/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instruction_simplifier_arm64.h" #include "common_arm64.h" #include "mirror/array-inl.h" namespace art { namespace arm64 { using helpers::CanFitInShifterOperand; using helpers::HasShifterOperand; using helpers::ShifterOperandSupportsExtension; void InstructionSimplifierArm64Visitor::TryExtractArrayAccessAddress(HInstruction* access, HInstruction* array, HInstruction* index, int access_size) { if (index->IsConstant() || (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) { // When the index is a constant all the addressing can be fitted in the // memory access instruction, so do not split the access. return; } if (access->IsArraySet() && access->AsArraySet()->GetValue()->GetType() == Primitive::kPrimNot) { // The access may require a runtime call or the original array pointer. return; } // Proceed to extract the base address computation. ArenaAllocator* arena = GetGraph()->GetArena(); HIntConstant* offset = GetGraph()->GetIntConstant(mirror::Array::DataOffset(access_size).Uint32Value()); HArm64IntermediateAddress* address = new (arena) HArm64IntermediateAddress(array, offset, kNoDexPc); access->GetBlock()->InsertInstructionBefore(address, access); access->ReplaceInput(address, 0); // Both instructions must depend on GC to prevent any instruction that can // trigger GC to be inserted between the two. access->AddSideEffects(SideEffects::DependsOnGC()); DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC())); DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC())); // TODO: Code generation for HArrayGet and HArraySet will check whether the input address // is an HArm64IntermediateAddress and generate appropriate code. // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe // `HArm64Load` and `HArm64Store`). We defer these changes because these new instructions would // not bring any advantages yet. // Also see the comments in // `InstructionCodeGeneratorARM64::VisitArrayGet()` and // `InstructionCodeGeneratorARM64::VisitArraySet()`. RecordSimplification(); } bool InstructionSimplifierArm64Visitor::TryMergeIntoShifterOperand(HInstruction* use, HInstruction* bitfield_op, bool do_merge) { DCHECK(HasShifterOperand(use)); DCHECK(use->IsBinaryOperation() || use->IsNeg()); DCHECK(CanFitInShifterOperand(bitfield_op)); DCHECK(!bitfield_op->HasEnvironmentUses()); Primitive::Type type = use->GetType(); if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) { return false; } HInstruction* left; HInstruction* right; if (use->IsBinaryOperation()) { left = use->InputAt(0); right = use->InputAt(1); } else { DCHECK(use->IsNeg()); right = use->AsNeg()->InputAt(0); left = GetGraph()->GetConstant(right->GetType(), 0); } DCHECK(left == bitfield_op || right == bitfield_op); if (left == right) { // TODO: Handle special transformations in this situation? // For example should we transform `(x << 1) + (x << 1)` into `(x << 2)`? // Or should this be part of a separate transformation logic? return false; } bool is_commutative = use->IsBinaryOperation() && use->AsBinaryOperation()->IsCommutative(); HInstruction* other_input; if (bitfield_op == right) { other_input = left; } else { if (is_commutative) { other_input = right; } else { return false; } } HArm64DataProcWithShifterOp::OpKind op_kind; int shift_amount = 0; HArm64DataProcWithShifterOp::GetOpInfoFromInstruction(bitfield_op, &op_kind, &shift_amount); if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind) && !ShifterOperandSupportsExtension(use)) { return false; } if (do_merge) { HArm64DataProcWithShifterOp* alu_with_op = new (GetGraph()->GetArena()) HArm64DataProcWithShifterOp(use, other_input, bitfield_op->InputAt(0), op_kind, shift_amount, use->GetDexPc()); use->GetBlock()->ReplaceAndRemoveInstructionWith(use, alu_with_op); if (bitfield_op->GetUses().IsEmpty()) { bitfield_op->GetBlock()->RemoveInstruction(bitfield_op); } RecordSimplification(); } return true; } // Merge a bitfield move instruction into its uses if it can be merged in all of them. bool InstructionSimplifierArm64Visitor::TryMergeIntoUsersShifterOperand(HInstruction* bitfield_op) { DCHECK(CanFitInShifterOperand(bitfield_op)); if (bitfield_op->HasEnvironmentUses()) { return false; } const HUseList& uses = bitfield_op->GetUses(); // Check whether we can merge the instruction in all its users' shifter operand. for (HUseIterator it_use(uses); !it_use.Done(); it_use.Advance()) { HInstruction* use = it_use.Current()->GetUser(); if (!HasShifterOperand(use)) { return false; } if (!CanMergeIntoShifterOperand(use, bitfield_op)) { return false; } } // Merge the instruction into its uses. for (HUseIterator it_use(uses); !it_use.Done(); it_use.Advance()) { HInstruction* use = it_use.Current()->GetUser(); bool merged = MergeIntoShifterOperand(use, bitfield_op); DCHECK(merged); } return true; } bool InstructionSimplifierArm64Visitor::TrySimpleMultiplyAccumulatePatterns( HMul* mul, HBinaryOperation* input_binop, HInstruction* input_other) { DCHECK(Primitive::IsIntOrLongType(mul->GetType())); DCHECK(input_binop->IsAdd() || input_binop->IsSub()); DCHECK_NE(input_binop, input_other); if (!input_binop->HasOnlyOneNonEnvironmentUse()) { return false; } // Try to interpret patterns like // a * (b <+/-> 1) // as // (a * b) <+/-> a HInstruction* input_a = input_other; HInstruction* input_b = nullptr; // Set to a non-null value if we found a pattern to optimize. HInstruction::InstructionKind op_kind; if (input_binop->IsAdd()) { if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) { // Interpret // a * (b + 1) // as // (a * b) + a input_b = input_binop->GetLeastConstantLeft(); op_kind = HInstruction::kAdd; } } else { DCHECK(input_binop->IsSub()); if (input_binop->GetRight()->IsConstant() && input_binop->GetRight()->AsConstant()->IsMinusOne()) { // Interpret // a * (b - (-1)) // as // a + (a * b) input_b = input_binop->GetLeft(); op_kind = HInstruction::kAdd; } else if (input_binop->GetLeft()->IsConstant() && input_binop->GetLeft()->AsConstant()->IsOne()) { // Interpret // a * (1 - b) // as // a - (a * b) input_b = input_binop->GetRight(); op_kind = HInstruction::kSub; } } if (input_b == nullptr) { // We did not find a pattern we can optimize. return false; } HArm64MultiplyAccumulate* mulacc = new(GetGraph()->GetArena()) HArm64MultiplyAccumulate( mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc()); mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc); input_binop->GetBlock()->RemoveInstruction(input_binop); return false; } void InstructionSimplifierArm64Visitor::VisitArrayGet(HArrayGet* instruction) { TryExtractArrayAccessAddress(instruction, instruction->GetArray(), instruction->GetIndex(), Primitive::ComponentSize(instruction->GetType())); } void InstructionSimplifierArm64Visitor::VisitArraySet(HArraySet* instruction) { TryExtractArrayAccessAddress(instruction, instruction->GetArray(), instruction->GetIndex(), Primitive::ComponentSize(instruction->GetComponentType())); } void InstructionSimplifierArm64Visitor::VisitMul(HMul* instruction) { Primitive::Type type = instruction->GetType(); if (!Primitive::IsIntOrLongType(type)) { return; } HInstruction* use = instruction->HasNonEnvironmentUses() ? instruction->GetUses().GetFirst()->GetUser() : nullptr; if (instruction->HasOnlyOneNonEnvironmentUse() && (use->IsAdd() || use->IsSub())) { // Replace code looking like // MUL tmp, x, y // SUB dst, acc, tmp // with // MULSUB dst, acc, x, y // Note that we do not want to (unconditionally) perform the merge when the // multiplication has multiple uses and it can be merged in all of them. // Multiple uses could happen on the same control-flow path, and we would // then increase the amount of work. In the future we could try to evaluate // whether all uses are on different control-flow paths (using dominance and // reverse-dominance information) and only perform the merge when they are. HInstruction* accumulator = nullptr; HBinaryOperation* binop = use->AsBinaryOperation(); HInstruction* binop_left = binop->GetLeft(); HInstruction* binop_right = binop->GetRight(); // Be careful after GVN. This should not happen since the `HMul` has only // one use. DCHECK_NE(binop_left, binop_right); if (binop_right == instruction) { accumulator = binop_left; } else if (use->IsAdd()) { DCHECK_EQ(binop_left, instruction); accumulator = binop_right; } if (accumulator != nullptr) { HArm64MultiplyAccumulate* mulacc = new (GetGraph()->GetArena()) HArm64MultiplyAccumulate(type, binop->GetKind(), accumulator, instruction->GetLeft(), instruction->GetRight()); binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc); DCHECK(!instruction->HasUses()); instruction->GetBlock()->RemoveInstruction(instruction); RecordSimplification(); return; } } // Use multiply accumulate instruction for a few simple patterns. // We prefer not applying the following transformations if the left and // right inputs perform the same operation. // We rely on GVN having squashed the inputs if appropriate. However the // results are still correct even if that did not happen. if (instruction->GetLeft() == instruction->GetRight()) { return; } HInstruction* left = instruction->GetLeft(); HInstruction* right = instruction->GetRight(); if ((right->IsAdd() || right->IsSub()) && TrySimpleMultiplyAccumulatePatterns(instruction, right->AsBinaryOperation(), left)) { return; } if ((left->IsAdd() || left->IsSub()) && TrySimpleMultiplyAccumulatePatterns(instruction, left->AsBinaryOperation(), right)) { return; } } void InstructionSimplifierArm64Visitor::VisitShl(HShl* instruction) { if (instruction->InputAt(1)->IsConstant()) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitShr(HShr* instruction) { if (instruction->InputAt(1)->IsConstant()) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitTypeConversion(HTypeConversion* instruction) { Primitive::Type result_type = instruction->GetResultType(); Primitive::Type input_type = instruction->GetInputType(); if (input_type == result_type) { // We let the arch-independent code handle this. return; } if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) { TryMergeIntoUsersShifterOperand(instruction); } } void InstructionSimplifierArm64Visitor::VisitUShr(HUShr* instruction) { if (instruction->InputAt(1)->IsConstant()) { TryMergeIntoUsersShifterOperand(instruction); } } } // namespace arm64 } // namespace art