to decode. void CodeInfo::DecodeDexRegisterMap(uint32_t stack_map_index, uint32_t first_dex_register, /*out*/ DexRegisterMap* map) const { // Count remaining work so we know when we have finished. uint32_t remaining_registers = map->size(); // Keep scanning backwards and collect the most recent location of each register. for (int32_t s = stack_map_index; s >= 0 && remaining_registers != 0; s--) { StackMap stack_map = GetStackMapAt(s); DCHECK_LE(stack_map_index - s, kMaxDexRegisterMapSearchDistance) << "Unbounded search"; // The mask specifies which registers where modified in this stack map. // NB: the mask can be shorter than expected if trailing zero bits were removed. uint32_t mask_index = stack_map.GetDexRegisterMaskIndex(); if (mask_index == StackMap::kNoValue) { continue; // Nothing changed at this stack map. } BitMemoryRegion mask = dex_register_masks_.GetBitMemoryRegion(mask_index); if (mask.size_in_bits() <= first_dex_register) { continue; // Nothing changed after the first register we are interested in. } // The map stores one catalogue index per each modified register location. uint32_t map_index = stack_map.GetDexRegisterMapIndex(); DCHECK_NE(map_index, StackMap::kNoValue); // Skip initial registers which we are not interested in (to get to inlined registers). map_index += mask.PopCount(0, first_dex_register); mask = mask.Subregion(first_dex_register, mask.size_in_bits() - first_dex_register); // Update registers that we see for first time (i.e. most recent value). DexRegisterLocation* regs = map->data(); const uint32_t end = std::min(map->size(), mask.size_in_bits()); const size_t kNumBits = BitSizeOf(); for (uint32_t reg = 0; reg < end; reg += kNumBits) { // Process the mask in chunks of kNumBits for performance. uint32_t bits = mask.LoadBits(reg, std::min(end - reg, kNumBits)); while (bits != 0) { uint32_t bit = CTZ(bits); if (regs[reg + bit].GetKind() == DexRegisterLocation::Kind::kInvalid) { regs[reg + bit] = GetDexRegisterCatalogEntry(dex_register_maps_.Get(map_index)); remaining_registers--; } map_index++; bits ^= 1u << bit; // Clear the bit. } } } // Set any remaining registers to None (which is the default state at first stack map). if (remaining_registers != 0) { DexRegisterLocation* regs = map->data(); for (uint32_t r = 0; r < map->size(); r++) { if (regs[r].GetKind() == DexRegisterLocation::Kind::kInvalid) { regs[r] = DexRegisterLocation::None(); } } } } // Decode the CodeInfo while collecting size statistics. void CodeInfo::CollectSizeStats(const uint8_t* code_info_data, /*out*/ Stats* parent) { Stats* codeinfo_stats = parent->Child("CodeInfo"); BitMemoryReader reader(code_info_data); ForEachHeaderField([&reader](auto) { reader.ReadVarint(); }); codeinfo_stats->Child("Header")->AddBits(reader.NumberOfReadBits()); CodeInfo code_info; // Temporary storage for decoded tables. ForEachBitTableField([codeinfo_stats, &reader, &code_info](auto member_pointer) { auto& table = code_info.*member_pointer; size_t bit_offset = reader.NumberOfReadBits(); bool deduped = DecodeTable(table, reader); if (deduped) { codeinfo_stats->Child("DedupeOffset")->AddBits(reader.NumberOfReadBits() - bit_offset); } else { Stats* table_stats = codeinfo_stats->Child(table.GetName()); table_stats->AddBits(reader.NumberOfReadBits() - bit_offset); const char* const* column_names = table.GetColumnNames(); for (size_t c = 0; c < table.NumColumns(); c++) { if (table.NumColumnBits(c) > 0) { Stats* column_stats = table_stats->Child(column_names[c]); column_stats->AddBits(table.NumRows() * table.NumColumnBits(c), table.NumRows()); } } } }); codeinfo_stats->AddBytes(BitsToBytesRoundUp(reader.NumberOfReadBits())); } void DexRegisterMap::Dump(VariableIndentationOutputStream* vios) const { if (HasAnyLiveDexRegisters()) { ScopedIndentation indent1(vios); for (size_t i = 0; i < size(); ++i) { DexRegisterLocation reg = (*this)[i]; if (reg.IsLive()) { vios->Stream() << "v" << i << ":" << reg << " "; } } vios->Stream() << "\n"; } } void CodeInfo::Dump(VariableIndentationOutputStream* vios, uint32_t code_offset, bool verbose, InstructionSet instruction_set) const { vios->Stream() << "CodeInfo BitSize=" << size_in_bits_ << " FrameSize:" << packed_frame_size_ * kStackAlignment << " CoreSpillMask:" << std::hex << core_spill_mask_ << " FpSpillMask:" << std::hex << fp_spill_mask_ << " NumberOfDexRegisters:" << std::dec << number_of_dex_registers_ << "\n"; ScopedIndentation indent1(vios); ForEachBitTableField([this, &vios, verbose](auto member_pointer) { const auto& table = this->*member_pointer; if (table.NumRows() != 0) { vios->Stream() << table.GetName() << " BitSize=" << table.DataBitSize(); vios->Stream() << " Rows=" << table.NumRows() << " Bits={"; const char* const* column_names = table.GetColumnNames(); for (size_t c = 0; c < table.NumColumns(); c++) { vios->Stream() << (c != 0 ? " " : ""); vios->Stream() << column_names[c] << "=" << table.NumColumnBits(c); } vios->Stream() << "}\n"; if (verbose) { ScopedIndentation indent1(vios); for (size_t r = 0; r < table.NumRows(); r++) { vios->Stream() << "[" << std::right << std::setw(3) << r << "]={"; for (size_t c = 0; c < table.NumColumns(); c++) { vios->Stream() << (c != 0 ? " " : ""); if (&table == static_cast(&stack_masks_) || &table == static_cast(&dex_register_masks_)) { BitMemoryRegion bits = table.GetBitMemoryRegion(r, c); for (size_t b = 0, e = bits.size_in_bits(); b < e; b++) { vios->Stream() << bits.LoadBit(e - b - 1); } } else { vios->Stream() << std::right << std::setw(8) << static_cast(table.Get(r, c)); } } vios->Stream() << "}\n"; } } } }); // Display stack maps along with (live) Dex register maps. if (verbose) { for (StackMap stack_map : stack_maps_) { stack_map.Dump(vios, *this, code_offset, instruction_set); } } } void StackMap::Dump(VariableIndentationOutputStream* vios, const CodeInfo& code_info, uint32_t code_offset, InstructionSet instruction_set) const { const uint32_t pc_offset = GetNativePcOffset(instruction_set); vios->Stream() << "StackMap[" << Row() << "]" << std::hex << " (native_pc=0x" << code_offset + pc_offset << ", dex_pc=0x" << GetDexPc() << ", register_mask=0x" << code_info.GetRegisterMaskOf(*this) << std::dec << ", stack_mask=0b"; BitMemoryRegion stack_mask = code_info.GetStackMaskOf(*this); for (size_t i = 0, e = stack_mask.size_in_bits(); i < e; ++i) { vios->Stream() << stack_mask.LoadBit(e - i - 1); } vios->Stream() << ")\n"; code_info.GetDexRegisterMapOf(*this).Dump(vios); for (InlineInfo inline_info : code_info.GetInlineInfosOf(*this)) { inline_info.Dump(vios, code_info, *this); } } void InlineInfo::Dump(VariableIndentationOutputStream* vios, const CodeInfo& code_info, const StackMap& stack_map) const { uint32_t depth = Row() - stack_map.GetInlineInfoIndex(); vios->Stream() << "InlineInfo[" << Row() << "]" << " (depth=" << depth << std::hex << ", dex_pc=0x" << GetDexPc(); if (EncodesArtMethod()) { ScopedObjectAccess soa(Thread::Current()); vios->Stream() << ", method=" << GetArtMethod()->PrettyMethod(); } else { vios->Stream() << std::dec << ", method_index=" << code_info.GetMethodIndexOf(*this); } vios->Stream() << ")\n"; code_info.GetInlineDexRegisterMapOf(stack_map, *this).Dump(vios); } } // namespace art