/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_CLASS_H_ #define ART_RUNTIME_MIRROR_CLASS_H_ #include "dex_file.h" #include "gc_root.h" #include "gc/allocator_type.h" #include "invoke_type.h" #include "modifiers.h" #include "object.h" #include "object_array.h" #include "object_callbacks.h" #include "primitive.h" #include "read_barrier_option.h" /* * A magic value for refOffsets. Ignore the bits and walk the super * chain when this is the value. * [This is an unlikely "natural" value, since it would be 30 non-ref instance * fields followed by 2 ref instance fields.] */ #define CLASS_WALK_SUPER 3U #define CLASS_BITS_PER_WORD (sizeof(uint32_t) * 8) #define CLASS_OFFSET_ALIGNMENT 4 #define CLASS_HIGH_BIT (1U << (CLASS_BITS_PER_WORD - 1)) /* * Given an offset, return the bit number which would encode that offset. * Local use only. */ #define _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) \ ((unsigned int)(byteOffset) / \ CLASS_OFFSET_ALIGNMENT) /* * Is the given offset too large to be encoded? */ #define CLASS_CAN_ENCODE_OFFSET(byteOffset) \ (_CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) < CLASS_BITS_PER_WORD) /* * Return a single bit, encoding the offset. * Undefined if the offset is too large, as defined above. */ #define CLASS_BIT_FROM_OFFSET(byteOffset) \ (CLASS_HIGH_BIT >> _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset)) /* * Return an offset, given a bit number as returned from CLZ. */ #define CLASS_OFFSET_FROM_CLZ(rshift) \ MemberOffset((static_cast(rshift) * CLASS_OFFSET_ALIGNMENT)) namespace art { struct ClassOffsets; class Signature; class StringPiece; namespace mirror { class ArtField; class ArtMethod; class ClassLoader; class DexCache; class IfTable; // C++ mirror of java.lang.Class class MANAGED Class FINAL : public Object { public: // Interface method table size. Increasing this value reduces the chance of two interface methods // colliding in the interface method table but increases the size of classes that implement // (non-marker) interfaces. static constexpr size_t kImtSize = 64; // imtable entry embedded in class object. struct MANAGED ImTableEntry { HeapReference method; }; // vtable entry embedded in class object. struct MANAGED VTableEntry { HeapReference method; }; // Class Status // // kStatusNotReady: If a Class cannot be found in the class table by // FindClass, it allocates an new one with AllocClass in the // kStatusNotReady and calls LoadClass. Note if it does find a // class, it may not be kStatusResolved and it will try to push it // forward toward kStatusResolved. // // kStatusIdx: LoadClass populates with Class with information from // the DexFile, moving the status to kStatusIdx, indicating that the // Class value in super_class_ has not been populated. The new Class // can then be inserted into the classes table. // // kStatusLoaded: After taking a lock on Class, the ClassLinker will // attempt to move a kStatusIdx class forward to kStatusLoaded by // using ResolveClass to initialize the super_class_ and ensuring the // interfaces are resolved. // // kStatusResolving: Class is just cloned with the right size from // temporary class that's acting as a placeholder for linking. The old // class will be retired. New class is set to this status first before // moving on to being resolved. // // kStatusResolved: Still holding the lock on Class, the ClassLinker // shows linking is complete and fields of the Class populated by making // it kStatusResolved. Java allows circularities of the form where a super // class has a field that is of the type of the sub class. We need to be able // to fully resolve super classes while resolving types for fields. // // kStatusRetryVerificationAtRuntime: The verifier sets a class to // this state if it encounters a soft failure at compile time. This // often happens when there are unresolved classes in other dex // files, and this status marks a class as needing to be verified // again at runtime. // // TODO: Explain the other states enum Status { kStatusRetired = -2, kStatusError = -1, kStatusNotReady = 0, kStatusIdx = 1, // Loaded, DEX idx in super_class_type_idx_ and interfaces_type_idx_. kStatusLoaded = 2, // DEX idx values resolved. kStatusResolving = 3, // Just cloned from temporary class object. kStatusResolved = 4, // Part of linking. kStatusVerifying = 5, // In the process of being verified. kStatusRetryVerificationAtRuntime = 6, // Compile time verification failed, retry at runtime. kStatusVerifyingAtRuntime = 7, // Retrying verification at runtime. kStatusVerified = 8, // Logically part of linking; done pre-init. kStatusInitializing = 9, // Class init in progress. kStatusInitialized = 10, // Ready to go. kStatusMax = 11, }; template Status GetStatus() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { COMPILE_ASSERT(sizeof(Status) == sizeof(uint32_t), size_of_status_not_uint32); return static_cast( GetField32Volatile(OFFSET_OF_OBJECT_MEMBER(Class, status_))); } void SetStatus(Status new_status, Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset StatusOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, status_); } // Returns true if the class has been retired. template bool IsRetired() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() == kStatusRetired; } // Returns true if the class has failed to link. template bool IsErroneous() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() == kStatusError; } // Returns true if the class has been loaded. template bool IsIdxLoaded() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() >= kStatusIdx; } // Returns true if the class has been loaded. template bool IsLoaded() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() >= kStatusLoaded; } // Returns true if the class has been linked. template bool IsResolved() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() >= kStatusResolved; } // Returns true if the class was compile-time verified. template bool IsCompileTimeVerified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() >= kStatusRetryVerificationAtRuntime; } // Returns true if the class has been verified. template bool IsVerified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() >= kStatusVerified; } // Returns true if the class is initializing. template bool IsInitializing() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() >= kStatusInitializing; } // Returns true if the class is initialized. template bool IsInitialized() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetStatus() == kStatusInitialized; } template uint32_t GetAccessFlags() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetAccessFlags(uint32_t new_access_flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Not called within a transaction. SetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags); } // Returns true if the class is an interface. bool IsInterface() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccInterface) != 0; } // Returns true if the class is declared public. bool IsPublic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccPublic) != 0; } // Returns true if the class is declared final. bool IsFinal() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccFinal) != 0; } bool IsFinalizable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccClassIsFinalizable) != 0; } void SetFinalizable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); SetAccessFlags(flags | kAccClassIsFinalizable); } // Returns true if the class is abstract. bool IsAbstract() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccAbstract) != 0; } // Returns true if the class is an annotation. bool IsAnnotation() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccAnnotation) != 0; } // Returns true if the class is synthetic. bool IsSynthetic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccSynthetic) != 0; } template bool IsTypeOfReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccClassIsReference) != 0; } template bool IsWeakReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccClassIsWeakReference) != 0; } template bool IsSoftReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccReferenceFlagsMask) == kAccClassIsReference; } template bool IsFinalizerReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccClassIsFinalizerReference) != 0; } template bool IsPhantomReferenceClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccClassIsPhantomReference) != 0; } // Can references of this type be assigned to by things of another type? For non-array types // this is a matter of whether sub-classes may exist - which they can't if the type is final. // For array classes, where all the classes are final due to there being no sub-classes, an // Object[] may be assigned to by a String[] but a String[] may not be assigned to by other // types as the component is final. bool CannotBeAssignedFromOtherTypes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (!IsArrayClass()) { return IsFinal(); } else { Class* component = GetComponentType(); if (component->IsPrimitive()) { return true; } else { return component->CannotBeAssignedFromOtherTypes(); } } } // Returns true if this class is the placeholder and should retire and // be replaced with a class with the right size for embedded imt/vtable. bool IsTemp() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Status s = GetStatus(); return s < Status::kStatusResolving && ShouldHaveEmbeddedImtAndVTable(); } String* GetName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the cached name. void SetName(String* name) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Sets the cached name. // Computes the name, then sets the cached value. static String* ComputeName(Handle h_this) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool IsProxyClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Read access flags without using getter as whether something is a proxy can be check in // any loaded state // TODO: switch to a check if the super class is java.lang.reflect.Proxy? uint32_t access_flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); return (access_flags & kAccClassIsProxy) != 0; } template Primitive::Type GetPrimitiveType() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetPrimitiveType(Primitive::Type new_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t)); SetField32(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), new_type); } // Returns true if the class is a primitive type. template bool IsPrimitive() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() != Primitive::kPrimNot; } template bool IsPrimitiveBoolean() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimBoolean; } template bool IsPrimitiveByte() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimByte; } template bool IsPrimitiveChar() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimChar; } template bool IsPrimitiveShort() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimShort; } template bool IsPrimitiveInt() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimInt; } template bool IsPrimitiveLong() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimLong; } template bool IsPrimitiveFloat() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimFloat; } template bool IsPrimitiveDouble() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimDouble; } template bool IsPrimitiveVoid() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimVoid; } template bool IsPrimitiveArray() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return IsArrayClass() && GetComponentType(kVerifyFlags & ~kVerifyThis)>()-> IsPrimitive(); } // Depth of class from java.lang.Object uint32_t Depth() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t depth = 0; for (Class* klass = this; klass->GetSuperClass() != NULL; klass = klass->GetSuperClass()) { depth++; } return depth; } template bool IsArrayClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetComponentType() != NULL; } template bool IsClassClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsStringClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsThrowableClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool IsArtFieldClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool IsArtMethodClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool IsReferenceClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset ComponentTypeOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, component_type_); } template Class* GetComponentType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetFieldObject(ComponentTypeOffset()); } void SetComponentType(Class* new_component_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(GetComponentType() == NULL); DCHECK(new_component_type != NULL); // Component type is invariant: use non-transactional mode without check. SetFieldObject(ComponentTypeOffset(), new_component_type); } template size_t GetComponentSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return Primitive::ComponentSize( GetComponentType()->GetPrimitiveType()); } bool IsObjectClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return !IsPrimitive() && GetSuperClass() == NULL; } bool IsInstantiableNonArray() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return !IsPrimitive() && !IsInterface() && !IsAbstract() && !IsArrayClass(); } bool IsInstantiable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (!IsPrimitive() && !IsInterface() && !IsAbstract()) || ((IsAbstract()) && IsArrayClass()); } template bool IsObjectArrayClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetComponentType() != nullptr && !GetComponentType()->IsPrimitive(); } // Creates a raw object instance but does not invoke the default constructor. template ALWAYS_INLINE Object* Alloc(Thread* self, gc::AllocatorType allocator_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Object* AllocObject(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Object* AllocNonMovableObject(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool IsVariableSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Classes and arrays vary in size, and so the object_size_ field cannot // be used to Get their instance size return IsClassClass() || IsArrayClass(); } template uint32_t SizeOf() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_)); } template uint32_t GetClassSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_)); } void SetClassSize(uint32_t new_class_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Compute how many bytes would be used a class with the given elements. static uint32_t ComputeClassSize(bool has_embedded_tables, uint32_t num_vtable_entries, uint32_t num_32bit_static_fields, uint32_t num_64bit_static_fields, uint32_t num_ref_static_fields); // The size of java.lang.Class.class. static uint32_t ClassClassSize() { // The number of vtable entries in java.lang.Class. uint32_t vtable_entries = Object::kVTableLength + 64; return ComputeClassSize(true, vtable_entries, 0, 1, 0); } // The size of a java.lang.Class representing a primitive such as int.class. static uint32_t PrimitiveClassSize() { return ComputeClassSize(false, 0, 0, 0, 0); } template uint32_t GetObjectSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetObjectSize(uint32_t new_object_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(!IsVariableSize()); // Not called within a transaction. return SetField32(OFFSET_OF_OBJECT_MEMBER(Class, object_size_), new_object_size); } // Returns true if this class is in the same packages as that class. bool IsInSamePackage(Class* that) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static bool IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2); // Returns true if this class can access that class. bool CanAccess(Class* that) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return that->IsPublic() || this->IsInSamePackage(that); } // Can this class access a member in the provided class with the provided member access flags? // Note that access to the class isn't checked in case the declaring class is protected and the // method has been exposed by a public sub-class bool CanAccessMember(Class* access_to, uint32_t member_flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Classes can access all of their own members if (this == access_to) { return true; } // Public members are trivially accessible if (member_flags & kAccPublic) { return true; } // Private members are trivially not accessible if (member_flags & kAccPrivate) { return false; } // Check for protected access from a sub-class, which may or may not be in the same package. if (member_flags & kAccProtected) { if (!this->IsInterface() && this->IsSubClass(access_to)) { return true; } } // Allow protected access from other classes in the same package. return this->IsInSamePackage(access_to); } // Can this class access a resolved field? // Note that access to field's class is checked and this may require looking up the class // referenced by the FieldId in the DexFile in case the declaring class is inaccessible. bool CanAccessResolvedField(Class* access_to, ArtField* field, DexCache* dex_cache, uint32_t field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool CheckResolvedFieldAccess(Class* access_to, ArtField* field, uint32_t field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Can this class access a resolved method? // Note that access to methods's class is checked and this may require looking up the class // referenced by the MethodId in the DexFile in case the declaring class is inaccessible. bool CanAccessResolvedMethod(Class* access_to, ArtMethod* resolved_method, DexCache* dex_cache, uint32_t method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool CheckResolvedMethodAccess(Class* access_to, ArtMethod* resolved_method, uint32_t method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsSubClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Can src be assigned to this class? For example, String can be assigned to Object (by an // upcast), however, an Object cannot be assigned to a String as a potentially exception throwing // downcast would be necessary. Similarly for interfaces, a class that implements (or an interface // that extends) another can be assigned to its parent, but not vice-versa. All Classes may assign // to themselves. Classes for primitive types may not assign to each other. inline bool IsAssignableFrom(Class* src) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(src != NULL); if (this == src) { // Can always assign to things of the same type. return true; } else if (IsObjectClass()) { // Can assign any reference to java.lang.Object. return !src->IsPrimitive(); } else if (IsInterface()) { return src->Implements(this); } else if (src->IsArrayClass()) { return IsAssignableFromArray(src); } else { return !src->IsInterface() && src->IsSubClass(this); } } Class* GetSuperClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetSuperClass(Class *new_super_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Super class is assigned once, except during class linker initialization. Class* old_super_class = GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, super_class_)); DCHECK(old_super_class == nullptr || old_super_class == new_super_class); DCHECK(new_super_class != nullptr); SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, super_class_), new_super_class); } bool HasSuperClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetSuperClass() != NULL; } static MemberOffset SuperClassOffset() { return MemberOffset(OFFSETOF_MEMBER(Class, super_class_)); } ClassLoader* GetClassLoader() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetClassLoader(ClassLoader* new_cl) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset DexCacheOffset() { return MemberOffset(OFFSETOF_MEMBER(Class, dex_cache_)); } enum { kDumpClassFullDetail = 1, kDumpClassClassLoader = (1 << 1), kDumpClassInitialized = (1 << 2), }; void DumpClass(std::ostream& os, int flags) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template DexCache* GetDexCache() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetDexCache(DexCache* new_dex_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ObjectArray* GetDirectMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetDirectMethods(ObjectArray* new_direct_methods) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* GetDirectMethod(int32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetDirectMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the number of static, private, and constructor methods. uint32_t NumDirectMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template ObjectArray* GetVirtualMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetVirtualMethods(ObjectArray* new_virtual_methods) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the number of non-inherited virtual methods. uint32_t NumVirtualMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template ArtMethod* GetVirtualMethod(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* GetVirtualMethodDuringLinking(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetVirtualMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ObjectArray* GetVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ObjectArray* GetVTableDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetVTable(ObjectArray* new_vtable) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset VTableOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, vtable_); } void SetImTable(ObjectArray* new_imtable) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset ImTableOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, imtable_); } static MemberOffset EmbeddedImTableOffset() { return MemberOffset(sizeof(Class)); } static MemberOffset EmbeddedVTableLengthOffset() { return MemberOffset(sizeof(Class) + kImtSize * sizeof(mirror::Class::ImTableEntry)); } static MemberOffset EmbeddedVTableOffset() { return MemberOffset(sizeof(Class) + kImtSize * sizeof(mirror::Class::ImTableEntry) + sizeof(int32_t)); } bool ShouldHaveEmbeddedImtAndVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return IsInstantiable(); } bool HasVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* GetEmbeddedImTableEntry(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetEmbeddedImTableEntry(uint32_t i, ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); int32_t GetVTableLength() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* GetVTableEntry(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); int32_t GetEmbeddedVTableLength() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetEmbeddedVTableLength(int32_t len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* GetEmbeddedVTableEntry(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetEmbeddedVTableEntry(uint32_t i, ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void PopulateEmbeddedImtAndVTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Given a method implemented by this class but potentially from a super class, return the // specific implementation method for this class. ArtMethod* FindVirtualMethodForVirtual(ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Given a method implemented by this class' super class, return the specific implementation // method for this class. ArtMethod* FindVirtualMethodForSuper(ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Given a method implemented by this class, but potentially from a // super class or interface, return the specific implementation // method for this class. ArtMethod* FindVirtualMethodForInterface(ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE; ArtMethod* FindVirtualMethodForVirtualOrInterface(ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindInterfaceMethod(const StringPiece& name, const StringPiece& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindInterfaceMethod(const StringPiece& name, const Signature& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const Signature& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDirectMethod(const StringPiece& name, const StringPiece& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDirectMethod(const StringPiece& name, const Signature& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const Signature& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindVirtualMethod(const StringPiece& name, const StringPiece& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindVirtualMethod(const StringPiece& name, const Signature& signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* FindClassInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); int32_t GetIfTableCount() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); IfTable* GetIfTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetIfTable(IfTable* new_iftable) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Get instance fields of the class (See also GetSFields). ObjectArray* GetIFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetIFields(ObjectArray* new_ifields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint32_t NumInstanceFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtField* GetInstanceField(uint32_t i) // TODO: uint16_t SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetInstanceField(uint32_t i, ArtField* f) // TODO: uint16_t SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the number of instance fields containing reference types. uint32_t NumReferenceInstanceFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(IsResolved() || IsErroneous()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_)); } uint32_t NumReferenceInstanceFieldsDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(IsLoaded() || IsErroneous()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_)); } void SetNumReferenceInstanceFields(uint32_t new_num) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Not called within a transaction. SetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), new_num); } template uint32_t GetReferenceInstanceOffsets() ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetReferenceInstanceOffsets(uint32_t new_reference_offsets) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the number of static fields containing reference types. uint32_t NumReferenceStaticFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(IsResolved() || IsErroneous()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_)); } uint32_t NumReferenceStaticFieldsDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(IsLoaded() || IsErroneous() || IsRetired()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_)); } void SetNumReferenceStaticFields(uint32_t new_num) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Not called within a transaction. SetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), new_num); } // Gets the static fields of the class. ObjectArray* GetSFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetSFields(ObjectArray* new_sfields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint32_t NumStaticFields() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // TODO: uint16_t ArtField* GetStaticField(uint32_t i) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // TODO: uint16_t void SetStaticField(uint32_t i, ArtField* f) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template uint32_t GetReferenceStaticOffsets() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_)); } void SetReferenceStaticOffsets(uint32_t new_reference_offsets) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Find a static or instance field using the JLS resolution order static ArtField* FindField(Thread* self, Handle klass, const StringPiece& name, const StringPiece& type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Finds the given instance field in this class or a superclass. ArtField* FindInstanceField(const StringPiece& name, const StringPiece& type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Finds the given instance field in this class or a superclass, only searches classes that // have the same dex cache. ArtField* FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtField* FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtField* FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Finds the given static field in this class or a superclass. static ArtField* FindStaticField(Thread* self, Handle klass, const StringPiece& name, const StringPiece& type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Finds the given static field in this class or superclass, only searches classes that // have the same dex cache. static ArtField* FindStaticField(Thread* self, Handle klass, const DexCache* dex_cache, uint32_t dex_field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtField* FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtField* FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); pid_t GetClinitThreadId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(IsIdxLoaded() || IsErroneous()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_)); } void SetClinitThreadId(pid_t new_clinit_thread_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Class* GetVerifyErrorClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // DCHECK(IsErroneous()); return GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_)); } uint16_t GetDexClassDefIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_)); } void SetDexClassDefIndex(uint16_t class_def_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Not called within a transaction. SetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), class_def_idx); } uint16_t GetDexTypeIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_)); } void SetDexTypeIndex(uint16_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Not called within a transaction. SetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), type_idx); } static Class* GetJavaLangClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(!java_lang_Class_.IsNull()); return java_lang_Class_.Read(); } // Can't call this SetClass or else gets called instead of Object::SetClass in places. static void SetClassClass(Class* java_lang_Class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void ResetClass(); static void VisitRoots(RootCallback* callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // When class is verified, set the kAccPreverified flag on each method. void SetPreverifiedFlagOnAllMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template void VisitReferences(mirror::Class* klass, const Visitor& visitor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Visit references within the embedded tables of the class. // TODO: remove NO_THREAD_SAFETY_ANALYSIS when annotalysis handles visitors better. template void VisitEmbeddedImtAndVTable(const Visitor& visitor) NO_THREAD_SAFETY_ANALYSIS; std::string GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool DescriptorEquals(const char* match) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string GetArrayDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile::ClassDef* GetClassDef() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint32_t NumDirectInterfaces() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint16_t GetDirectInterfaceTypeIdx(uint32_t idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static mirror::Class* GetDirectInterface(Thread* self, Handle klass, uint32_t idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const char* GetSourceFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string GetLocation() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile& GetDexFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile::TypeList* GetInterfaceTypeList() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Asserts we are initialized or initializing in the given thread. void AssertInitializedOrInitializingInThread(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Class* CopyOf(Thread* self, int32_t new_length) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // For proxy class only. ObjectArray* GetInterfaces() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // For proxy class only. ObjectArray>* GetThrows() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // For reference class only. MemberOffset GetDisableIntrinsicFlagOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); MemberOffset GetSlowPathFlagOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetSlowPathEnabled() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetSlowPath(bool enabled) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Used to initialize a class in the allocation code path to ensure it is guarded by a StoreStore // fence. class InitializeClassVisitor { public: explicit InitializeClassVisitor(uint32_t class_size) : class_size_(class_size) { } void operator()(mirror::Object* obj, size_t usable_size) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: const uint32_t class_size_; DISALLOW_COPY_AND_ASSIGN(InitializeClassVisitor); }; private: void SetVerifyErrorClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool ResolvedFieldAccessTest(Class* access_to, ArtField* field, uint32_t field_idx, DexCache* dex_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool ResolvedMethodAccessTest(Class* access_to, ArtMethod* resolved_method, uint32_t method_idx, DexCache* dex_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool Implements(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsArrayAssignableFromArray(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsAssignableFromArray(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckObjectAlloc() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ObjectArray* GetImTable() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // defining class loader, or NULL for the "bootstrap" system loader HeapReference class_loader_; // For array classes, the component class object for instanceof/checkcast // (for String[][][], this will be String[][]). NULL for non-array classes. HeapReference component_type_; // DexCache of resolved constant pool entries (will be NULL for classes generated by the // runtime such as arrays and primitive classes). HeapReference dex_cache_; // static, private, and methods HeapReference> direct_methods_; // instance fields // // These describe the layout of the contents of an Object. // Note that only the fields directly declared by this class are // listed in ifields; fields declared by a superclass are listed in // the superclass's Class.ifields. // // All instance fields that refer to objects are guaranteed to be at // the beginning of the field list. num_reference_instance_fields_ // specifies the number of reference fields. HeapReference> ifields_; // The interface table (iftable_) contains pairs of a interface class and an array of the // interface methods. There is one pair per interface supported by this class. That means one // pair for each interface we support directly, indirectly via superclass, or indirectly via a // superinterface. This will be null if neither we nor our superclass implement any interfaces. // // Why we need this: given "class Foo implements Face", declare "Face faceObj = new Foo()". // Invoke faceObj.blah(), where "blah" is part of the Face interface. We can't easily use a // single vtable. // // For every interface a concrete class implements, we create an array of the concrete vtable_ // methods for the methods in the interface. HeapReference iftable_; // Interface method table (imt), for quick "invoke-interface". HeapReference> imtable_; // Descriptor for the class such as "java.lang.Class" or "[C". Lazily initialized by ComputeName HeapReference name_; // Static fields HeapReference> sfields_; // The superclass, or NULL if this is java.lang.Object, an interface or primitive type. HeapReference super_class_; // If class verify fails, we must return same error on subsequent tries. HeapReference verify_error_class_; // Virtual methods defined in this class; invoked through vtable. HeapReference> virtual_methods_; // Virtual method table (vtable), for use by "invoke-virtual". The vtable from the superclass is // copied in, and virtual methods from our class either replace those from the super or are // appended. For abstract classes, methods may be created in the vtable that aren't in // virtual_ methods_ for miranda methods. HeapReference> vtable_; // Access flags; low 16 bits are defined by VM spec. uint32_t access_flags_; // Total size of the Class instance; used when allocating storage on gc heap. // See also object_size_. uint32_t class_size_; // Tid used to check for recursive invocation. pid_t clinit_thread_id_; // ClassDef index in dex file, -1 if no class definition such as an array. // TODO: really 16bits int32_t dex_class_def_idx_; // Type index in dex file. // TODO: really 16bits int32_t dex_type_idx_; // Number of instance fields that are object refs. uint32_t num_reference_instance_fields_; // Number of static fields that are object refs, uint32_t num_reference_static_fields_; // Total object size; used when allocating storage on gc heap. // (For interfaces and abstract classes this will be zero.) // See also class_size_. uint32_t object_size_; // Primitive type value, or Primitive::kPrimNot (0); set for generated primitive classes. Primitive::Type primitive_type_; // Bitmap of offsets of ifields. uint32_t reference_instance_offsets_; // Bitmap of offsets of sfields. uint32_t reference_static_offsets_; // State of class initialization. Status status_; // TODO: ? // initiating class loader list // NOTE: for classes with low serialNumber, these are unused, and the // values are kept in a table in gDvm. // InitiatingLoaderList initiating_loader_list_; // The following data exist in real class objects. // Embedded Imtable, for class object that's not an interface, fixed size. ImTableEntry embedded_imtable_[0]; // Embedded Vtable, for class object that's not an interface, variable size. VTableEntry embedded_vtable_[0]; // Static fields, variable size. uint32_t fields_[0]; // java.lang.Class static GcRoot java_lang_Class_; friend struct art::ClassOffsets; // for verifying offset information DISALLOW_IMPLICIT_CONSTRUCTORS(Class); }; std::ostream& operator<<(std::ostream& os, const Class::Status& rhs); } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_CLASS_H_