/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_x86_64.h" #include #include "arch/x86_64/instruction_set_features_x86_64.h" #include "art_method-inl.h" #include "code_generator_x86_64.h" #include "entrypoints/quick/quick_entrypoints.h" #include "intrinsics.h" #include "mirror/array-inl.h" #include "mirror/string.h" #include "thread.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/constants_x86_64.h" namespace art { namespace x86_64 { IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen) : arena_(codegen->GetGraph()->GetArena()), codegen_(codegen) { } X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() { return reinterpret_cast(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() { return codegen_->GetGraph()->GetArena(); } bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) { Dispatch(invoke); const LocationSummary* res = invoke->GetLocations(); return res != nullptr && res->Intrinsified(); } #define __ reinterpret_cast(codegen->GetAssembler())-> // TODO: trg as memory. static void MoveFromReturnRegister(Location trg, Primitive::Type type, CodeGeneratorX86_64* codegen) { if (!trg.IsValid()) { DCHECK(type == Primitive::kPrimVoid); return; } switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { CpuRegister trg_reg = trg.AsRegister(); if (trg_reg.AsRegister() != RAX) { __ movl(trg_reg, CpuRegister(RAX)); } break; } case Primitive::kPrimLong: { CpuRegister trg_reg = trg.AsRegister(); if (trg_reg.AsRegister() != RAX) { __ movq(trg_reg, CpuRegister(RAX)); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected void type for valid location " << trg; UNREACHABLE(); case Primitive::kPrimDouble: { XmmRegister trg_reg = trg.AsFpuRegister(); if (trg_reg.AsFloatRegister() != XMM0) { __ movsd(trg_reg, XmmRegister(XMM0)); } break; } case Primitive::kPrimFloat: { XmmRegister trg_reg = trg.AsFpuRegister(); if (trg_reg.AsFloatRegister() != XMM0) { __ movss(trg_reg, XmmRegister(XMM0)); } break; } } } static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) { InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } // Slow-path for fallback (calling the managed code to handle the intrinsic) in an intrinsified // call. This will copy the arguments into the positions for a regular call. // // Note: The actual parameters are required to be in the locations given by the invoke's location // summary. If an intrinsic modifies those locations before a slowpath call, they must be // restored! class IntrinsicSlowPathX86_64 : public SlowPathCodeX86_64 { public: explicit IntrinsicSlowPathX86_64(HInvoke* invoke) : invoke_(invoke) { } void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE { CodeGeneratorX86_64* codegen = down_cast(codegen_in); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, invoke_->GetLocations()); MoveArguments(invoke_, codegen); if (invoke_->IsInvokeStaticOrDirect()) { codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), CpuRegister(RDI)); RecordPcInfo(codegen, invoke_, invoke_->GetDexPc()); } else { UNIMPLEMENTED(FATAL) << "Non-direct intrinsic slow-path not yet implemented"; UNREACHABLE(); } // Copy the result back to the expected output. Location out = invoke_->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory. DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg())); MoveFromReturnRegister(out, invoke_->GetType(), codegen); } RestoreLiveRegisters(codegen, invoke_->GetLocations()); __ jmp(GetExitLabel()); } private: // The instruction where this slow path is happening. HInvoke* const invoke_; DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathX86_64); }; #undef __ #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsRegister(), input.AsFpuRegister(), is64bit); } static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsFpuRegister(), input.AsRegister(), is64bit); } void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), true, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void GenReverseBytes(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) { CpuRegister out = locations->Out().AsRegister(); switch (size) { case Primitive::kPrimShort: // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. __ bswapl(out); __ sarl(out, Immediate(16)); break; case Primitive::kPrimInt: __ bswapl(out); break; case Primitive::kPrimLong: __ bswapq(out); break; default: LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we // need is 64b. static void CreateFloatToFloatPlusTemps(ArenaAllocator* arena, HInvoke* invoke) { // TODO: Enable memory operations when the assembler supports them. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); // TODO: Allow x86 to work with memory. This requires assembler support, see below. // locations->SetInAt(0, Location::Any()); // X86 can work on memory directly. locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); // FP reg to hold mask. } static void MathAbsFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen) { Location output = locations->Out(); if (output.IsFpuRegister()) { // In-register XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister(); // TODO: Can mask directly with constant area using pand if we can guarantee // that the literal is aligned on a 16 byte boundary. This will avoid a // temporary. if (is64bit) { __ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF))); __ andpd(output.AsFpuRegister(), xmm_temp); } else { __ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF))); __ andps(output.AsFpuRegister(), xmm_temp); } } else { // TODO: update when assember support is available. UNIMPLEMENTED(FATAL) << "Needs assembler support."; // Once assembler support is available, in-memory operations look like this: // if (is64bit) { // DCHECK(output.IsDoubleStackSlot()); // // No 64b and with literal. // __ movq(cpu_temp, Immediate(INT64_C(0x7FFFFFFFFFFFFFFF))); // __ andq(Address(CpuRegister(RSP), output.GetStackIndex()), cpu_temp); // } else { // DCHECK(output.IsStackSlot()); // // Can use and with a literal directly. // __ andl(Address(CpuRegister(RSP), output.GetStackIndex()), Immediate(INT64_C(0x7FFFFFFF))); // } } } void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) { CreateFloatToFloatPlusTemps(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) { CreateFloatToFloatPlusTemps(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), false, GetAssembler(), codegen_); } static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location output = locations->Out(); CpuRegister out = output.AsRegister(); CpuRegister mask = locations->GetTemp(0).AsRegister(); if (is64bit) { // Create mask. __ movq(mask, out); __ sarq(mask, Immediate(63)); // Add mask. __ addq(out, mask); __ xorq(out, mask); } else { // Create mask. __ movl(mask, out); __ sarl(mask, Immediate(31)); // Add mask. __ addl(out, mask); __ xorl(out, mask); } } void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), true, GetAssembler()); } static void GenMinMaxFP(LocationSummary* locations, bool is_min, bool is_double, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); XmmRegister out = out_loc.AsFpuRegister(); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); return; } // (out := op1) // out <=? op2 // if Nan jmp Nan_label // if out is min jmp done // if op2 is min jmp op2_label // handle -0/+0 // jmp done // Nan_label: // out := NaN // op2_label: // out := op2 // done: // // This removes one jmp, but needs to copy one input (op1) to out. // // TODO: This is straight from Quick. Make NaN an out-of-line slowpath? XmmRegister op2 = op2_loc.AsFpuRegister(); Label nan, done, op2_label; if (is_double) { __ ucomisd(out, op2); } else { __ ucomiss(out, op2); } __ j(Condition::kParityEven, &nan); __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); // Handle 0.0/-0.0. if (is_min) { if (is_double) { __ orpd(out, op2); } else { __ orps(out, op2); } } else { if (is_double) { __ andpd(out, op2); } else { __ andps(out, op2); } } __ jmp(&done); // NaN handling. __ Bind(&nan); if (is_double) { __ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000))); } else { __ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000))); } __ jmp(&done); // out := op2; __ Bind(&op2_label); if (is_double) { __ movsd(out, op2); } else { __ movss(out, op2); } // Done. __ Bind(&done); } static void CreateFPFPToFP(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); // The following is sub-optimal, but all we can do for now. It would be fine to also accept // the second input to be the output (we can simply swap inputs). locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), true, true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), true, false, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), false, true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFP(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), false, false, GetAssembler(), codegen_); } static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long, X86_64Assembler* assembler) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { // Can return immediately, as op1_loc == out_loc. // Note: if we ever support separate registers, e.g., output into memory, we need to check for // a copy here. DCHECK(locations->Out().Equals(op1_loc)); return; } CpuRegister out = locations->Out().AsRegister(); CpuRegister op2 = op2_loc.AsRegister(); // (out := op1) // out <=? op2 // if out is min jmp done // out := op2 // done: if (is_long) { __ cmpq(out, op2); } else { __ cmpl(out, op2); } __ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long); } static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), true, false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), true, true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), false, false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), false, true, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); GetAssembler()->sqrtsd(out, in); } static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) { MoveArguments(invoke, codegen); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->GenerateStaticOrDirectCall(invoke->AsInvokeStaticOrDirect(), CpuRegister(RDI)); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); // Copy the result back to the expected output. Location out = invoke->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); MoveFromReturnRegister(out, invoke->GetType(), codegen); } } static void CreateSSE41FPToFPLocations(ArenaAllocator* arena, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { CreateFPToFPLocations(arena, invoke); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // Needs to be RDI for the invoke. locations->AddTemp(Location::RegisterLocation(RDI)); } static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke, X86_64Assembler* assembler, int round_mode) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen, invoke); } else { XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); __ roundsd(out, in, Immediate(round_mode)); } } void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); } void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); } void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); } static void CreateSSE41FPToIntLocations(ArenaAllocator* arena, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); // Needs to be RDI for the invoke. locations->AddTemp(Location::RegisterLocation(RDI)); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) { CreateSSE41FPToIntLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } // Implement RoundFloat as t1 = floor(input + 0.5f); convert to int. XmmRegister in = locations->InAt(0).AsFpuRegister(); CpuRegister out = locations->Out().AsRegister(); XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister(); Label done, nan; X86_64Assembler* assembler = GetAssembler(); // Load 0.5 into inPlusPointFive. __ movss(inPlusPointFive, codegen_->LiteralFloatAddress(0.5f)); // Add in the input. __ addss(inPlusPointFive, in); // And truncate to an integer. __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1)); // Load maxInt into out. codegen_->Load64BitValue(out, kPrimIntMax); // if inPlusPointFive >= maxInt goto done __ comiss(inPlusPointFive, codegen_->LiteralFloatAddress(static_cast(kPrimIntMax))); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-int-truncate(input) __ cvttss2si(out, inPlusPointFive); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(out, out); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) { CreateSSE41FPToIntLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } // Implement RoundDouble as t1 = floor(input + 0.5); convert to long. XmmRegister in = locations->InAt(0).AsFpuRegister(); CpuRegister out = locations->Out().AsRegister(); XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister(); Label done, nan; X86_64Assembler* assembler = GetAssembler(); // Load 0.5 into inPlusPointFive. __ movsd(inPlusPointFive, codegen_->LiteralDoubleAddress(0.5)); // Add in the input. __ addsd(inPlusPointFive, in); // And truncate to an integer. __ roundsd(inPlusPointFive, inPlusPointFive, Immediate(1)); // Load maxLong into out. codegen_->Load64BitValue(out, kPrimLongMax); // if inPlusPointFive >= maxLong goto done __ comisd(inPlusPointFive, codegen_->LiteralDoubleAddress(static_cast(kPrimLongMax))); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-long-truncate(input) __ cvttsd2si(out, inPlusPointFive, true); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(out, out); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitStringCharAt(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitStringCharAt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); // Location of reference to data array const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count const int32_t count_offset = mirror::String::CountOffset().Int32Value(); CpuRegister obj = locations->InAt(0).AsRegister(); CpuRegister idx = locations->InAt(1).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth // the cost. // TODO: For simplicity, the index parameter is requested in a register, so different from Quick // we will not optimize the code for constants (which would save a register). SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); X86_64Assembler* assembler = GetAssembler(); __ cmpl(idx, Address(obj, count_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); __ j(kAboveEqual, slow_path->GetEntryLabel()); // out = out[2*idx]. __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset)); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister argument = locations->InAt(1).AsRegister(); __ testl(argument, argument); SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ gs()->call(Address::Absolute( QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pStringCompareTo), true)); __ Bind(slow_path->GetExitLabel()); } static void CreateStringIndexOfLocations(HInvoke* invoke, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // The data needs to be in RDI for scasw. So request that the string is there, anyways. locations->SetInAt(0, Location::RegisterLocation(RDI)); // If we look for a constant char, we'll still have to copy it into RAX. So just request the // allocator to do that, anyways. We can still do the constant check by checking the parameter // of the instruction explicitly. // Note: This works as we don't clobber RAX anywhere. locations->SetInAt(1, Location::RegisterLocation(RAX)); if (!start_at_zero) { locations->SetInAt(2, Location::RequiresRegister()); // The starting index. } // As we clobber RDI during execution anyways, also use it as the output. locations->SetOut(Location::SameAsFirstInput()); // repne scasw uses RCX as the counter. locations->AddTemp(Location::RegisterLocation(RCX)); // Need another temporary to be able to compute the result. locations->AddTemp(Location::RequiresRegister()); } static void GenerateStringIndexOf(HInvoke* invoke, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister string_obj = locations->InAt(0).AsRegister(); CpuRegister search_value = locations->InAt(1).AsRegister(); CpuRegister counter = locations->GetTemp(0).AsRegister(); CpuRegister string_length = locations->GetTemp(1).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // Check our assumptions for registers. DCHECK_EQ(string_obj.AsRegister(), RDI); DCHECK_EQ(search_value.AsRegister(), RAX); DCHECK_EQ(counter.AsRegister(), RCX); DCHECK_EQ(out.AsRegister(), RDI); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch if we have a constant. SlowPathCodeX86_64* slow_path = nullptr; if (invoke->InputAt(1)->IsIntConstant()) { if (static_cast(invoke->InputAt(1)->AsIntConstant()->GetValue()) > std::numeric_limits::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else { __ cmpl(search_value, Immediate(std::numeric_limits::max())); slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ j(kAbove, slow_path->GetEntryLabel()); } // From here down, we know that we are looking for a char that fits in 16 bits. // Location of reference to data array within the String object. int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Load string length, i.e., the count field of the string. __ movl(string_length, Address(string_obj, count_offset)); // Do a length check. // TODO: Support jecxz. Label not_found_label; __ testl(string_length, string_length); __ j(kEqual, ¬_found_label); if (start_at_zero) { // Number of chars to scan is the same as the string length. __ movl(counter, string_length); // Move to the start of the string. __ addq(string_obj, Immediate(value_offset)); } else { CpuRegister start_index = locations->InAt(2).AsRegister(); // Do a start_index check. __ cmpl(start_index, string_length); __ j(kGreaterEqual, ¬_found_label); // Ensure we have a start index >= 0; __ xorl(counter, counter); __ cmpl(start_index, Immediate(0)); __ cmov(kGreater, counter, start_index, false); // 32-bit copy is enough. // Move to the start of the string: string_obj + value_offset + 2 * start_index. __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); // Now update ecx, the work counter: it's gonna be string.length - start_index. __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit. __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); } // Everything is set up for repne scasw: // * Comparison address in RDI. // * Counter in ECX. __ repne_scasw(); // Did we find a match? __ j(kNotEqual, ¬_found_label); // Yes, we matched. Compute the index of the result. __ subl(string_length, counter); __ leal(out, Address(string_length, -1)); Label done; __ jmp(&done); // Failed to match; return -1. __ Bind(¬_found_label); __ movl(out, Immediate(-1)); // And join up at the end. __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, arena_, true); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), true); } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, arena_, false); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), false); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister byte_array = locations->InAt(0).AsRegister(); __ testl(byte_array, byte_array); SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ gs()->call(Address::Absolute( QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromBytes), true)); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); __ gs()->call(Address::Absolute( QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromChars), true)); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister string_to_copy = locations->InAt(0).AsRegister(); __ testl(string_to_copy, string_to_copy); SlowPathCodeX86_64* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ gs()->call(Address::Absolute( QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromString), true)); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } static void GenPeek(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // == address, here for clarity. // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case Primitive::kPrimByte: __ movsxb(out, Address(address, 0)); break; case Primitive::kPrimShort: __ movsxw(out, Address(address, 0)); break; case Primitive::kPrimInt: __ movl(out, Address(address, 0)); break; case Primitive::kPrimLong: __ movq(out, Address(address, 0)); break; default: LOG(FATAL) << "Type not recognized for peek: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32LongConstant(invoke->InputAt(1))); } static void GenPoke(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister(); Location value = locations->InAt(1); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case Primitive::kPrimByte: if (value.IsConstant()) { __ movb(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movb(Address(address, 0), value.AsRegister()); } break; case Primitive::kPrimShort: if (value.IsConstant()) { __ movw(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movw(Address(address, 0), value.AsRegister()); } break; case Primitive::kPrimInt: if (value.IsConstant()) { __ movl(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movl(Address(address, 0), value.AsRegister()); } break; case Primitive::kPrimLong: if (value.IsConstant()) { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(address, 0), Immediate(v_32)); } else { __ movq(Address(address, 0), value.AsRegister()); } break; default: LOG(FATAL) << "Type not recognized for poke: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) { CpuRegister out = invoke->GetLocations()->Out().AsRegister(); GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset(), true)); } static void GenUnsafeGet(LocationSummary* locations, Primitive::Type type, bool is_volatile ATTRIBUTE_UNUSED, X86_64Assembler* assembler) { CpuRegister base = locations->InAt(1).AsRegister(); CpuRegister offset = locations->InAt(2).AsRegister(); CpuRegister trg = locations->Out().AsRegister(); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimNot: __ movl(trg, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; case Primitive::kPrimLong: __ movq(trg, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimInt, false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimInt, true, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimLong, false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimLong, true, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimNot, false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke->GetLocations(), Primitive::kPrimNot, true, GetAssembler()); } static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena, Primitive::Type type, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == Primitive::kPrimNot) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke); } // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 // memory model. static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = reinterpret_cast(codegen->GetAssembler()); CpuRegister base = locations->InAt(1).AsRegister(); CpuRegister offset = locations->InAt(2).AsRegister(); CpuRegister value = locations->InAt(3).AsRegister(); if (type == Primitive::kPrimLong) { __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } if (is_volatile) { __ mfence(); } if (type == Primitive::kPrimNot) { codegen->MarkGCCard(locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), base, value); } } void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, true, codegen_); } static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); // expected value must be in EAX/RAX. locations->SetInAt(3, Location::RegisterLocation(RAX)); locations->SetInAt(4, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); if (type == Primitive::kPrimNot) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke); } static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = reinterpret_cast(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); CpuRegister base = locations->InAt(1).AsRegister(); CpuRegister offset = locations->InAt(2).AsRegister(); CpuRegister expected = locations->InAt(3).AsRegister(); DCHECK_EQ(expected.AsRegister(), RAX); CpuRegister value = locations->InAt(4).AsRegister(); CpuRegister out = locations->Out().AsRegister(); if (type == Primitive::kPrimLong) { __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value); } else { // Integer or object. if (type == Primitive::kPrimNot) { // Mark card for object assuming new value is stored. codegen->MarkGCCard(locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), base, value); } __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value); } // locked cmpxchg has full barrier semantics, and we don't need scheduling // barriers at this time. // Convert ZF into the boolean result. __ setcc(kZero, out); __ movzxb(out, out); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) { GenCAS(Primitive::kPrimInt, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) { GenCAS(Primitive::kPrimLong, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) { GenCAS(Primitive::kPrimNot, invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); Immediate imm_mask(mask); __ movl(temp, reg); __ shrl(reg, imm_shift); __ andl(temp, imm_mask); __ andl(reg, imm_mask); __ shll(temp, imm_shift); __ orl(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) { X86_64Assembler* assembler = reinterpret_cast(codegen_->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister(); CpuRegister temp = locations->GetTemp(0).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; */ __ bswapl(reg); SwapBits(reg, temp, 1, 0x55555555, assembler); SwapBits(reg, temp, 2, 0x33333333, assembler); SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); } void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask, int32_t shift, int64_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); __ movq(temp_mask, Immediate(mask)); __ movq(temp, reg); __ shrq(reg, imm_shift); __ andq(temp, temp_mask); __ andq(reg, temp_mask); __ shlq(temp, imm_shift); __ orq(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) { X86_64Assembler* assembler = reinterpret_cast(codegen_->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister(); CpuRegister temp1 = locations->GetTemp(0).AsRegister(); CpuRegister temp2 = locations->GetTemp(1).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a long number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555; * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333; * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F; */ __ bswapq(reg); SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler); SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler); SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler); } // Unimplemented intrinsics. #define UNIMPLEMENTED_INTRINSIC(Name) \ void IntrinsicLocationsBuilderX86_64::Visit ## Name(HInvoke* invoke ATTRIBUTE_UNUSED) { \ } \ void IntrinsicCodeGeneratorX86_64::Visit ## Name(HInvoke* invoke ATTRIBUTE_UNUSED) { \ } UNIMPLEMENTED_INTRINSIC(StringGetCharsNoCheck) UNIMPLEMENTED_INTRINSIC(SystemArrayCopyChar) UNIMPLEMENTED_INTRINSIC(ReferenceGetReferent) } // namespace x86_64 } // namespace art