/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "runtime.h" // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc #include #ifdef __linux__ #include #include #endif #include #include #include "base/memory_tool.h" #if defined(__APPLE__) #include // for _NSGetEnviron #endif #include #include #include #include #include #include #include "android-base/strings.h" #include "JniConstants.h" #include "ScopedLocalRef.h" #include "arch/arm/quick_method_frame_info_arm.h" #include "arch/arm/registers_arm.h" #include "arch/arm64/quick_method_frame_info_arm64.h" #include "arch/arm64/registers_arm64.h" #include "arch/instruction_set_features.h" #include "arch/mips/quick_method_frame_info_mips.h" #include "arch/mips/registers_mips.h" #include "arch/mips64/quick_method_frame_info_mips64.h" #include "arch/mips64/registers_mips64.h" #include "arch/x86/quick_method_frame_info_x86.h" #include "arch/x86/registers_x86.h" #include "arch/x86_64/quick_method_frame_info_x86_64.h" #include "arch/x86_64/registers_x86_64.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "asm_support.h" #include "atomic.h" #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/enums.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "cha.h" #include "class_linker-inl.h" #include "compiler_callbacks.h" #include "debugger.h" #include "elf_file.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "experimental_flags.h" #include "fault_handler.h" #include "gc/accounting/card_table-inl.h" #include "gc/heap.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc/system_weak.h" #include "handle_scope-inl.h" #include "image-inl.h" #include "instrumentation.h" #include "intern_table.h" #include "interpreter/interpreter.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jni_internal.h" #include "linear_alloc.h" #include "mirror/array.h" #include "mirror/class-inl.h" #include "mirror/class_ext.h" #include "mirror/class_loader.h" #include "mirror/emulated_stack_frame.h" #include "mirror/field.h" #include "mirror/method.h" #include "mirror/method_handle_impl.h" #include "mirror/method_handles_lookup.h" #include "mirror/method_type.h" #include "mirror/stack_trace_element.h" #include "mirror/throwable.h" #include "monitor.h" #include "native/dalvik_system_DexFile.h" #include "native/dalvik_system_VMDebug.h" #include "native/dalvik_system_VMRuntime.h" #include "native/dalvik_system_VMStack.h" #include "native/dalvik_system_ZygoteHooks.h" #include "native/java_lang_Class.h" #include "native/java_lang_Object.h" #include "native/java_lang_String.h" #include "native/java_lang_StringFactory.h" #include "native/java_lang_System.h" #include "native/java_lang_Thread.h" #include "native/java_lang_Throwable.h" #include "native/java_lang_VMClassLoader.h" #include "native/java_lang_Void.h" #include "native/java_lang_invoke_MethodHandleImpl.h" #include "native/java_lang_ref_FinalizerReference.h" #include "native/java_lang_ref_Reference.h" #include "native/java_lang_reflect_Array.h" #include "native/java_lang_reflect_Constructor.h" #include "native/java_lang_reflect_Executable.h" #include "native/java_lang_reflect_Field.h" #include "native/java_lang_reflect_Method.h" #include "native/java_lang_reflect_Parameter.h" #include "native/java_lang_reflect_Proxy.h" #include "native/java_util_concurrent_atomic_AtomicLong.h" #include "native/libcore_util_CharsetUtils.h" #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h" #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h" #include "native/sun_misc_Unsafe.h" #include "native_bridge_art_interface.h" #include "native_stack_dump.h" #include "oat_file.h" #include "oat_file_manager.h" #include "os.h" #include "parsed_options.h" #include "jit/profile_saver.h" #include "quick/quick_method_frame_info.h" #include "reflection.h" #include "runtime_callbacks.h" #include "runtime_options.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change-inl.h" #include "sigchain.h" #include "signal_catcher.h" #include "signal_set.h" #include "thread.h" #include "thread_list.h" #include "ti/agent.h" #include "trace.h" #include "transaction.h" #include "utils.h" #include "vdex_file.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" #ifdef ART_TARGET_ANDROID #include #endif namespace art { // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack. static constexpr bool kEnableJavaStackTraceHandler = false; // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class // linking. static constexpr double kLowMemoryMinLoadFactor = 0.5; static constexpr double kLowMemoryMaxLoadFactor = 0.8; static constexpr double kNormalMinLoadFactor = 0.4; static constexpr double kNormalMaxLoadFactor = 0.7; Runtime* Runtime::instance_ = nullptr; struct TraceConfig { Trace::TraceMode trace_mode; Trace::TraceOutputMode trace_output_mode; std::string trace_file; size_t trace_file_size; }; namespace { #ifdef __APPLE__ inline char** GetEnviron() { // When Google Test is built as a framework on MacOS X, the environ variable // is unavailable. Apple's documentation (man environ) recommends using // _NSGetEnviron() instead. return *_NSGetEnviron(); } #else // Some POSIX platforms expect you to declare environ. extern "C" makes // it reside in the global namespace. extern "C" char** environ; inline char** GetEnviron() { return environ; } #endif } // namespace Runtime::Runtime() : resolution_method_(nullptr), imt_conflict_method_(nullptr), imt_unimplemented_method_(nullptr), instruction_set_(kNone), compiler_callbacks_(nullptr), is_zygote_(false), must_relocate_(false), is_concurrent_gc_enabled_(true), is_explicit_gc_disabled_(false), dex2oat_enabled_(true), image_dex2oat_enabled_(true), default_stack_size_(0), heap_(nullptr), max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation), monitor_list_(nullptr), monitor_pool_(nullptr), thread_list_(nullptr), intern_table_(nullptr), class_linker_(nullptr), signal_catcher_(nullptr), java_vm_(nullptr), fault_message_lock_("Fault message lock"), fault_message_(""), threads_being_born_(0), shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)), shutting_down_(false), shutting_down_started_(false), started_(false), finished_starting_(false), vfprintf_(nullptr), exit_(nullptr), abort_(nullptr), stats_enabled_(false), is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL), instrumentation_(), main_thread_group_(nullptr), system_thread_group_(nullptr), system_class_loader_(nullptr), dump_gc_performance_on_shutdown_(false), preinitialization_transaction_(nullptr), verify_(verifier::VerifyMode::kNone), allow_dex_file_fallback_(true), target_sdk_version_(0), implicit_null_checks_(false), implicit_so_checks_(false), implicit_suspend_checks_(false), no_sig_chain_(false), force_native_bridge_(false), is_native_bridge_loaded_(false), is_native_debuggable_(false), is_java_debuggable_(false), zygote_max_failed_boots_(0), experimental_flags_(ExperimentalFlags::kNone), oat_file_manager_(nullptr), is_low_memory_mode_(false), safe_mode_(false), dump_native_stack_on_sig_quit_(true), pruned_dalvik_cache_(false), // Initially assume we perceive jank in case the process state is never updated. process_state_(kProcessStateJankPerceptible), zygote_no_threads_(false), cha_(nullptr) { CheckAsmSupportOffsetsAndSizes(); std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u); interpreter::CheckInterpreterAsmConstants(); callbacks_.reset(new RuntimeCallbacks()); } Runtime::~Runtime() { ScopedTrace trace("Runtime shutdown"); if (is_native_bridge_loaded_) { UnloadNativeBridge(); } Thread* self = Thread::Current(); const bool attach_shutdown_thread = self == nullptr; if (attach_shutdown_thread) { CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false)); self = Thread::Current(); } else { LOG(WARNING) << "Current thread not detached in Runtime shutdown"; } if (dump_gc_performance_on_shutdown_) { // This can't be called from the Heap destructor below because it // could call RosAlloc::InspectAll() which needs the thread_list // to be still alive. heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO)); } if (jit_ != nullptr) { // Stop the profile saver thread before marking the runtime as shutting down. // The saver will try to dump the profiles before being sopped and that // requires holding the mutator lock. jit_->StopProfileSaver(); } { ScopedTrace trace2("Wait for shutdown cond"); MutexLock mu(self, *Locks::runtime_shutdown_lock_); shutting_down_started_ = true; while (threads_being_born_ > 0) { shutdown_cond_->Wait(self); } shutting_down_ = true; } // Shutdown and wait for the daemons. CHECK(self != nullptr); if (IsFinishedStarting()) { ScopedTrace trace2("Waiting for Daemons"); self->ClearException(); self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_stop); } Trace::Shutdown(); // Report death. Clients me require a working thread, still, so do it before GC completes and // all non-daemon threads are done. { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath); } if (attach_shutdown_thread) { DetachCurrentThread(); self = nullptr; } // Make sure to let the GC complete if it is running. heap_->WaitForGcToComplete(gc::kGcCauseBackground, self); heap_->DeleteThreadPool(); if (jit_ != nullptr) { ScopedTrace trace2("Delete jit"); VLOG(jit) << "Deleting jit thread pool"; // Delete thread pool before the thread list since we don't want to wait forever on the // JIT compiler threads. jit_->DeleteThreadPool(); } // TODO Maybe do some locking. for (auto& agent : agents_) { agent.Unload(); } // TODO Maybe do some locking for (auto& plugin : plugins_) { plugin.Unload(); } // Make sure our internal threads are dead before we start tearing down things they're using. Dbg::StopJdwp(); delete signal_catcher_; // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended. { ScopedTrace trace2("Delete thread list"); delete thread_list_; } // Delete the JIT after thread list to ensure that there is no remaining threads which could be // accessing the instrumentation when we delete it. if (jit_ != nullptr) { VLOG(jit) << "Deleting jit"; jit_.reset(nullptr); } // Shutdown the fault manager if it was initialized. fault_manager.Shutdown(); ScopedTrace trace2("Delete state"); delete monitor_list_; delete monitor_pool_; delete class_linker_; delete cha_; delete heap_; delete intern_table_; delete oat_file_manager_; Thread::Shutdown(); QuasiAtomic::Shutdown(); verifier::MethodVerifier::Shutdown(); // Destroy allocators before shutting down the MemMap because they may use it. java_vm_.reset(); linear_alloc_.reset(); low_4gb_arena_pool_.reset(); arena_pool_.reset(); jit_arena_pool_.reset(); MemMap::Shutdown(); // TODO: acquire a static mutex on Runtime to avoid racing. CHECK(instance_ == nullptr || instance_ == this); instance_ = nullptr; } struct AbortState { void Dump(std::ostream& os) const { if (gAborting > 1) { os << "Runtime aborting --- recursively, so no thread-specific detail!\n"; DumpRecursiveAbort(os); return; } gAborting++; os << "Runtime aborting...\n"; if (Runtime::Current() == nullptr) { os << "(Runtime does not yet exist!)\n"; DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr); return; } Thread* self = Thread::Current(); if (self == nullptr) { os << "(Aborting thread was not attached to runtime!)\n"; DumpKernelStack(os, GetTid(), " kernel: ", false); DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr); } else { os << "Aborting thread:\n"; if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) { DumpThread(os, self); } else { if (Locks::mutator_lock_->SharedTryLock(self)) { DumpThread(os, self); Locks::mutator_lock_->SharedUnlock(self); } } } DumpAllThreads(os, self); } // No thread-safety analysis as we do explicitly test for holding the mutator lock. void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS { DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)); self->Dump(os); if (self->IsExceptionPending()) { mirror::Throwable* exception = self->GetException(); os << "Pending exception " << exception->Dump(); } } void DumpAllThreads(std::ostream& os, Thread* self) const { Runtime* runtime = Runtime::Current(); if (runtime != nullptr) { ThreadList* thread_list = runtime->GetThreadList(); if (thread_list != nullptr) { bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self); bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self); if (!tll_already_held || !ml_already_held) { os << "Dumping all threads without appropriate locks held:" << (!tll_already_held ? " thread list lock" : "") << (!ml_already_held ? " mutator lock" : "") << "\n"; } os << "All threads:\n"; thread_list->Dump(os); } } } // For recursive aborts. void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS { // The only thing we'll attempt is dumping the native stack of the current thread. We will only // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually // die. // Note: as we're using a global counter for the recursive abort detection, there is a potential // race here and it is not OK to just print when the counter is "2" (one from // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough. static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u; if (gAborting < kOnlyPrintWhenRecursionLessThan) { gAborting++; DumpNativeStack(os, GetTid()); } } }; void Runtime::Abort(const char* msg) { gAborting++; // set before taking any locks // Ensure that we don't have multiple threads trying to abort at once, // which would result in significantly worse diagnostics. MutexLock mu(Thread::Current(), *Locks::abort_lock_); // Get any pending output out of the way. fflush(nullptr); // Many people have difficulty distinguish aborts from crashes, // so be explicit. // Note: use cerr on the host to print log lines immediately, so we get at least some output // in case of recursive aborts. We lose annotation with the source file and line number // here, which is a minor issue. The same is significantly more complicated on device, // which is why we ignore the issue there. AbortState state; if (kIsTargetBuild) { LOG(FATAL_WITHOUT_ABORT) << Dumpable(state); } else { std::cerr << Dumpable(state); } // Sometimes we dump long messages, and the Android abort message only retains the first line. // In those cases, just log the message again, to avoid logcat limits. if (msg != nullptr && strchr(msg, '\n') != nullptr) { LOG(FATAL_WITHOUT_ABORT) << msg; } // Call the abort hook if we have one. if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) { LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook..."; Runtime::Current()->abort_(); // notreached LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!"; } #if defined(__GLIBC__) // TODO: we ought to be able to use pthread_kill(3) here (or abort(3), // which POSIX defines in terms of raise(3), which POSIX defines in terms // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through // libpthread, which means the stacks we dump would be useless. Calling // tgkill(2) directly avoids that. syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT); // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM? // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3). exit(1); #else abort(); #endif // notreached } void Runtime::PreZygoteFork() { heap_->PreZygoteFork(); } void Runtime::CallExitHook(jint status) { if (exit_ != nullptr) { ScopedThreadStateChange tsc(Thread::Current(), kNative); exit_(status); LOG(WARNING) << "Exit hook returned instead of exiting!"; } } void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) { GetInternTable()->SweepInternTableWeaks(visitor); GetMonitorList()->SweepMonitorList(visitor); GetJavaVM()->SweepJniWeakGlobals(visitor); GetHeap()->SweepAllocationRecords(visitor); if (GetJit() != nullptr) { // Visit JIT literal tables. Objects in these tables are classes and strings // and only classes can be affected by class unloading. The strings always // stay alive as they are strongly interned. // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses // from mutators. See b/32167580. GetJit()->GetCodeCache()->SweepRootTables(visitor); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Sweep(visitor); } } bool Runtime::ParseOptions(const RuntimeOptions& raw_options, bool ignore_unrecognized, RuntimeArgumentMap* runtime_options) { InitLogging(/* argv */ nullptr, Aborter); // Calls Locks::Init() as a side effect. bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options); if (!parsed) { LOG(ERROR) << "Failed to parse options"; return false; } return true; } // Callback to check whether it is safe to call Abort (e.g., to use a call to // LOG(FATAL)). It is only safe to call Abort if the runtime has been created, // properly initialized, and has not shut down. static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS { Runtime* runtime = Runtime::Current(); return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked(); } bool Runtime::Create(RuntimeArgumentMap&& runtime_options) { // TODO: acquire a static mutex on Runtime to avoid racing. if (Runtime::instance_ != nullptr) { return false; } instance_ = new Runtime; Locks::SetClientCallback(IsSafeToCallAbort); if (!instance_->Init(std::move(runtime_options))) { // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will // leak memory, instead. Fix the destructor. b/19100793. // delete instance_; instance_ = nullptr; return false; } return true; } bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) { RuntimeArgumentMap runtime_options; return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) && Create(std::move(runtime_options)); } static jobject CreateSystemClassLoader(Runtime* runtime) { if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) { return nullptr; } ScopedObjectAccess soa(Thread::Current()); ClassLinker* cl = Runtime::Current()->GetClassLinker(); auto pointer_size = cl->GetImagePointerSize(); StackHandleScope<2> hs(soa.Self()); Handle class_loader_class( hs.NewHandle(soa.Decode(WellKnownClasses::java_lang_ClassLoader))); CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true)); ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod( "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size); CHECK(getSystemClassLoader != nullptr); JValue result = InvokeWithJValues(soa, nullptr, jni::EncodeArtMethod(getSystemClassLoader), nullptr); JNIEnv* env = soa.Self()->GetJniEnv(); ScopedLocalRef system_class_loader(env, soa.AddLocalReference(result.GetL())); CHECK(system_class_loader.get() != nullptr); soa.Self()->SetClassLoaderOverride(system_class_loader.get()); Handle thread_class( hs.NewHandle(soa.Decode(WellKnownClasses::java_lang_Thread))); CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true)); ArtField* contextClassLoader = thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;"); CHECK(contextClassLoader != nullptr); // We can't run in a transaction yet. contextClassLoader->SetObject( soa.Self()->GetPeer(), soa.Decode(system_class_loader.get()).Ptr()); return env->NewGlobalRef(system_class_loader.get()); } std::string Runtime::GetPatchoatExecutable() const { if (!patchoat_executable_.empty()) { return patchoat_executable_; } std::string patchoat_executable(GetAndroidRoot()); patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat"); return patchoat_executable; } std::string Runtime::GetCompilerExecutable() const { if (!compiler_executable_.empty()) { return compiler_executable_; } std::string compiler_executable(GetAndroidRoot()); compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); return compiler_executable; } bool Runtime::Start() { VLOG(startup) << "Runtime::Start entering"; CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled"; // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump. // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel. #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__) if (kIsDebugBuild) { CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0); } #endif // Restore main thread state to kNative as expected by native code. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); started_ = true; if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) { ScopedObjectAccess soa(self); StackHandleScope<2> hs(soa.Self()); auto class_class(hs.NewHandle(mirror::Class::GetJavaLangClass())); auto field_class(hs.NewHandle(mirror::Field::StaticClass())); class_linker_->EnsureInitialized(soa.Self(), class_class, true, true); // Field class is needed for register_java_net_InetAddress in libcore, b/28153851. class_linker_->EnsureInitialized(soa.Self(), field_class, true, true); } // InitNativeMethods needs to be after started_ so that the classes // it touches will have methods linked to the oat file if necessary. { ScopedTrace trace2("InitNativeMethods"); InitNativeMethods(); } // Initialize well known thread group values that may be accessed threads while attaching. InitThreadGroups(self); Thread::FinishStartup(); // Create the JIT either if we have to use JIT compilation or save profiling info. This is // done after FinishStartup as the JIT pool needs Java thread peers, which require the main // ThreadGroup to exist. // // TODO(calin): We use the JIT class as a proxy for JIT compilation and for // recoding profiles. Maybe we should consider changing the name to be more clear it's // not only about compiling. b/28295073. if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) { std::string error_msg; if (!IsZygote()) { // If we are the zygote then we need to wait until after forking to create the code cache // due to SELinux restrictions on r/w/x memory regions. CreateJit(); } else if (jit_options_->UseJitCompilation()) { if (!jit::Jit::LoadCompilerLibrary(&error_msg)) { // Try to load compiler pre zygote to reduce PSS. b/27744947 LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg; } } } // Send the start phase event. We have to wait till here as this is when the main thread peer // has just been generated, important root clinits have been run and JNI is completely functional. { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart); } system_class_loader_ = CreateSystemClassLoader(this); if (!is_zygote_) { if (is_native_bridge_loaded_) { PreInitializeNativeBridge("."); } NativeBridgeAction action = force_native_bridge_ ? NativeBridgeAction::kInitialize : NativeBridgeAction::kUnload; InitNonZygoteOrPostFork(self->GetJniEnv(), /* is_system_server */ false, action, GetInstructionSetString(kRuntimeISA)); } // Send the initialized phase event. Send it before starting daemons, as otherwise // sending thread events becomes complicated. { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit); } StartDaemonThreads(); { ScopedObjectAccess soa(self); self->GetJniEnv()->locals.AssertEmpty(); } VLOG(startup) << "Runtime::Start exiting"; finished_starting_ = true; if (trace_config_.get() != nullptr && trace_config_->trace_file != "") { ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart); Trace::Start(trace_config_->trace_file.c_str(), -1, static_cast(trace_config_->trace_file_size), 0, trace_config_->trace_output_mode, trace_config_->trace_mode, 0); } return true; } void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) { DCHECK_GT(threads_being_born_, 0U); threads_being_born_--; if (shutting_down_started_ && threads_being_born_ == 0) { shutdown_cond_->Broadcast(Thread::Current()); } } void Runtime::InitNonZygoteOrPostFork( JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) { is_zygote_ = false; if (is_native_bridge_loaded_) { switch (action) { case NativeBridgeAction::kUnload: UnloadNativeBridge(); is_native_bridge_loaded_ = false; break; case NativeBridgeAction::kInitialize: InitializeNativeBridge(env, isa); break; } } // Create the thread pools. heap_->CreateThreadPool(); // Reset the gc performance data at zygote fork so that the GCs // before fork aren't attributed to an app. heap_->ResetGcPerformanceInfo(); // We may want to collect profiling samples for system server, but we never want to JIT there. if ((!is_system_server || !jit_options_->UseJitCompilation()) && !safe_mode_ && (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) && jit_ == nullptr) { // Note that when running ART standalone (not zygote, nor zygote fork), // the jit may have already been created. CreateJit(); } StartSignalCatcher(); // Start the JDWP thread. If the command-line debugger flags specified "suspend=y", // this will pause the runtime, so we probably want this to come last. Dbg::StartJdwp(); } void Runtime::StartSignalCatcher() { if (!is_zygote_) { signal_catcher_ = new SignalCatcher(stack_trace_file_); } } bool Runtime::IsShuttingDown(Thread* self) { MutexLock mu(self, *Locks::runtime_shutdown_lock_); return IsShuttingDownLocked(); } void Runtime::StartDaemonThreads() { ScopedTrace trace(__FUNCTION__); VLOG(startup) << "Runtime::StartDaemonThreads entering"; Thread* self = Thread::Current(); // Must be in the kNative state for calling native methods. CHECK_EQ(self->GetState(), kNative); JNIEnv* env = self->GetJniEnv(); env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_start); if (env->ExceptionCheck()) { env->ExceptionDescribe(); LOG(FATAL) << "Error starting java.lang.Daemons"; } VLOG(startup) << "Runtime::StartDaemonThreads exiting"; } // Attempts to open dex files from image(s). Given the image location, try to find the oat file // and open it to get the stored dex file. If the image is the first for a multi-image boot // classpath, go on and also open the other images. static bool OpenDexFilesFromImage(const std::string& image_location, std::vector>* dex_files, size_t* failures) { DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr"; // Use a work-list approach, so that we can easily reuse the opening code. std::vector image_locations; image_locations.push_back(image_location); for (size_t index = 0; index < image_locations.size(); ++index) { std::string system_filename; bool has_system = false; std::string cache_filename_unused; bool dalvik_cache_exists_unused; bool has_cache_unused; bool is_global_cache_unused; bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(), kRuntimeISA, &system_filename, &has_system, &cache_filename_unused, &dalvik_cache_exists_unused, &has_cache_unused, &is_global_cache_unused); if (!found_image || !has_system) { return false; } // We are falling back to non-executable use of the oat file because patching failed, presumably // due to lack of space. std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str()); std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str()); std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str()); // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle // that here. if (android::base::EndsWith(oat_location, ".jar")) { oat_location.replace(oat_location.length() - 3, 3, "oat"); } std::string error_msg; std::unique_ptr vdex_file(VdexFile::Open(vdex_filename, false /* writable */, false /* low_4gb */, &error_msg)); if (vdex_file.get() == nullptr) { return false; } std::unique_ptr file(OS::OpenFileForReading(oat_filename.c_str())); if (file.get() == nullptr) { return false; } std::unique_ptr elf_file(ElfFile::Open(file.get(), false /* writable */, false /* program_header_only */, false /* low_4gb */, &error_msg)); if (elf_file.get() == nullptr) { return false; } std::unique_ptr oat_file( OatFile::OpenWithElfFile(elf_file.release(), vdex_file.release(), oat_location, nullptr, &error_msg)); if (oat_file == nullptr) { LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg; return false; } for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) { if (oat_dex_file == nullptr) { *failures += 1; continue; } std::unique_ptr dex_file = oat_dex_file->OpenDexFile(&error_msg); if (dex_file.get() == nullptr) { *failures += 1; } else { dex_files->push_back(std::move(dex_file)); } } if (index == 0) { // First file. See if this is a multi-image environment, and if so, enqueue the other images. const OatHeader& boot_oat_header = oat_file->GetOatHeader(); const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); if (boot_cp != nullptr) { gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0], boot_cp, &image_locations); } } Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file)); } return true; } static size_t OpenDexFiles(const std::vector& dex_filenames, const std::vector& dex_locations, const std::string& image_location, std::vector>* dex_files) { DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr"; size_t failure_count = 0; if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) { return failure_count; } failure_count = 0; for (size_t i = 0; i < dex_filenames.size(); i++) { const char* dex_filename = dex_filenames[i].c_str(); const char* dex_location = dex_locations[i].c_str(); static constexpr bool kVerifyChecksum = true; std::string error_msg; if (!OS::FileExists(dex_filename)) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; continue; } if (!DexFile::Open(dex_filename, dex_location, kVerifyChecksum, &error_msg, dex_files)) { LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg; ++failure_count; } } return failure_count; } void Runtime::SetSentinel(mirror::Object* sentinel) { CHECK(sentinel_.Read() == nullptr); CHECK(sentinel != nullptr); CHECK(!heap_->IsMovableObject(sentinel)); sentinel_ = GcRoot(sentinel); } bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) { // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc. // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc. env_snapshot_.TakeSnapshot(); RuntimeArgumentMap runtime_options(std::move(runtime_options_in)); ScopedTrace trace(__FUNCTION__); CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize); MemMap::Init(); using Opt = RuntimeArgumentMap; VLOG(startup) << "Runtime::Init -verbose:startup enabled"; QuasiAtomic::Startup(); oat_file_manager_ = new OatFileManager; Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread)); Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold)); boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath); class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath); properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList); compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr); patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat); must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate); is_zygote_ = runtime_options.Exists(Opt::Zygote); is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC); dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat); image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat); dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit); vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf); exit_ = runtime_options.GetOrDefault(Opt::HookExit); abort_ = runtime_options.GetOrDefault(Opt::HookAbort); default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize); stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile); compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler); compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions); for (StringPiece option : Runtime::Current()->GetCompilerOptions()) { if (option.starts_with("--debuggable")) { SetJavaDebuggable(true); break; } } image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions); image_location_ = runtime_options.GetOrDefault(Opt::Image); max_spins_before_thin_lock_inflation_ = runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation); monitor_list_ = new MonitorList; monitor_pool_ = MonitorPool::Create(); thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout)); intern_table_ = new InternTable; verify_ = runtime_options.GetOrDefault(Opt::Verify); allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback); no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain); force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge); Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_); fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint); if (runtime_options.GetOrDefault(Opt::Interpret)) { GetInstrumentation()->ForceInterpretOnly(); } zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots); experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental); is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode); plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins); agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath); // TODO Add back in -agentlib // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) { // agents_.push_back(lib); // } XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption); heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize), runtime_options.GetOrDefault(Opt::HeapGrowthLimit), runtime_options.GetOrDefault(Opt::HeapMinFree), runtime_options.GetOrDefault(Opt::HeapMaxFree), runtime_options.GetOrDefault(Opt::HeapTargetUtilization), runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier), runtime_options.GetOrDefault(Opt::MemoryMaximumSize), runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity), runtime_options.GetOrDefault(Opt::Image), runtime_options.GetOrDefault(Opt::ImageInstructionSet), // Override the collector type to CC if the read barrier config. kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_, kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) : runtime_options.GetOrDefault(Opt::BackgroundGc), runtime_options.GetOrDefault(Opt::LargeObjectSpace), runtime_options.GetOrDefault(Opt::LargeObjectThreshold), runtime_options.GetOrDefault(Opt::ParallelGCThreads), runtime_options.GetOrDefault(Opt::ConcGCThreads), runtime_options.Exists(Opt::LowMemoryMode), runtime_options.GetOrDefault(Opt::LongPauseLogThreshold), runtime_options.GetOrDefault(Opt::LongGCLogThreshold), runtime_options.Exists(Opt::IgnoreMaxFootprint), runtime_options.GetOrDefault(Opt::UseTLAB), xgc_option.verify_pre_gc_heap_, xgc_option.verify_pre_sweeping_heap_, xgc_option.verify_post_gc_heap_, xgc_option.verify_pre_gc_rosalloc_, xgc_option.verify_pre_sweeping_rosalloc_, xgc_option.verify_post_gc_rosalloc_, xgc_option.gcstress_, xgc_option.measure_, runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM), runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs)); if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) { LOG(ERROR) << "Dex file fallback disabled, cannot continue without image."; return false; } dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown); if (runtime_options.Exists(Opt::JdwpOptions)) { Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions)); } callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback()); callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback()); jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options)); if (IsAotCompiler()) { // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in // this case. // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns // null and we don't create the jit. jit_options_->SetUseJitCompilation(false); jit_options_->SetSaveProfilingInfo(false); } // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but // can't be trimmed as easily. const bool use_malloc = IsAotCompiler(); arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false)); jit_arena_pool_.reset( new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata")); if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) { // 4gb, no malloc. Explanation in header. low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true)); } linear_alloc_.reset(CreateLinearAlloc()); BlockSignals(); InitPlatformSignalHandlers(); // Change the implicit checks flags based on runtime architecture. switch (kRuntimeISA) { case kArm: case kThumb2: case kX86: case kArm64: case kX86_64: case kMips: case kMips64: implicit_null_checks_ = true; // Installing stack protection does not play well with valgrind. implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind); break; default: // Keep the defaults. break; } if (!no_sig_chain_) { // Dex2Oat's Runtime does not need the signal chain or the fault handler. // Initialize the signal chain so that any calls to sigaction get // correctly routed to the next in the chain regardless of whether we // have claimed the signal or not. InitializeSignalChain(); if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) { fault_manager.Init(); // These need to be in a specific order. The null point check handler must be // after the suspend check and stack overflow check handlers. // // Note: the instances attach themselves to the fault manager and are handled by it. The manager // will delete the instance on Shutdown(). if (implicit_suspend_checks_) { new SuspensionHandler(&fault_manager); } if (implicit_so_checks_) { new StackOverflowHandler(&fault_manager); } if (implicit_null_checks_) { new NullPointerHandler(&fault_manager); } if (kEnableJavaStackTraceHandler) { new JavaStackTraceHandler(&fault_manager); } } } std::string error_msg; java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg); if (java_vm_.get() == nullptr) { LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg; return false; } // Add the JniEnv handler. // TODO Refactor this stuff. java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler); Thread::Startup(); // ClassLinker needs an attached thread, but we can't fully attach a thread without creating // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main // thread, we do not get a java peer. Thread* self = Thread::Attach("main", false, nullptr, false); CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId); CHECK(self != nullptr); self->SetCanCallIntoJava(!IsAotCompiler()); // Set us to runnable so tools using a runtime can allocate and GC by default self->TransitionFromSuspendedToRunnable(); // Now we're attached, we can take the heap locks and validate the heap. GetHeap()->EnableObjectValidation(); CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U); class_linker_ = new ClassLinker(intern_table_); cha_ = new ClassHierarchyAnalysis; if (GetHeap()->HasBootImageSpace()) { bool result = class_linker_->InitFromBootImage(&error_msg); if (!result) { LOG(ERROR) << "Could not initialize from image: " << error_msg; return false; } if (kIsDebugBuild) { for (auto image_space : GetHeap()->GetBootImageSpaces()) { image_space->VerifyImageAllocations(); } } if (boot_class_path_string_.empty()) { // The bootclasspath is not explicitly specified: construct it from the loaded dex files. const std::vector& boot_class_path = GetClassLinker()->GetBootClassPath(); std::vector dex_locations; dex_locations.reserve(boot_class_path.size()); for (const DexFile* dex_file : boot_class_path) { dex_locations.push_back(dex_file->GetLocation()); } boot_class_path_string_ = android::base::Join(dex_locations, ':'); } { ScopedTrace trace2("AddImageStringsToTable"); GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces()); } if (IsJavaDebuggable()) { // Now that we have loaded the boot image, deoptimize its methods if we are running // debuggable, as the code may have been compiled non-debuggable. DeoptimizeBootImage(); } } else { std::vector dex_filenames; Split(boot_class_path_string_, ':', &dex_filenames); std::vector dex_locations; if (!runtime_options.Exists(Opt::BootClassPathLocations)) { dex_locations = dex_filenames; } else { dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations); CHECK_EQ(dex_filenames.size(), dex_locations.size()); } std::vector> boot_class_path; if (runtime_options.Exists(Opt::BootClassPathDexList)) { boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); } else { OpenDexFiles(dex_filenames, dex_locations, runtime_options.GetOrDefault(Opt::Image), &boot_class_path); } instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet); if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) { LOG(ERROR) << "Could not initialize without image: " << error_msg; return false; } // TODO: Should we move the following to InitWithoutImage? SetInstructionSet(instruction_set_); for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!HasCalleeSaveMethod(type)) { SetCalleeSaveMethod(CreateCalleeSaveMethod(), type); } } } CHECK(class_linker_ != nullptr); verifier::MethodVerifier::Init(); if (runtime_options.Exists(Opt::MethodTrace)) { trace_config_.reset(new TraceConfig()); trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile); trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize); trace_config_->trace_mode = Trace::TraceMode::kMethodTracing; trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ? Trace::TraceOutputMode::kStreaming : Trace::TraceOutputMode::kFile; } // TODO: move this to just be an Trace::Start argument Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock)); // Pre-allocate an OutOfMemoryError for the double-OOME case. self->ThrowNewException("Ljava/lang/OutOfMemoryError;", "OutOfMemoryError thrown while trying to throw OutOfMemoryError; " "no stack trace available"); pre_allocated_OutOfMemoryError_ = GcRoot(self->GetException()); self->ClearException(); // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class // ahead of checking the application's class loader. self->ThrowNewException("Ljava/lang/NoClassDefFoundError;", "Class not found using the boot class loader; no stack trace available"); pre_allocated_NoClassDefFoundError_ = GcRoot(self->GetException()); self->ClearException(); // Runtime initialization is largely done now. // We load plugins first since that can modify the runtime state slightly. // Load all plugins for (auto& plugin : plugins_) { std::string err; if (!plugin.Load(&err)) { LOG(FATAL) << plugin << " failed to load: " << err; } } // Look for a native bridge. // // The intended flow here is, in the case of a running system: // // Runtime::Init() (zygote): // LoadNativeBridge -> dlopen from cmd line parameter. // | // V // Runtime::Start() (zygote): // No-op wrt native bridge. // | // | start app // V // DidForkFromZygote(action) // action = kUnload -> dlclose native bridge. // action = kInitialize -> initialize library // // // The intended flow here is, in the case of a simple dalvikvm call: // // Runtime::Init(): // LoadNativeBridge -> dlopen from cmd line parameter. // | // V // Runtime::Start(): // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given. // No-op wrt native bridge. { std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge); is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name); } // Startup agents // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more. for (auto& agent : agents_) { // TODO Check err int res = 0; std::string err = ""; ti::Agent::LoadError result = agent.Load(&res, &err); if (result == ti::Agent::kInitializationError) { LOG(FATAL) << "Unable to initialize agent!"; } else if (result != ti::Agent::kNoError) { LOG(ERROR) << "Unable to load an agent: " << err; } } { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents); } VLOG(startup) << "Runtime::Init exiting"; return true; } static bool EnsureJvmtiPlugin(Runtime* runtime, std::vector* plugins, std::string* error_msg) { constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so"; // Is the plugin already loaded? for (const Plugin& p : *plugins) { if (p.GetLibrary() == plugin_name) { return true; } } // Is the process debuggable? Otherwise, do not attempt to load the plugin. if (!runtime->IsJavaDebuggable()) { *error_msg = "Process is not debuggable."; return false; } Plugin new_plugin = Plugin::Create(plugin_name); if (!new_plugin.Load(error_msg)) { return false; } plugins->push_back(std::move(new_plugin)); return true; } // Attach a new agent and add it to the list of runtime agents // // TODO: once we decide on the threading model for agents, // revisit this and make sure we're doing this on the right thread // (and we synchronize access to any shared data structures like "agents_") // void Runtime::AttachAgent(const std::string& agent_arg) { std::string error_msg; if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) { LOG(WARNING) << "Could not load plugin: " << error_msg; ScopedObjectAccess soa(Thread::Current()); ThrowIOException("%s", error_msg.c_str()); return; } ti::Agent agent(agent_arg); int res = 0; ti::Agent::LoadError result = agent.Attach(&res, &error_msg); if (result == ti::Agent::kNoError) { agents_.push_back(std::move(agent)); } else { LOG(WARNING) << "Agent attach failed (result=" << result << ") : " << error_msg; ScopedObjectAccess soa(Thread::Current()); ThrowIOException("%s", error_msg.c_str()); } } void Runtime::InitNativeMethods() { VLOG(startup) << "Runtime::InitNativeMethods entering"; Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); // Must be in the kNative state for calling native methods (JNI_OnLoad code). CHECK_EQ(self->GetState(), kNative); // First set up JniConstants, which is used by both the runtime's built-in native // methods and libcore. JniConstants::init(env); // Then set up the native methods provided by the runtime itself. RegisterRuntimeNativeMethods(env); // Initialize classes used in JNI. The initialization requires runtime native // methods to be loaded first. WellKnownClasses::Init(env); // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but // libcore can't because it's the library that implements System.loadLibrary! { std::string error_msg; if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) { LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg; } } { constexpr const char* kOpenJdkLibrary = kIsDebugBuild ? "libopenjdkd.so" : "libopenjdk.so"; std::string error_msg; if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) { LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg; } } // Initialize well known classes that may invoke runtime native methods. WellKnownClasses::LateInit(env); VLOG(startup) << "Runtime::InitNativeMethods exiting"; } void Runtime::ReclaimArenaPoolMemory() { arena_pool_->LockReclaimMemory(); } void Runtime::InitThreadGroups(Thread* self) { JNIEnvExt* env = self->GetJniEnv(); ScopedJniEnvLocalRefState env_state(env); main_thread_group_ = env->NewGlobalRef(env->GetStaticObjectField( WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup)); CHECK(main_thread_group_ != nullptr || IsAotCompiler()); system_thread_group_ = env->NewGlobalRef(env->GetStaticObjectField( WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup)); CHECK(system_thread_group_ != nullptr || IsAotCompiler()); } jobject Runtime::GetMainThreadGroup() const { CHECK(main_thread_group_ != nullptr || IsAotCompiler()); return main_thread_group_; } jobject Runtime::GetSystemThreadGroup() const { CHECK(system_thread_group_ != nullptr || IsAotCompiler()); return system_thread_group_; } jobject Runtime::GetSystemClassLoader() const { CHECK(system_class_loader_ != nullptr || IsAotCompiler()); return system_class_loader_; } void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) { register_dalvik_system_DexFile(env); register_dalvik_system_VMDebug(env); register_dalvik_system_VMRuntime(env); register_dalvik_system_VMStack(env); register_dalvik_system_ZygoteHooks(env); register_java_lang_Class(env); register_java_lang_Object(env); register_java_lang_invoke_MethodHandleImpl(env); register_java_lang_ref_FinalizerReference(env); register_java_lang_reflect_Array(env); register_java_lang_reflect_Constructor(env); register_java_lang_reflect_Executable(env); register_java_lang_reflect_Field(env); register_java_lang_reflect_Method(env); register_java_lang_reflect_Parameter(env); register_java_lang_reflect_Proxy(env); register_java_lang_ref_Reference(env); register_java_lang_String(env); register_java_lang_StringFactory(env); register_java_lang_System(env); register_java_lang_Thread(env); register_java_lang_Throwable(env); register_java_lang_VMClassLoader(env); register_java_lang_Void(env); register_java_util_concurrent_atomic_AtomicLong(env); register_libcore_util_CharsetUtils(env); register_org_apache_harmony_dalvik_ddmc_DdmServer(env); register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env); register_sun_misc_Unsafe(env); } void Runtime::DumpForSigQuit(std::ostream& os) { GetClassLinker()->DumpForSigQuit(os); GetInternTable()->DumpForSigQuit(os); GetJavaVM()->DumpForSigQuit(os); GetHeap()->DumpForSigQuit(os); oat_file_manager_->DumpForSigQuit(os); if (GetJit() != nullptr) { GetJit()->DumpForSigQuit(os); } else { os << "Running non JIT\n"; } TrackedAllocators::Dump(os); os << "\n"; thread_list_->DumpForSigQuit(os); BaseMutex::DumpAll(os); // Inform anyone else who is interested in SigQuit. { ScopedObjectAccess soa(Thread::Current()); callbacks_->SigQuit(); } } void Runtime::DumpLockHolders(std::ostream& os) { uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid(); pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner(); pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner(); pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner(); if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) { os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n" << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n" << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n" << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n"; } } void Runtime::SetStatsEnabled(bool new_state) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::instrument_entrypoints_lock_); if (new_state == true) { GetStats()->Clear(~0); // TODO: wouldn't it make more sense to clear _all_ threads' stats? self->GetStats()->Clear(~0); if (stats_enabled_ != new_state) { GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked(); } } else if (stats_enabled_ != new_state) { GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked(); } stats_enabled_ = new_state; } void Runtime::ResetStats(int kinds) { GetStats()->Clear(kinds & 0xffff); // TODO: wouldn't it make more sense to clear _all_ threads' stats? Thread::Current()->GetStats()->Clear(kinds >> 16); } int32_t Runtime::GetStat(int kind) { RuntimeStats* stats; if (kind < (1<<16)) { stats = GetStats(); } else { stats = Thread::Current()->GetStats(); kind >>= 16; } switch (kind) { case KIND_ALLOCATED_OBJECTS: return stats->allocated_objects; case KIND_ALLOCATED_BYTES: return stats->allocated_bytes; case KIND_FREED_OBJECTS: return stats->freed_objects; case KIND_FREED_BYTES: return stats->freed_bytes; case KIND_GC_INVOCATIONS: return stats->gc_for_alloc_count; case KIND_CLASS_INIT_COUNT: return stats->class_init_count; case KIND_CLASS_INIT_TIME: // Convert ns to us, reduce to 32 bits. return static_cast(stats->class_init_time_ns / 1000); case KIND_EXT_ALLOCATED_OBJECTS: case KIND_EXT_ALLOCATED_BYTES: case KIND_EXT_FREED_OBJECTS: case KIND_EXT_FREED_BYTES: return 0; // backward compatibility default: LOG(FATAL) << "Unknown statistic " << kind; return -1; // unreachable } } void Runtime::BlockSignals() { SignalSet signals; signals.Add(SIGPIPE); // SIGQUIT is used to dump the runtime's state (including stack traces). signals.Add(SIGQUIT); // SIGUSR1 is used to initiate a GC. signals.Add(SIGUSR1); signals.Block(); } bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer) { ScopedTrace trace(__FUNCTION__); return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr; } void Runtime::DetachCurrentThread() { ScopedTrace trace(__FUNCTION__); Thread* self = Thread::Current(); if (self == nullptr) { LOG(FATAL) << "attempting to detach thread that is not attached"; } if (self->HasManagedStack()) { LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code"; } thread_list_->Unregister(self); } mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() { mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read(); if (oome == nullptr) { LOG(ERROR) << "Failed to return pre-allocated OOME"; } return oome; } mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() { mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read(); if (ncdfe == nullptr) { LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError"; } return ncdfe; } void Runtime::VisitConstantRoots(RootVisitor* visitor) { // Visit the classes held as static in mirror classes, these can be visited concurrently and only // need to be visited once per GC since they never change. mirror::Class::VisitRoots(visitor); mirror::Constructor::VisitRoots(visitor); mirror::Reference::VisitRoots(visitor); mirror::Method::VisitRoots(visitor); mirror::StackTraceElement::VisitRoots(visitor); mirror::String::VisitRoots(visitor); mirror::Throwable::VisitRoots(visitor); mirror::Field::VisitRoots(visitor); mirror::MethodType::VisitRoots(visitor); mirror::MethodHandleImpl::VisitRoots(visitor); mirror::MethodHandlesLookup::VisitRoots(visitor); mirror::EmulatedStackFrame::VisitRoots(visitor); mirror::ClassExt::VisitRoots(visitor); // Visit all the primitive array types classes. mirror::PrimitiveArray::VisitRoots(visitor); // BooleanArray mirror::PrimitiveArray::VisitRoots(visitor); // ByteArray mirror::PrimitiveArray::VisitRoots(visitor); // CharArray mirror::PrimitiveArray::VisitRoots(visitor); // DoubleArray mirror::PrimitiveArray::VisitRoots(visitor); // FloatArray mirror::PrimitiveArray::VisitRoots(visitor); // IntArray mirror::PrimitiveArray::VisitRoots(visitor); // LongArray mirror::PrimitiveArray::VisitRoots(visitor); // ShortArray // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are // null. BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal)); const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); if (HasResolutionMethod()) { resolution_method_->VisitRoots(buffered_visitor, pointer_size); } if (HasImtConflictMethod()) { imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size); } if (imt_unimplemented_method_ != nullptr) { imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size); } for (size_t i = 0; i < kLastCalleeSaveType; ++i) { auto* m = reinterpret_cast(callee_save_methods_[i]); if (m != nullptr) { m->VisitRoots(buffered_visitor, pointer_size); } } } void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { intern_table_->VisitRoots(visitor, flags); class_linker_->VisitRoots(visitor, flags); heap_->VisitAllocationRecords(visitor); if ((flags & kVisitRootFlagNewRoots) == 0) { // Guaranteed to have no new roots in the constant roots. VisitConstantRoots(visitor); } Dbg::VisitRoots(visitor); } void Runtime::VisitTransactionRoots(RootVisitor* visitor) { if (preinitialization_transaction_ != nullptr) { preinitialization_transaction_->VisitRoots(visitor); } } void Runtime::VisitNonThreadRoots(RootVisitor* visitor) { java_vm_->VisitRoots(visitor); sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); verifier::MethodVerifier::VisitStaticRoots(visitor); VisitTransactionRoots(visitor); } void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { VisitThreadRoots(visitor, flags); VisitNonThreadRoots(visitor); } void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) { thread_list_->VisitRoots(visitor, flags); } size_t Runtime::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback, gc::collector::GarbageCollector* collector) { return thread_list_->FlipThreadRoots(thread_flip_visitor, flip_callback, collector); } void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { VisitNonConcurrentRoots(visitor, flags); VisitConcurrentRoots(visitor, flags); } void Runtime::VisitImageRoots(RootVisitor* visitor) { for (auto* space : GetHeap()->GetContinuousSpaces()) { if (space->IsImageSpace()) { auto* image_space = space->AsImageSpace(); const auto& image_header = image_space->GetImageHeader(); for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) { auto* obj = image_header.GetImageRoot(static_cast(i)); if (obj != nullptr) { auto* after_obj = obj; visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass)); CHECK_EQ(after_obj, obj); } } } } } static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) { const PointerSize image_pointer_size = class_linker->GetImagePointerSize(); const size_t method_alignment = ArtMethod::Alignment(image_pointer_size); const size_t method_size = ArtMethod::Size(image_pointer_size); LengthPrefixedArray* method_array = class_linker->AllocArtMethodArray( Thread::Current(), linear_alloc, 1); ArtMethod* method = &method_array->At(0, method_size, method_alignment); CHECK(method != nullptr); method->SetDexMethodIndex(DexFile::kDexNoIndex); CHECK(method->IsRuntimeMethod()); return method; } ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) { ClassLinker* const class_linker = GetClassLinker(); ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc); // When compiling, the code pointer will get set later when the image is loaded. const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); if (IsAotCompiler()) { method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub()); } // Create empty conflict table. method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc), pointer_size); return method; } void Runtime::SetImtConflictMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()); imt_conflict_method_ = method; } ArtMethod* Runtime::CreateResolutionMethod() { auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); // When compiling, the code pointer will get set later when the image is loaded. if (IsAotCompiler()) { PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); } return method; } ArtMethod* Runtime::CreateCalleeSaveMethod() { auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); DCHECK_NE(instruction_set_, kNone); DCHECK(method->IsRuntimeMethod()); return method; } void Runtime::DisallowNewSystemWeaks() { CHECK(!kUseReadBarrier); monitor_list_->DisallowNewMonitors(); intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites); java_vm_->DisallowNewWeakGlobals(); heap_->DisallowNewAllocationRecords(); if (GetJit() != nullptr) { GetJit()->GetCodeCache()->DisallowInlineCacheAccess(); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Disallow(); } } void Runtime::AllowNewSystemWeaks() { CHECK(!kUseReadBarrier); monitor_list_->AllowNewMonitors(); intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping. java_vm_->AllowNewWeakGlobals(); heap_->AllowNewAllocationRecords(); if (GetJit() != nullptr) { GetJit()->GetCodeCache()->AllowInlineCacheAccess(); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Allow(); } } void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) { // This is used for the read barrier case that uses the thread-local // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled // (see ThreadList::RunCheckpoint). monitor_list_->BroadcastForNewMonitors(); intern_table_->BroadcastForNewInterns(); java_vm_->BroadcastForNewWeakGlobals(); heap_->BroadcastForNewAllocationRecords(); if (GetJit() != nullptr) { GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess(); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Broadcast(broadcast_for_checkpoint); } } void Runtime::SetInstructionSet(InstructionSet instruction_set) { instruction_set_ = instruction_set; if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kMips) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kMips64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kX86) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kX86_64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kArm64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type); } } else { UNIMPLEMENTED(FATAL) << instruction_set_; } } void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) { DCHECK_LT(static_cast(type), static_cast(kLastCalleeSaveType)); CHECK(method != nullptr); callee_save_methods_[type] = reinterpret_cast(method); } void Runtime::RegisterAppInfo(const std::vector& code_paths, const std::string& profile_output_filename) { if (jit_.get() == nullptr) { // We are not JITing. Nothing to do. return; } VLOG(profiler) << "Register app with " << profile_output_filename << " " << android::base::Join(code_paths, ':'); if (profile_output_filename.empty()) { LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty."; return; } if (!FileExists(profile_output_filename)) { LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits."; return; } if (code_paths.empty()) { LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty."; return; } jit_->StartProfileSaver(profile_output_filename, code_paths); } // Transaction support. void Runtime::EnterTransactionMode(Transaction* transaction) { DCHECK(IsAotCompiler()); DCHECK(transaction != nullptr); DCHECK(!IsActiveTransaction()); preinitialization_transaction_ = transaction; } void Runtime::ExitTransactionMode() { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_ = nullptr; } bool Runtime::IsTransactionAborted() const { if (!IsActiveTransaction()) { return false; } else { DCHECK(IsAotCompiler()); return preinitialization_transaction_->IsAborted(); } } void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); // Throwing an exception may cause its class initialization. If we mark the transaction // aborted before that, we may warn with a false alarm. Throwing the exception before // marking the transaction aborted avoids that. preinitialization_transaction_->ThrowAbortError(self, &abort_message); preinitialization_transaction_->Abort(abort_message); } void Runtime::ThrowTransactionAbortError(Thread* self) { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); // Passing nullptr means we rethrow an exception with the earlier transaction abort message. preinitialization_transaction_->ThrowAbortError(self, nullptr); } void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset, uint8_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset, int8_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset, uint16_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset, int16_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset, uint32_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset, uint64_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldReference(mirror::Object* obj, MemberOffset field_offset, ObjPtr value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldReference(obj, field_offset, value.Ptr(), is_volatile); } void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteArray(array, index, value); } void Runtime::RecordStrongStringInsertion(ObjPtr s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordStrongStringInsertion(s); } void Runtime::RecordWeakStringInsertion(ObjPtr s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWeakStringInsertion(s); } void Runtime::RecordStrongStringRemoval(ObjPtr s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordStrongStringRemoval(s); } void Runtime::RecordWeakStringRemoval(ObjPtr s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWeakStringRemoval(s); } void Runtime::RecordResolveString(ObjPtr dex_cache, dex::StringIndex string_idx) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordResolveString(dex_cache, string_idx); } void Runtime::SetFaultMessage(const std::string& message) { MutexLock mu(Thread::Current(), fault_message_lock_); fault_message_ = message; } void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector* argv) const { if (GetInstrumentation()->InterpretOnly()) { argv->push_back("--compiler-filter=interpret-only"); } // Make the dex2oat instruction set match that of the launching runtime. If we have multiple // architecture support, dex2oat may be compiled as a different instruction-set than that // currently being executed. std::string instruction_set("--instruction-set="); instruction_set += GetInstructionSetString(kRuntimeISA); argv->push_back(instruction_set); std::unique_ptr features(InstructionSetFeatures::FromCppDefines()); std::string feature_string("--instruction-set-features="); feature_string += features->GetFeatureString(); argv->push_back(feature_string); } void Runtime::CreateJit() { CHECK(!IsAotCompiler()); if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) { DCHECK(!jit_options_->UseJitCompilation()); } std::string error_msg; jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg)); if (jit_.get() == nullptr) { LOG(WARNING) << "Failed to create JIT " << error_msg; return; } // In case we have a profile path passed as a command line argument, // register the current class path for profiling now. Note that we cannot do // this before we create the JIT and having it here is the most convenient way. // This is used when testing profiles with dalvikvm command as there is no // framework to register the dex files for profiling. if (jit_options_->GetSaveProfilingInfo() && !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) { std::vector dex_filenames; Split(class_path_string_, ':', &dex_filenames); RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath()); } } bool Runtime::CanRelocate() const { return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible(); } bool Runtime::IsCompilingBootImage() const { return IsCompiler() && compiler_callbacks_->IsBootImage(); } void Runtime::SetResolutionMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()) << method; resolution_method_ = method; } void Runtime::SetImtUnimplementedMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()); imt_unimplemented_method_ = method; } void Runtime::FixupConflictTables() { // We can only do this after the class linker is created. const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) { imt_unimplemented_method_->SetImtConflictTable( ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size), pointer_size); } if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) { imt_conflict_method_->SetImtConflictTable( ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size), pointer_size); } } bool Runtime::IsVerificationEnabled() const { return verify_ == verifier::VerifyMode::kEnable || verify_ == verifier::VerifyMode::kSoftFail; } bool Runtime::IsVerificationSoftFail() const { return verify_ == verifier::VerifyMode::kSoftFail; } bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const { // We only support async deopt (ie the compiled code is not explicitly asking for // deopt, but something else like the debugger) in debuggable JIT code. // We could look at the oat file where `code` is being defined, // and check whether it's been compiled debuggable, but we decided to // only rely on the JIT for debuggable apps. return IsJavaDebuggable() && GetJit() != nullptr && GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast(code)); } LinearAlloc* Runtime::CreateLinearAlloc() { // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold // when we have 64 bit ArtMethod pointers. return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) ? new LinearAlloc(low_4gb_arena_pool_.get()) : new LinearAlloc(arena_pool_.get()); } double Runtime::GetHashTableMinLoadFactor() const { return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor; } double Runtime::GetHashTableMaxLoadFactor() const { return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor; } void Runtime::UpdateProcessState(ProcessState process_state) { ProcessState old_process_state = process_state_; process_state_ = process_state; GetHeap()->UpdateProcessState(old_process_state, process_state); } void Runtime::RegisterSensitiveThread() const { Thread::SetJitSensitiveThread(); } // Returns true if JIT compilations are enabled. GetJit() will be not null in this case. bool Runtime::UseJitCompilation() const { return (jit_ != nullptr) && jit_->UseJitCompilation(); } void Runtime::EnvSnapshot::TakeSnapshot() { char** env = GetEnviron(); for (size_t i = 0; env[i] != nullptr; ++i) { name_value_pairs_.emplace_back(new std::string(env[i])); } // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec. c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]); for (size_t i = 0; env[i] != nullptr; ++i) { c_env_vector_[i] = const_cast(name_value_pairs_[i]->c_str()); } c_env_vector_[name_value_pairs_.size()] = nullptr; } char** Runtime::EnvSnapshot::GetSnapshot() const { return c_env_vector_.get(); } void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { gc::ScopedGCCriticalSection gcs(Thread::Current(), gc::kGcCauseAddRemoveSystemWeakHolder, gc::kCollectorTypeAddRemoveSystemWeakHolder); // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in // a critical section. system_weak_holders_.push_back(holder); } void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { gc::ScopedGCCriticalSection gcs(Thread::Current(), gc::kGcCauseAddRemoveSystemWeakHolder, gc::kCollectorTypeAddRemoveSystemWeakHolder); auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder); if (it != system_weak_holders_.end()) { system_weak_holders_.erase(it); } } NO_RETURN void Runtime::Aborter(const char* abort_message) { #ifdef ART_TARGET_ANDROID android_set_abort_message(abort_message); #endif Runtime::Abort(abort_message); } RuntimeCallbacks* Runtime::GetRuntimeCallbacks() { return callbacks_.get(); } // Used to patch boot image method entry point to interpreter bridge. class UpdateEntryPointsClassVisitor : public ClassVisitor { public: explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation) : instrumentation_(instrumentation) {} bool operator()(ObjPtr klass) OVERRIDE REQUIRES(Locks::mutator_lock_) { auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); for (auto& m : klass->GetMethods(pointer_size)) { const void* code = m.GetEntryPointFromQuickCompiledCode(); if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) && !m.IsNative() && !m.IsProxyMethod()) { instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge()); } } return true; } private: instrumentation::Instrumentation* const instrumentation_; }; void Runtime::SetJavaDebuggable(bool value) { is_java_debuggable_ = value; // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up. } void Runtime::DeoptimizeBootImage() { // If we've already started and we are setting this runtime to debuggable, // we patch entry points of methods in boot image to interpreter bridge, as // boot image code may be AOT compiled as not debuggable. if (!GetInstrumentation()->IsForcedInterpretOnly()) { ScopedObjectAccess soa(Thread::Current()); UpdateEntryPointsClassVisitor visitor(GetInstrumentation()); GetClassLinker()->VisitClasses(&visitor); } } } // namespace art