/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instrumentation.h" #include #include "arch/context.h" #include "art_method-inl.h" #include "atomic.h" #include "class_linker.h" #include "debugger.h" #include "dex_file-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc_root-inl.h" #include "interpreter/interpreter.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/object_array-inl.h" #include "mirror/object-inl.h" #include "nth_caller_visitor.h" #include "thread.h" #include "thread_list.h" namespace art { namespace instrumentation { constexpr bool kVerboseInstrumentation = false; // Instrumentation works on non-inlined frames by updating returned PCs // of compiled frames. static constexpr StackVisitor::StackWalkKind kInstrumentationStackWalk = StackVisitor::StackWalkKind::kSkipInlinedFrames; static bool InstallStubsClassVisitor(mirror::Class* klass, void* arg) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) { Instrumentation* instrumentation = reinterpret_cast(arg); instrumentation->InstallStubsForClass(klass); return true; // we visit all classes. } Instrumentation::Instrumentation() : instrumentation_stubs_installed_(false), entry_exit_stubs_installed_(false), interpreter_stubs_installed_(false), interpret_only_(false), forced_interpret_only_(false), have_method_entry_listeners_(false), have_method_exit_listeners_(false), have_method_unwind_listeners_(false), have_dex_pc_listeners_(false), have_field_read_listeners_(false), have_field_write_listeners_(false), have_exception_caught_listeners_(false), have_backward_branch_listeners_(false), deoptimized_methods_lock_("deoptimized methods lock"), deoptimization_enabled_(false), interpreter_handler_table_(kMainHandlerTable), quick_alloc_entry_points_instrumentation_counter_(0) { } void Instrumentation::InstallStubsForClass(mirror::Class* klass) { if (klass->IsErroneous()) { // We can't execute code in a erroneous class: do nothing. } else if (!klass->IsResolved()) { // We need the class to be resolved to install/uninstall stubs. Otherwise its methods // could not be initialized or linked with regards to class inheritance. } else { for (size_t i = 0, e = klass->NumDirectMethods(); i < e; i++) { InstallStubsForMethod(klass->GetDirectMethod(i, sizeof(void*))); } for (size_t i = 0, e = klass->NumVirtualMethods(); i < e; i++) { InstallStubsForMethod(klass->GetVirtualMethod(i, sizeof(void*))); } } } static void UpdateEntrypoints(ArtMethod* method, const void* quick_code) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Runtime* const runtime = Runtime::Current(); jit::Jit* jit = runtime->GetJit(); if (jit != nullptr) { const void* old_code_ptr = method->GetEntryPointFromQuickCompiledCode(); jit::JitCodeCache* code_cache = jit->GetCodeCache(); if (code_cache->ContainsCodePtr(old_code_ptr)) { // Save the old compiled code since we need it to implement ClassLinker::GetQuickOatCodeFor. code_cache->SaveCompiledCode(method, old_code_ptr); } } method->SetEntryPointFromQuickCompiledCode(quick_code); if (!method->IsResolutionMethod()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (class_linker->IsQuickToInterpreterBridge(quick_code) || (class_linker->IsQuickResolutionStub(quick_code) && Runtime::Current()->GetInstrumentation()->IsForcedInterpretOnly() && !method->IsNative() && !method->IsProxyMethod())) { DCHECK(!method->IsNative()) << PrettyMethod(method); DCHECK(!method->IsProxyMethod()) << PrettyMethod(method); method->SetEntryPointFromInterpreter(art::artInterpreterToInterpreterBridge); } else { method->SetEntryPointFromInterpreter(art::artInterpreterToCompiledCodeBridge); } } } void Instrumentation::InstallStubsForMethod(ArtMethod* method) { if (method->IsAbstract() || method->IsProxyMethod()) { // Do not change stubs for these methods. return; } // Don't stub Proxy.. Note that the Proxy class itself is not a proxy class. if (method->IsConstructor() && method->GetDeclaringClass()->DescriptorEquals("Ljava/lang/reflect/Proxy;")) { return; } const void* new_quick_code; bool uninstall = !entry_exit_stubs_installed_ && !interpreter_stubs_installed_; Runtime* const runtime = Runtime::Current(); ClassLinker* const class_linker = runtime->GetClassLinker(); bool is_class_initialized = method->GetDeclaringClass()->IsInitialized(); if (uninstall) { if ((forced_interpret_only_ || IsDeoptimized(method)) && !method->IsNative()) { new_quick_code = GetQuickToInterpreterBridge(); } else if (is_class_initialized || !method->IsStatic() || method->IsConstructor()) { new_quick_code = class_linker->GetQuickOatCodeFor(method); } else { new_quick_code = GetQuickResolutionStub(); } } else { // !uninstall if ((interpreter_stubs_installed_ || forced_interpret_only_ || IsDeoptimized(method)) && !method->IsNative()) { new_quick_code = GetQuickToInterpreterBridge(); } else { // Do not overwrite resolution trampoline. When the trampoline initializes the method's // class, all its static methods code will be set to the instrumentation entry point. // For more details, see ClassLinker::FixupStaticTrampolines. if (is_class_initialized || !method->IsStatic() || method->IsConstructor()) { if (entry_exit_stubs_installed_) { new_quick_code = GetQuickInstrumentationEntryPoint(); } else { new_quick_code = class_linker->GetQuickOatCodeFor(method); } } else { new_quick_code = GetQuickResolutionStub(); } } } UpdateEntrypoints(method, new_quick_code); } // Places the instrumentation exit pc as the return PC for every quick frame. This also allows // deoptimization of quick frames to interpreter frames. // Since we may already have done this previously, we need to push new instrumentation frame before // existing instrumentation frames. static void InstrumentationInstallStack(Thread* thread, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { struct InstallStackVisitor FINAL : public StackVisitor { InstallStackVisitor(Thread* thread_in, Context* context, uintptr_t instrumentation_exit_pc) : StackVisitor(thread_in, context, kInstrumentationStackWalk), instrumentation_stack_(thread_in->GetInstrumentationStack()), instrumentation_exit_pc_(instrumentation_exit_pc), reached_existing_instrumentation_frames_(false), instrumentation_stack_depth_(0), last_return_pc_(0) { } bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); } last_return_pc_ = 0; return true; // Ignore upcalls. } if (GetCurrentQuickFrame() == nullptr) { bool interpreter_frame = true; InstrumentationStackFrame instrumentation_frame(GetThisObject(), m, 0, GetFrameId(), interpreter_frame); if (kVerboseInstrumentation) { LOG(INFO) << "Pushing shadow frame " << instrumentation_frame.Dump(); } shadow_stack_.push_back(instrumentation_frame); return true; // Continue. } uintptr_t return_pc = GetReturnPc(); if (m->IsRuntimeMethod()) { if (return_pc == instrumentation_exit_pc_) { if (kVerboseInstrumentation) { LOG(INFO) << " Handling quick to interpreter transition. Frame " << GetFrameId(); } CHECK_LT(instrumentation_stack_depth_, instrumentation_stack_->size()); const InstrumentationStackFrame& frame = instrumentation_stack_->at(instrumentation_stack_depth_); CHECK(frame.interpreter_entry_); // This is an interpreter frame so method enter event must have been reported. However we // need to push a DEX pc into the dex_pcs_ list to match size of instrumentation stack. // Since we won't report method entry here, we can safely push any DEX pc. dex_pcs_.push_back(0); last_return_pc_ = frame.return_pc_; ++instrumentation_stack_depth_; return true; } else { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping runtime method. Frame " << GetFrameId(); } last_return_pc_ = GetReturnPc(); return true; // Ignore unresolved methods since they will be instrumented after resolution. } } if (kVerboseInstrumentation) { LOG(INFO) << " Installing exit stub in " << DescribeLocation(); } if (return_pc == instrumentation_exit_pc_) { // We've reached a frame which has already been installed with instrumentation exit stub. // We should have already installed instrumentation on previous frames. reached_existing_instrumentation_frames_ = true; CHECK_LT(instrumentation_stack_depth_, instrumentation_stack_->size()); const InstrumentationStackFrame& frame = instrumentation_stack_->at(instrumentation_stack_depth_); CHECK_EQ(m, frame.method_) << "Expected " << PrettyMethod(m) << ", Found " << PrettyMethod(frame.method_); return_pc = frame.return_pc_; if (kVerboseInstrumentation) { LOG(INFO) << "Ignoring already instrumented " << frame.Dump(); } } else { CHECK_NE(return_pc, 0U); CHECK(!reached_existing_instrumentation_frames_); InstrumentationStackFrame instrumentation_frame(GetThisObject(), m, return_pc, GetFrameId(), false); if (kVerboseInstrumentation) { LOG(INFO) << "Pushing frame " << instrumentation_frame.Dump(); } // Insert frame at the right position so we do not corrupt the instrumentation stack. // Instrumentation stack frames are in descending frame id order. auto it = instrumentation_stack_->begin(); for (auto end = instrumentation_stack_->end(); it != end; ++it) { const InstrumentationStackFrame& current = *it; if (instrumentation_frame.frame_id_ >= current.frame_id_) { break; } } instrumentation_stack_->insert(it, instrumentation_frame); SetReturnPc(instrumentation_exit_pc_); } dex_pcs_.push_back(m->ToDexPc(last_return_pc_)); last_return_pc_ = return_pc; ++instrumentation_stack_depth_; return true; // Continue. } std::deque* const instrumentation_stack_; std::vector shadow_stack_; std::vector dex_pcs_; const uintptr_t instrumentation_exit_pc_; bool reached_existing_instrumentation_frames_; size_t instrumentation_stack_depth_; uintptr_t last_return_pc_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Installing exit stubs in " << thread_name; } Instrumentation* instrumentation = reinterpret_cast(arg); std::unique_ptr context(Context::Create()); uintptr_t instrumentation_exit_pc = reinterpret_cast(GetQuickInstrumentationExitPc()); InstallStackVisitor visitor(thread, context.get(), instrumentation_exit_pc); visitor.WalkStack(true); CHECK_EQ(visitor.dex_pcs_.size(), thread->GetInstrumentationStack()->size()); if (instrumentation->ShouldNotifyMethodEnterExitEvents()) { // Create method enter events for all methods currently on the thread's stack. We only do this // if no debugger is attached to prevent from posting events twice. auto ssi = visitor.shadow_stack_.rbegin(); for (auto isi = thread->GetInstrumentationStack()->rbegin(), end = thread->GetInstrumentationStack()->rend(); isi != end; ++isi) { while (ssi != visitor.shadow_stack_.rend() && (*ssi).frame_id_ < (*isi).frame_id_) { instrumentation->MethodEnterEvent(thread, (*ssi).this_object_, (*ssi).method_, 0); ++ssi; } uint32_t dex_pc = visitor.dex_pcs_.back(); visitor.dex_pcs_.pop_back(); if (!isi->interpreter_entry_) { instrumentation->MethodEnterEvent(thread, (*isi).this_object_, (*isi).method_, dex_pc); } } } thread->VerifyStack(); } // Removes the instrumentation exit pc as the return PC for every quick frame. static void InstrumentationRestoreStack(Thread* thread, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { struct RestoreStackVisitor FINAL : public StackVisitor { RestoreStackVisitor(Thread* thread_in, uintptr_t instrumentation_exit_pc, Instrumentation* instrumentation) : StackVisitor(thread_in, nullptr, kInstrumentationStackWalk), thread_(thread_in), instrumentation_exit_pc_(instrumentation_exit_pc), instrumentation_(instrumentation), instrumentation_stack_(thread_in->GetInstrumentationStack()), frames_removed_(0) {} bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (instrumentation_stack_->size() == 0) { return false; // Stop. } ArtMethod* m = GetMethod(); if (GetCurrentQuickFrame() == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << " Ignoring a shadow frame. Frame " << GetFrameId() << " Method=" << PrettyMethod(m); } return true; // Ignore shadow frames. } if (m == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); } return true; // Ignore upcalls. } bool removed_stub = false; // TODO: make this search more efficient? const size_t frameId = GetFrameId(); for (const InstrumentationStackFrame& instrumentation_frame : *instrumentation_stack_) { if (instrumentation_frame.frame_id_ == frameId) { if (kVerboseInstrumentation) { LOG(INFO) << " Removing exit stub in " << DescribeLocation(); } if (instrumentation_frame.interpreter_entry_) { CHECK(m == Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); } else { CHECK(m == instrumentation_frame.method_) << PrettyMethod(m); } SetReturnPc(instrumentation_frame.return_pc_); if (instrumentation_->ShouldNotifyMethodEnterExitEvents()) { // Create the method exit events. As the methods didn't really exit the result is 0. // We only do this if no debugger is attached to prevent from posting events twice. instrumentation_->MethodExitEvent(thread_, instrumentation_frame.this_object_, m, GetDexPc(), JValue()); } frames_removed_++; removed_stub = true; break; } } if (!removed_stub) { if (kVerboseInstrumentation) { LOG(INFO) << " No exit stub in " << DescribeLocation(); } } return true; // Continue. } Thread* const thread_; const uintptr_t instrumentation_exit_pc_; Instrumentation* const instrumentation_; std::deque* const instrumentation_stack_; size_t frames_removed_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Removing exit stubs in " << thread_name; } std::deque* stack = thread->GetInstrumentationStack(); if (stack->size() > 0) { Instrumentation* instrumentation = reinterpret_cast(arg); uintptr_t instrumentation_exit_pc = reinterpret_cast(GetQuickInstrumentationExitPc()); RestoreStackVisitor visitor(thread, instrumentation_exit_pc, instrumentation); visitor.WalkStack(true); CHECK_EQ(visitor.frames_removed_, stack->size()); while (stack->size() > 0) { stack->pop_front(); } } } static bool HasEvent(Instrumentation::InstrumentationEvent expected, uint32_t events) { return (events & expected) != 0; } void Instrumentation::AddListener(InstrumentationListener* listener, uint32_t events) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (HasEvent(kMethodEntered, events)) { method_entry_listeners_.push_back(listener); have_method_entry_listeners_ = true; } if (HasEvent(kMethodExited, events)) { method_exit_listeners_.push_back(listener); have_method_exit_listeners_ = true; } if (HasEvent(kMethodUnwind, events)) { method_unwind_listeners_.push_back(listener); have_method_unwind_listeners_ = true; } if (HasEvent(kBackwardBranch, events)) { backward_branch_listeners_.push_back(listener); have_backward_branch_listeners_ = true; } if (HasEvent(kDexPcMoved, events)) { std::list* modified; if (have_dex_pc_listeners_) { modified = new std::list(*dex_pc_listeners_.get()); } else { modified = new std::list(); } modified->push_back(listener); dex_pc_listeners_.reset(modified); have_dex_pc_listeners_ = true; } if (HasEvent(kFieldRead, events)) { std::list* modified; if (have_field_read_listeners_) { modified = new std::list(*field_read_listeners_.get()); } else { modified = new std::list(); } modified->push_back(listener); field_read_listeners_.reset(modified); have_field_read_listeners_ = true; } if (HasEvent(kFieldWritten, events)) { std::list* modified; if (have_field_write_listeners_) { modified = new std::list(*field_write_listeners_.get()); } else { modified = new std::list(); } modified->push_back(listener); field_write_listeners_.reset(modified); have_field_write_listeners_ = true; } if (HasEvent(kExceptionCaught, events)) { std::list* modified; if (have_exception_caught_listeners_) { modified = new std::list(*exception_caught_listeners_.get()); } else { modified = new std::list(); } modified->push_back(listener); exception_caught_listeners_.reset(modified); have_exception_caught_listeners_ = true; } UpdateInterpreterHandlerTable(); } void Instrumentation::RemoveListener(InstrumentationListener* listener, uint32_t events) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (HasEvent(kMethodEntered, events) && have_method_entry_listeners_) { method_entry_listeners_.remove(listener); have_method_entry_listeners_ = !method_entry_listeners_.empty(); } if (HasEvent(kMethodExited, events) && have_method_exit_listeners_) { method_exit_listeners_.remove(listener); have_method_exit_listeners_ = !method_exit_listeners_.empty(); } if (HasEvent(kMethodUnwind, events) && have_method_unwind_listeners_) { method_unwind_listeners_.remove(listener); have_method_unwind_listeners_ = !method_unwind_listeners_.empty(); } if (HasEvent(kBackwardBranch, events) && have_backward_branch_listeners_) { backward_branch_listeners_.remove(listener); have_backward_branch_listeners_ = !backward_branch_listeners_.empty(); } if (HasEvent(kDexPcMoved, events) && have_dex_pc_listeners_) { std::list* modified = new std::list(*dex_pc_listeners_.get()); modified->remove(listener); have_dex_pc_listeners_ = !modified->empty(); if (have_dex_pc_listeners_) { dex_pc_listeners_.reset(modified); } else { dex_pc_listeners_.reset(); delete modified; } } if (HasEvent(kFieldRead, events) && have_field_read_listeners_) { std::list* modified = new std::list(*field_read_listeners_.get()); modified->remove(listener); have_field_read_listeners_ = !modified->empty(); if (have_field_read_listeners_) { field_read_listeners_.reset(modified); } else { field_read_listeners_.reset(); delete modified; } } if (HasEvent(kFieldWritten, events) && have_field_write_listeners_) { std::list* modified = new std::list(*field_write_listeners_.get()); modified->remove(listener); have_field_write_listeners_ = !modified->empty(); if (have_field_write_listeners_) { field_write_listeners_.reset(modified); } else { field_write_listeners_.reset(); delete modified; } } if (HasEvent(kExceptionCaught, events) && have_exception_caught_listeners_) { std::list* modified = new std::list(*exception_caught_listeners_.get()); modified->remove(listener); have_exception_caught_listeners_ = !modified->empty(); if (have_exception_caught_listeners_) { exception_caught_listeners_.reset(modified); } else { exception_caught_listeners_.reset(); delete modified; } } UpdateInterpreterHandlerTable(); } Instrumentation::InstrumentationLevel Instrumentation::GetCurrentInstrumentationLevel() const { if (interpreter_stubs_installed_) { return InstrumentationLevel::kInstrumentWithInterpreter; } else if (entry_exit_stubs_installed_) { return InstrumentationLevel::kInstrumentWithInstrumentationStubs; } else { return InstrumentationLevel::kInstrumentNothing; } } void Instrumentation::ConfigureStubs(const char* key, InstrumentationLevel desired_level) { // Store the instrumentation level for this key or remove it. if (desired_level == InstrumentationLevel::kInstrumentNothing) { // The client no longer needs instrumentation. requested_instrumentation_levels_.erase(key); } else { // The client needs instrumentation. requested_instrumentation_levels_.Overwrite(key, desired_level); } // Look for the highest required instrumentation level. InstrumentationLevel requested_level = InstrumentationLevel::kInstrumentNothing; for (const auto& v : requested_instrumentation_levels_) { requested_level = std::max(requested_level, v.second); } interpret_only_ = (requested_level == InstrumentationLevel::kInstrumentWithInterpreter) || forced_interpret_only_; InstrumentationLevel current_level = GetCurrentInstrumentationLevel(); if (requested_level == current_level) { // We're already set. return; } Thread* const self = Thread::Current(); Runtime* runtime = Runtime::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); if (requested_level > InstrumentationLevel::kInstrumentNothing) { if (requested_level == InstrumentationLevel::kInstrumentWithInterpreter) { interpreter_stubs_installed_ = true; entry_exit_stubs_installed_ = true; } else { CHECK_EQ(requested_level, InstrumentationLevel::kInstrumentWithInstrumentationStubs); entry_exit_stubs_installed_ = true; interpreter_stubs_installed_ = false; } runtime->GetClassLinker()->VisitClasses(InstallStubsClassVisitor, this); instrumentation_stubs_installed_ = true; MutexLock mu(self, *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(InstrumentationInstallStack, this); } else { interpreter_stubs_installed_ = false; entry_exit_stubs_installed_ = false; runtime->GetClassLinker()->VisitClasses(InstallStubsClassVisitor, this); // Restore stack only if there is no method currently deoptimized. bool empty; { ReaderMutexLock mu(self, deoptimized_methods_lock_); empty = IsDeoptimizedMethodsEmpty(); // Avoid lock violation. } if (empty) { instrumentation_stubs_installed_ = false; MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack, this); } } } static void ResetQuickAllocEntryPointsForThread(Thread* thread, void* arg ATTRIBUTE_UNUSED) { thread->ResetQuickAllocEntryPointsForThread(); } void Instrumentation::SetEntrypointsInstrumented(bool instrumented) { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); ThreadList* tl = runtime->GetThreadList(); Locks::mutator_lock_->AssertNotHeld(self); Locks::instrument_entrypoints_lock_->AssertHeld(self); if (runtime->IsStarted()) { tl->SuspendAll(__FUNCTION__); } { MutexLock mu(self, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsInstrumented(instrumented); ResetQuickAllocEntryPoints(); } if (runtime->IsStarted()) { tl->ResumeAll(); } } void Instrumentation::InstrumentQuickAllocEntryPoints() { MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); InstrumentQuickAllocEntryPointsLocked(); } void Instrumentation::UninstrumentQuickAllocEntryPoints() { MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); UninstrumentQuickAllocEntryPointsLocked(); } void Instrumentation::InstrumentQuickAllocEntryPointsLocked() { Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); if (quick_alloc_entry_points_instrumentation_counter_ == 0) { SetEntrypointsInstrumented(true); } ++quick_alloc_entry_points_instrumentation_counter_; } void Instrumentation::UninstrumentQuickAllocEntryPointsLocked() { Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); CHECK_GT(quick_alloc_entry_points_instrumentation_counter_, 0U); --quick_alloc_entry_points_instrumentation_counter_; if (quick_alloc_entry_points_instrumentation_counter_ == 0) { SetEntrypointsInstrumented(false); } } void Instrumentation::ResetQuickAllocEntryPoints() { Runtime* runtime = Runtime::Current(); if (runtime->IsStarted()) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(ResetQuickAllocEntryPointsForThread, nullptr); } } void Instrumentation::UpdateMethodsCode(ArtMethod* method, const void* quick_code) { DCHECK(method->GetDeclaringClass()->IsResolved()); const void* new_quick_code; if (LIKELY(!instrumentation_stubs_installed_)) { new_quick_code = quick_code; } else { if ((interpreter_stubs_installed_ || IsDeoptimized(method)) && !method->IsNative()) { new_quick_code = GetQuickToInterpreterBridge(); } else { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (class_linker->IsQuickResolutionStub(quick_code) || class_linker->IsQuickToInterpreterBridge(quick_code)) { new_quick_code = quick_code; } else if (entry_exit_stubs_installed_) { new_quick_code = GetQuickInstrumentationEntryPoint(); } else { new_quick_code = quick_code; } } } UpdateEntrypoints(method, new_quick_code); } bool Instrumentation::AddDeoptimizedMethod(ArtMethod* method) { if (IsDeoptimizedMethod(method)) { // Already in the map. Return. return false; } // Not found. Add it. deoptimized_methods_.insert(method); return true; } bool Instrumentation::IsDeoptimizedMethod(ArtMethod* method) { return deoptimized_methods_.find(method) != deoptimized_methods_.end(); } ArtMethod* Instrumentation::BeginDeoptimizedMethod() { if (deoptimized_methods_.empty()) { // Empty. return nullptr; } return *deoptimized_methods_.begin(); } bool Instrumentation::RemoveDeoptimizedMethod(ArtMethod* method) { auto it = deoptimized_methods_.find(method); if (it == deoptimized_methods_.end()) { return false; } deoptimized_methods_.erase(it); return true; } bool Instrumentation::IsDeoptimizedMethodsEmpty() const { return deoptimized_methods_.empty(); } void Instrumentation::Deoptimize(ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(!method->IsAbstract()); Thread* self = Thread::Current(); { WriterMutexLock mu(self, deoptimized_methods_lock_); bool has_not_been_deoptimized = AddDeoptimizedMethod(method); CHECK(has_not_been_deoptimized) << "Method " << PrettyMethod(method) << " is already deoptimized"; } if (!interpreter_stubs_installed_) { UpdateEntrypoints(method, GetQuickInstrumentationEntryPoint()); // Install instrumentation exit stub and instrumentation frames. We may already have installed // these previously so it will only cover the newly created frames. instrumentation_stubs_installed_ = true; MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(InstrumentationInstallStack, this); } } void Instrumentation::Undeoptimize(ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(!method->IsAbstract()); Thread* self = Thread::Current(); bool empty; { WriterMutexLock mu(self, deoptimized_methods_lock_); bool found_and_erased = RemoveDeoptimizedMethod(method); CHECK(found_and_erased) << "Method " << PrettyMethod(method) << " is not deoptimized"; empty = IsDeoptimizedMethodsEmpty(); } // Restore code and possibly stack only if we did not deoptimize everything. if (!interpreter_stubs_installed_) { // Restore its code or resolution trampoline. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (method->IsStatic() && !method->IsConstructor() && !method->GetDeclaringClass()->IsInitialized()) { UpdateEntrypoints(method, GetQuickResolutionStub()); } else { const void* quick_code = class_linker->GetQuickOatCodeFor(method); UpdateEntrypoints(method, quick_code); } // If there is no deoptimized method left, we can restore the stack of each thread. if (empty) { MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack, this); instrumentation_stubs_installed_ = false; } } } bool Instrumentation::IsDeoptimized(ArtMethod* method) { DCHECK(method != nullptr); ReaderMutexLock mu(Thread::Current(), deoptimized_methods_lock_); return IsDeoptimizedMethod(method); } void Instrumentation::EnableDeoptimization() { ReaderMutexLock mu(Thread::Current(), deoptimized_methods_lock_); CHECK(IsDeoptimizedMethodsEmpty()); CHECK_EQ(deoptimization_enabled_, false); deoptimization_enabled_ = true; } void Instrumentation::DisableDeoptimization(const char* key) { CHECK_EQ(deoptimization_enabled_, true); // If we deoptimized everything, undo it. if (interpreter_stubs_installed_) { UndeoptimizeEverything(key); } // Undeoptimized selected methods. while (true) { ArtMethod* method; { ReaderMutexLock mu(Thread::Current(), deoptimized_methods_lock_); if (IsDeoptimizedMethodsEmpty()) { break; } method = BeginDeoptimizedMethod(); CHECK(method != nullptr); } Undeoptimize(method); } deoptimization_enabled_ = false; } // Indicates if instrumentation should notify method enter/exit events to the listeners. bool Instrumentation::ShouldNotifyMethodEnterExitEvents() const { if (!HasMethodEntryListeners() && !HasMethodExitListeners()) { return false; } return !deoptimization_enabled_ && !interpreter_stubs_installed_; } void Instrumentation::DeoptimizeEverything(const char* key) { CHECK(deoptimization_enabled_); ConfigureStubs(key, InstrumentationLevel::kInstrumentWithInterpreter); } void Instrumentation::UndeoptimizeEverything(const char* key) { CHECK(interpreter_stubs_installed_); CHECK(deoptimization_enabled_); ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); } void Instrumentation::EnableMethodTracing(const char* key, bool needs_interpreter) { InstrumentationLevel level; if (needs_interpreter) { level = InstrumentationLevel::kInstrumentWithInterpreter; } else { level = InstrumentationLevel::kInstrumentWithInstrumentationStubs; } ConfigureStubs(key, level); } void Instrumentation::DisableMethodTracing(const char* key) { ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); } const void* Instrumentation::GetQuickCodeFor(ArtMethod* method, size_t pointer_size) const { Runtime* runtime = Runtime::Current(); if (LIKELY(!instrumentation_stubs_installed_)) { const void* code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size); DCHECK(code != nullptr); ClassLinker* class_linker = runtime->GetClassLinker(); if (LIKELY(!class_linker->IsQuickResolutionStub(code) && !class_linker->IsQuickToInterpreterBridge(code)) && !class_linker->IsQuickResolutionStub(code) && !class_linker->IsQuickToInterpreterBridge(code)) { return code; } } return runtime->GetClassLinker()->GetQuickOatCodeFor(method); } void Instrumentation::MethodEnterEventImpl(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc) const { auto it = method_entry_listeners_.begin(); bool is_end = (it == method_entry_listeners_.end()); // Implemented this way to prevent problems caused by modification of the list while iterating. while (!is_end) { InstrumentationListener* cur = *it; ++it; is_end = (it == method_entry_listeners_.end()); cur->MethodEntered(thread, this_object, method, dex_pc); } } void Instrumentation::MethodExitEventImpl(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc, const JValue& return_value) const { auto it = method_exit_listeners_.begin(); bool is_end = (it == method_exit_listeners_.end()); // Implemented this way to prevent problems caused by modification of the list while iterating. while (!is_end) { InstrumentationListener* cur = *it; ++it; is_end = (it == method_exit_listeners_.end()); cur->MethodExited(thread, this_object, method, dex_pc, return_value); } } void Instrumentation::MethodUnwindEvent(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc) const { if (HasMethodUnwindListeners()) { for (InstrumentationListener* listener : method_unwind_listeners_) { listener->MethodUnwind(thread, this_object, method, dex_pc); } } } void Instrumentation::DexPcMovedEventImpl(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc) const { std::shared_ptr> original(dex_pc_listeners_); for (InstrumentationListener* listener : *original.get()) { listener->DexPcMoved(thread, this_object, method, dex_pc); } } void Instrumentation::BackwardBranchImpl(Thread* thread, ArtMethod* method, int32_t offset) const { for (InstrumentationListener* listener : backward_branch_listeners_) { listener->BackwardBranch(thread, method, offset); } } void Instrumentation::FieldReadEventImpl(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field) const { std::shared_ptr> original(field_read_listeners_); for (InstrumentationListener* listener : *original.get()) { listener->FieldRead(thread, this_object, method, dex_pc, field); } } void Instrumentation::FieldWriteEventImpl(Thread* thread, mirror::Object* this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field, const JValue& field_value) const { std::shared_ptr> original(field_write_listeners_); for (InstrumentationListener* listener : *original.get()) { listener->FieldWritten(thread, this_object, method, dex_pc, field, field_value); } } void Instrumentation::ExceptionCaughtEvent(Thread* thread, mirror::Throwable* exception_object) const { if (HasExceptionCaughtListeners()) { DCHECK_EQ(thread->GetException(), exception_object); thread->ClearException(); std::shared_ptr> original(exception_caught_listeners_); for (InstrumentationListener* listener : *original.get()) { listener->ExceptionCaught(thread, exception_object); } thread->SetException(exception_object); } } static void CheckStackDepth(Thread* self, const InstrumentationStackFrame& instrumentation_frame, int delta) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { size_t frame_id = StackVisitor::ComputeNumFrames(self, kInstrumentationStackWalk) + delta; if (frame_id != instrumentation_frame.frame_id_) { LOG(ERROR) << "Expected frame_id=" << frame_id << " but found " << instrumentation_frame.frame_id_; StackVisitor::DescribeStack(self); CHECK_EQ(frame_id, instrumentation_frame.frame_id_); } } void Instrumentation::PushInstrumentationStackFrame(Thread* self, mirror::Object* this_object, ArtMethod* method, uintptr_t lr, bool interpreter_entry) { // We have a callee-save frame meaning this value is guaranteed to never be 0. size_t frame_id = StackVisitor::ComputeNumFrames(self, kInstrumentationStackWalk); std::deque* stack = self->GetInstrumentationStack(); if (kVerboseInstrumentation) { LOG(INFO) << "Entering " << PrettyMethod(method) << " from PC " << reinterpret_cast(lr); } instrumentation::InstrumentationStackFrame instrumentation_frame(this_object, method, lr, frame_id, interpreter_entry); stack->push_front(instrumentation_frame); if (!interpreter_entry) { MethodEnterEvent(self, this_object, method, 0); } } TwoWordReturn Instrumentation::PopInstrumentationStackFrame(Thread* self, uintptr_t* return_pc, uint64_t gpr_result, uint64_t fpr_result) { // Do the pop. std::deque* stack = self->GetInstrumentationStack(); CHECK_GT(stack->size(), 0U); InstrumentationStackFrame instrumentation_frame = stack->front(); stack->pop_front(); // Set return PC and check the sanity of the stack. *return_pc = instrumentation_frame.return_pc_; CheckStackDepth(self, instrumentation_frame, 0); self->VerifyStack(); ArtMethod* method = instrumentation_frame.method_; uint32_t length; char return_shorty = method->GetShorty(&length)[0]; JValue return_value; if (return_shorty == 'V') { return_value.SetJ(0); } else if (return_shorty == 'F' || return_shorty == 'D') { return_value.SetJ(fpr_result); } else { return_value.SetJ(gpr_result); } // TODO: improve the dex pc information here, requires knowledge of current PC as opposed to // return_pc. uint32_t dex_pc = DexFile::kDexNoIndex; mirror::Object* this_object = instrumentation_frame.this_object_; if (!instrumentation_frame.interpreter_entry_) { MethodExitEvent(self, this_object, instrumentation_frame.method_, dex_pc, return_value); } // Deoptimize if the caller needs to continue execution in the interpreter. Do nothing if we get // back to an upcall. NthCallerVisitor visitor(self, 1, true); visitor.WalkStack(true); bool deoptimize = (visitor.caller != nullptr) && (interpreter_stubs_installed_ || IsDeoptimized(visitor.caller) || Dbg::IsForcedInterpreterNeededForUpcall(self, visitor.caller)); if (deoptimize) { if (kVerboseInstrumentation) { LOG(INFO) << StringPrintf("Deoptimizing %s by returning from %s with result %#" PRIx64 " in ", PrettyMethod(visitor.caller).c_str(), PrettyMethod(method).c_str(), return_value.GetJ()) << *self; } self->SetDeoptimizationReturnValue(return_value, return_shorty == 'L'); return GetTwoWordSuccessValue(*return_pc, reinterpret_cast(GetQuickDeoptimizationEntryPoint())); } else { if (kVerboseInstrumentation) { LOG(INFO) << "Returning from " << PrettyMethod(method) << " to PC " << reinterpret_cast(*return_pc); } return GetTwoWordSuccessValue(0, *return_pc); } } void Instrumentation::PopMethodForUnwind(Thread* self, bool is_deoptimization) const { // Do the pop. std::deque* stack = self->GetInstrumentationStack(); CHECK_GT(stack->size(), 0U); InstrumentationStackFrame instrumentation_frame = stack->front(); // TODO: bring back CheckStackDepth(self, instrumentation_frame, 2); stack->pop_front(); ArtMethod* method = instrumentation_frame.method_; if (is_deoptimization) { if (kVerboseInstrumentation) { LOG(INFO) << "Popping for deoptimization " << PrettyMethod(method); } } else { if (kVerboseInstrumentation) { LOG(INFO) << "Popping for unwind " << PrettyMethod(method); } // Notify listeners of method unwind. // TODO: improve the dex pc information here, requires knowledge of current PC as opposed to // return_pc. uint32_t dex_pc = DexFile::kDexNoIndex; MethodUnwindEvent(self, instrumentation_frame.this_object_, method, dex_pc); } } std::string InstrumentationStackFrame::Dump() const { std::ostringstream os; os << "Frame " << frame_id_ << " " << PrettyMethod(method_) << ":" << reinterpret_cast(return_pc_) << " this=" << reinterpret_cast(this_object_); return os.str(); } } // namespace instrumentation } // namespace art