/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_writer.h" #include #include #include #include "base/logging.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "compiled_method.h" #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "elf_file.h" #include "elf_utils.h" #include "elf_writer.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "globals.h" #include "image.h" #include "intern_table.h" #include "lock_word.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "oat.h" #include "oat_file.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "handle_scope-inl.h" #include using ::art::mirror::ArtField; using ::art::mirror::ArtMethod; using ::art::mirror::Class; using ::art::mirror::DexCache; using ::art::mirror::EntryPointFromInterpreter; using ::art::mirror::Object; using ::art::mirror::ObjectArray; using ::art::mirror::String; namespace art { // Separate objects into multiple bins to optimize dirty memory use. static constexpr bool kBinObjects = true; bool ImageWriter::PrepareImageAddressSpace() { target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet()); { Thread::Current()->TransitionFromSuspendedToRunnable(); PruneNonImageClasses(); // Remove junk ComputeLazyFieldsForImageClasses(); // Add useful information ProcessStrings(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); } gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); // Remove garbage. if (!AllocMemory()) { return false; } if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); CheckNonImageClassesRemoved(); } Thread::Current()->TransitionFromSuspendedToRunnable(); CalculateNewObjectOffsets(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); return true; } bool ImageWriter::Write(const std::string& image_filename, const std::string& oat_filename, const std::string& oat_location) { CHECK(!image_filename.empty()); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::unique_ptr oat_file(OS::OpenFileReadWrite(oat_filename.c_str())); if (oat_file.get() == NULL) { PLOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location; return false; } std::string error_msg; oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_location, &error_msg); if (oat_file_ == nullptr) { PLOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location << ": " << error_msg; return false; } CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_); interpreter_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset(); interpreter_to_compiled_code_bridge_offset_ = oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset(); jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset(); quick_generic_jni_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset(); quick_imt_conflict_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset(); quick_resolution_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset(); quick_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset(); size_t oat_loaded_size = 0; size_t oat_data_offset = 0; ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset); Thread::Current()->TransitionFromSuspendedToRunnable(); CreateHeader(oat_loaded_size, oat_data_offset); CopyAndFixupObjects(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); SetOatChecksumFromElfFile(oat_file.get()); if (oat_file->FlushCloseOrErase() != 0) { LOG(ERROR) << "Failed to flush and close oat file " << oat_filename << " for " << oat_location; return false; } std::unique_ptr image_file(OS::CreateEmptyFile(image_filename.c_str())); ImageHeader* image_header = reinterpret_cast(image_->Begin()); if (image_file.get() == NULL) { LOG(ERROR) << "Failed to open image file " << image_filename; return false; } if (fchmod(image_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; image_file->Erase(); return EXIT_FAILURE; } // Write out the image. CHECK_EQ(image_end_, image_header->GetImageSize()); if (!image_file->WriteFully(image_->Begin(), image_end_)) { PLOG(ERROR) << "Failed to write image file " << image_filename; image_file->Erase(); return false; } // Write out the image bitmap at the page aligned start of the image end. CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize); if (!image_file->Write(reinterpret_cast(image_bitmap_->Begin()), image_header->GetImageBitmapSize(), image_header->GetImageBitmapOffset())) { PLOG(ERROR) << "Failed to write image file " << image_filename; image_file->Erase(); return false; } if (image_file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close image file " << image_filename; return false; } return true; } void ImageWriter::SetImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot, size_t offset) { DCHECK(object != nullptr); DCHECK_NE(offset, 0U); mirror::Object* obj = reinterpret_cast(image_->Begin() + offset); DCHECK_ALIGNED(obj, kObjectAlignment); image_bitmap_->Set(obj); // Mark the obj as mutated, since we will end up changing it. { // Remember the object-inside-of-the-image's hash code so we can restore it after the copy. auto hash_it = saved_hashes_map_.find(bin_slot); if (hash_it != saved_hashes_map_.end()) { std::pair slot_hash = *hash_it; saved_hashes_.push_back(std::make_pair(obj, slot_hash.second)); saved_hashes_map_.erase(hash_it); } } // The object is already deflated from when we set the bin slot. Just overwrite the lock word. object->SetLockWord(LockWord::FromForwardingAddress(offset), false); DCHECK(IsImageOffsetAssigned(object)); } void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { DCHECK(object != nullptr); DCHECK_NE(image_objects_offset_begin_, 0u); size_t previous_bin_sizes = GetBinSizeSum(bin_slot.GetBin()); // sum sizes in [0..bin#) size_t new_offset = image_objects_offset_begin_ + previous_bin_sizes + bin_slot.GetIndex(); DCHECK_ALIGNED(new_offset, kObjectAlignment); SetImageOffset(object, bin_slot, new_offset); DCHECK_LT(new_offset, image_end_); } bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { // Will also return true if the bin slot was assigned since we are reusing the lock word. DCHECK(object != nullptr); return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; } size_t ImageWriter::GetImageOffset(mirror::Object* object) const { DCHECK(object != nullptr); DCHECK(IsImageOffsetAssigned(object)); LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); DCHECK_LT(offset, image_end_); return offset; } void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { DCHECK(object != nullptr); DCHECK(!IsImageOffsetAssigned(object)); DCHECK(!IsImageBinSlotAssigned(object)); // Before we stomp over the lock word, save the hash code for later. Monitor::Deflate(Thread::Current(), object);; LockWord lw(object->GetLockWord(false)); switch (lw.GetState()) { case LockWord::kFatLocked: { LOG(FATAL) << "Fat locked object " << object << " found during object copy"; break; } case LockWord::kThinLocked: { LOG(FATAL) << "Thin locked object " << object << " found during object copy"; break; } case LockWord::kUnlocked: // No hash, don't need to save it. break; case LockWord::kHashCode: saved_hashes_map_[bin_slot] = lw.GetHashCode(); break; default: LOG(FATAL) << "Unreachable."; UNREACHABLE(); } object->SetLockWord(LockWord::FromForwardingAddress(static_cast(bin_slot)), false); DCHECK(IsImageBinSlotAssigned(object)); } void ImageWriter::AssignImageBinSlot(mirror::Object* object) { DCHECK(object != nullptr); size_t object_size = object->SizeOf(); // The magic happens here. We segregate objects into different bins based // on how likely they are to get dirty at runtime. // // Likely-to-dirty objects get packed together into the same bin so that // at runtime their page dirtiness ratio (how many dirty objects a page has) is // maximized. // // This means more pages will stay either clean or shared dirty (with zygote) and // the app will use less of its own (private) memory. Bin bin = kBinRegular; if (kBinObjects) { // // Changing the bin of an object is purely a memory-use tuning. // It has no change on runtime correctness. // // Memory analysis has determined that the following types of objects get dirtied // the most: // // * Class'es which are verified [their clinit runs only at runtime] // - classes in general [because their static fields get overwritten] // - initialized classes with all-final statics are unlikely to be ever dirty, // so bin them separately // * Art Methods that are: // - native [their native entry point is not looked up until runtime] // - have declaring classes that aren't initialized // [their interpreter/quick entry points are trampolines until the class // becomes initialized] // // We also assume the following objects get dirtied either never or extremely rarely: // * Strings (they are immutable) // * Art methods that aren't native and have initialized declared classes // // We assume that "regular" bin objects are highly unlikely to become dirtied, // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. // if (object->IsClass()) { bin = kBinClassVerified; mirror::Class* klass = object->AsClass(); if (klass->GetStatus() == Class::kStatusInitialized) { bin = kBinClassInitialized; // If the class's static fields are all final, put it into a separate bin // since it's very likely it will stay clean. uint32_t num_static_fields = klass->NumStaticFields(); if (num_static_fields == 0) { bin = kBinClassInitializedFinalStatics; } else { // Maybe all the statics are final? bool all_final = true; for (uint32_t i = 0; i < num_static_fields; ++i) { ArtField* field = klass->GetStaticField(i); if (!field->IsFinal()) { all_final = false; break; } } if (all_final) { bin = kBinClassInitializedFinalStatics; } } } } else if (object->IsArtMethod()) { mirror::ArtMethod* art_method = down_cast(object); if (art_method->IsNative()) { bin = kBinArtMethodNative; } else { mirror::Class* declaring_class = art_method->GetDeclaringClass(); if (declaring_class->GetStatus() != Class::kStatusInitialized) { bin = kBinArtMethodNotInitialized; } else { // This is highly unlikely to dirty since there's no entry points to mutate. bin = kBinArtMethodsManagedInitialized; } } } else if (object->GetClass()->IsStringClass()) { bin = kBinString; // Strings are almost always immutable (except for object header). } // else bin = kBinRegular } size_t current_offset = bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned). // Move the current bin size up to accomodate the object we just assigned a bin slot. size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment bin_slot_sizes_[bin] += offset_delta; BinSlot new_bin_slot(bin, current_offset); SetImageBinSlot(object, new_bin_slot); ++bin_slot_count_[bin]; DCHECK_LT(GetBinSizeSum(), image_->Size()); // Grow the image closer to the end by the object we just assigned. image_end_ += offset_delta; DCHECK_LT(image_end_, image_->Size()); } bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { DCHECK(object != nullptr); // We always stash the bin slot into a lockword, in the 'forwarding address' state. // If it's in some other state, then we haven't yet assigned an image bin slot. if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { return false; } else if (kIsDebugBuild) { LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); BinSlot bin_slot(offset); DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]) << "bin slot offset should not exceed the size of that bin"; } return true; } ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { DCHECK(object != nullptr); DCHECK(IsImageBinSlotAssigned(object)); LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t DCHECK_LE(offset, std::numeric_limits::max()); BinSlot bin_slot(static_cast(offset)); DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]); return bin_slot; } bool ImageWriter::AllocMemory() { size_t length = RoundUp(Runtime::Current()->GetHeap()->GetTotalMemory(), kPageSize); std::string error_msg; image_.reset(MemMap::MapAnonymous("image writer image", NULL, length, PROT_READ | PROT_WRITE, false, &error_msg)); if (UNLIKELY(image_.get() == nullptr)) { LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; return false; } // Create the image bitmap. image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create("image bitmap", image_->Begin(), length)); if (image_bitmap_.get() == nullptr) { LOG(ERROR) << "Failed to allocate memory for image bitmap"; return false; } return true; } void ImageWriter::ComputeLazyFieldsForImageClasses() { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL); } bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); mirror::Class::ComputeName(hs.NewHandle(c)); return true; } // Count the number of strings in the heap and put the result in arg as a size_t pointer. static void CountStringsCallback(Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (obj->GetClass()->IsStringClass()) { ++*reinterpret_cast(arg); } } // Collect all the java.lang.String in the heap and put them in the output strings_ array. class StringCollector { public: StringCollector(Handle> strings, size_t index) : strings_(strings), index_(index) { } static void Callback(Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { auto* collector = reinterpret_cast(arg); if (obj->GetClass()->IsStringClass()) { collector->strings_->SetWithoutChecks(collector->index_++, obj->AsString()); } } size_t GetIndex() const { return index_; } private: Handle> strings_; size_t index_; }; // Compare strings based on length, used for sorting strings by length / reverse length. class LexicographicalStringComparator { public: bool operator()(const mirror::HeapReference& lhs, const mirror::HeapReference& rhs) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::String* lhs_s = lhs.AsMirrorPtr(); mirror::String* rhs_s = rhs.AsMirrorPtr(); uint16_t* lhs_begin = lhs_s->GetCharArray()->GetData() + lhs_s->GetOffset(); uint16_t* rhs_begin = rhs_s->GetCharArray()->GetData() + rhs_s->GetOffset(); return std::lexicographical_compare(lhs_begin, lhs_begin + lhs_s->GetLength(), rhs_begin, rhs_begin + rhs_s->GetLength()); } }; static bool IsPrefix(mirror::String* pref, mirror::String* full) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (pref->GetLength() > full->GetLength()) { return false; } uint16_t* pref_begin = pref->GetCharArray()->GetData() + pref->GetOffset(); uint16_t* full_begin = full->GetCharArray()->GetData() + full->GetOffset(); return std::equal(pref_begin, pref_begin + pref->GetLength(), full_begin); } void ImageWriter::ProcessStrings() { size_t total_strings = 0; gc::Heap* heap = Runtime::Current()->GetHeap(); ClassLinker* cl = Runtime::Current()->GetClassLinker(); // Count the strings. heap->VisitObjects(CountStringsCallback, &total_strings); Thread* self = Thread::Current(); StackHandleScope<1> hs(self); auto strings = hs.NewHandle(cl->AllocStringArray(self, total_strings)); StringCollector string_collector(strings, 0U); // Read strings into the array. heap->VisitObjects(StringCollector::Callback, &string_collector); // Some strings could have gotten freed if AllocStringArray caused a GC. CHECK_LE(string_collector.GetIndex(), total_strings); total_strings = string_collector.GetIndex(); auto* strings_begin = reinterpret_cast*>( strings->GetRawData(sizeof(mirror::HeapReference), 0)); std::sort(strings_begin, strings_begin + total_strings, LexicographicalStringComparator()); // Characters of strings which are non equal prefix of another string (not the same string). // We don't count the savings from equal strings since these would get interned later anyways. size_t prefix_saved_chars = 0; // Count characters needed for the strings. size_t num_chars = 0u; mirror::String* prev_s = nullptr; for (size_t idx = 0; idx != total_strings; ++idx) { mirror::String* s = strings->GetWithoutChecks(idx); size_t length = s->GetLength(); num_chars += length; if (prev_s != nullptr && IsPrefix(prev_s, s)) { size_t prev_length = prev_s->GetLength(); num_chars -= prev_length; if (prev_length != length) { prefix_saved_chars += prev_length; } } prev_s = s; } // Create character array, copy characters and point the strings there. mirror::CharArray* array = mirror::CharArray::Alloc(self, num_chars); string_data_array_ = array; uint16_t* array_data = array->GetData(); size_t pos = 0u; prev_s = nullptr; for (size_t idx = 0; idx != total_strings; ++idx) { mirror::String* s = strings->GetWithoutChecks(idx); uint16_t* s_data = s->GetCharArray()->GetData() + s->GetOffset(); int32_t s_length = s->GetLength(); int32_t prefix_length = 0u; if (idx != 0u && IsPrefix(prev_s, s)) { prefix_length = prev_s->GetLength(); } memcpy(array_data + pos, s_data + prefix_length, (s_length - prefix_length) * sizeof(*s_data)); s->SetOffset(pos - prefix_length); s->SetArray(array); pos += s_length - prefix_length; prev_s = s; } CHECK_EQ(pos, num_chars); if (kIsDebugBuild || VLOG_IS_ON(compiler)) { LOG(INFO) << "Total # image strings=" << total_strings << " combined length=" << num_chars << " prefix saved chars=" << prefix_saved_chars; } ComputeEagerResolvedStrings(); } void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) { if (!obj->GetClass()->IsStringClass()) { return; } mirror::String* string = obj->AsString(); const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset(); size_t utf16_length = static_cast(string->GetLength()); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); size_t dex_cache_count = class_linker->GetDexCacheCount(); for (size_t i = 0; i < dex_cache_count; ++i) { DexCache* dex_cache = class_linker->GetDexCache(i); const DexFile& dex_file = *dex_cache->GetDexFile(); const DexFile::StringId* string_id; if (UNLIKELY(utf16_length == 0)) { string_id = dex_file.FindStringId(""); } else { string_id = dex_file.FindStringId(utf16_string, utf16_length); } if (string_id != nullptr) { // This string occurs in this dex file, assign the dex cache entry. uint32_t string_idx = dex_file.GetIndexForStringId(*string_id); if (dex_cache->GetResolvedString(string_idx) == NULL) { dex_cache->SetResolvedString(string_idx, string); } } } } void ImageWriter::ComputeEagerResolvedStrings() { Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this); } bool ImageWriter::IsImageClass(Class* klass) { std::string temp; return compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); } struct NonImageClasses { ImageWriter* image_writer; std::set* non_image_classes; }; void ImageWriter::PruneNonImageClasses() { if (compiler_driver_.GetImageClasses() == NULL) { return; } Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); // Make a list of classes we would like to prune. std::set non_image_classes; NonImageClasses context; context.image_writer = this; context.non_image_classes = &non_image_classes; class_linker->VisitClasses(NonImageClassesVisitor, &context); // Remove the undesired classes from the class roots. for (const std::string& it : non_image_classes) { bool result = class_linker->RemoveClass(it.c_str(), NULL); DCHECK(result); } // Clear references to removed classes from the DexCaches. ArtMethod* resolution_method = runtime->GetResolutionMethod(); ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); size_t dex_cache_count = class_linker->GetDexCacheCount(); for (size_t idx = 0; idx < dex_cache_count; ++idx) { DexCache* dex_cache = class_linker->GetDexCache(idx); for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { Class* klass = dex_cache->GetResolvedType(i); if (klass != NULL && !IsImageClass(klass)) { dex_cache->SetResolvedType(i, NULL); } } for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) { ArtMethod* method = dex_cache->GetResolvedMethod(i); if (method != NULL && !IsImageClass(method->GetDeclaringClass())) { dex_cache->SetResolvedMethod(i, resolution_method); } } for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { ArtField* field = dex_cache->GetResolvedField(i); if (field != NULL && !IsImageClass(field->GetDeclaringClass())) { dex_cache->SetResolvedField(i, NULL); } } } } bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) { NonImageClasses* context = reinterpret_cast(arg); if (!context->image_writer->IsImageClass(klass)) { std::string temp; context->non_image_classes->insert(klass->GetDescriptor(&temp)); } return true; } void ImageWriter::CheckNonImageClassesRemoved() { if (compiler_driver_.GetImageClasses() != nullptr) { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); } } void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { ImageWriter* image_writer = reinterpret_cast(arg); if (obj->IsClass()) { Class* klass = obj->AsClass(); if (!image_writer->IsImageClass(klass)) { image_writer->DumpImageClasses(); std::string temp; CHECK(image_writer->IsImageClass(klass)) << klass->GetDescriptor(&temp) << " " << PrettyDescriptor(klass); } } } void ImageWriter::DumpImageClasses() { const std::set* image_classes = compiler_driver_.GetImageClasses(); CHECK(image_classes != NULL); for (const std::string& image_class : *image_classes) { LOG(INFO) << " " << image_class; } } void ImageWriter::CalculateObjectBinSlots(Object* obj) { DCHECK(obj != NULL); // if it is a string, we want to intern it if its not interned. if (obj->GetClass()->IsStringClass()) { // we must be an interned string that was forward referenced and already assigned if (IsImageBinSlotAssigned(obj)) { DCHECK_EQ(obj, obj->AsString()->Intern()); return; } mirror::String* const interned = obj->AsString()->Intern(); if (obj != interned) { if (!IsImageBinSlotAssigned(interned)) { // interned obj is after us, allocate its location early AssignImageBinSlot(interned); } // point those looking for this object to the interned version. SetImageBinSlot(obj, GetImageBinSlot(interned)); return; } // else (obj == interned), nothing to do but fall through to the normal case } AssignImageBinSlot(obj); } ObjectArray* ImageWriter::CreateImageRoots() const { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); Thread* self = Thread::Current(); StackHandleScope<3> hs(self); Handle object_array_class(hs.NewHandle( class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); // build an Object[] of all the DexCaches used in the source_space_. // Since we can't hold the dex lock when allocating the dex_caches // ObjectArray, we lock the dex lock twice, first to get the number // of dex caches first and then lock it again to copy the dex // caches. We check that the number of dex caches does not change. size_t dex_cache_count; { ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); dex_cache_count = class_linker->GetDexCacheCount(); } Handle> dex_caches( hs.NewHandle(ObjectArray::Alloc(self, object_array_class.Get(), dex_cache_count))); CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; { ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); CHECK_EQ(dex_cache_count, class_linker->GetDexCacheCount()) << "The number of dex caches changed."; for (size_t i = 0; i < dex_cache_count; ++i) { dex_caches->Set(i, class_linker->GetDexCache(i)); } } // build an Object[] of the roots needed to restore the runtime Handle> image_roots(hs.NewHandle( ObjectArray::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); image_roots->Set(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod()); image_roots->Set(ImageHeader::kImtConflictMethod, runtime->GetImtConflictMethod()); image_roots->Set(ImageHeader::kImtUnimplementedMethod, runtime->GetImtUnimplementedMethod()); image_roots->Set(ImageHeader::kDefaultImt, runtime->GetDefaultImt()); image_roots->Set(ImageHeader::kCalleeSaveMethod, runtime->GetCalleeSaveMethod(Runtime::kSaveAll)); image_roots->Set(ImageHeader::kRefsOnlySaveMethod, runtime->GetCalleeSaveMethod(Runtime::kRefsOnly)); image_roots->Set(ImageHeader::kRefsAndArgsSaveMethod, runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); image_roots->Set(ImageHeader::kDexCaches, dex_caches.Get()); image_roots->Set(ImageHeader::kClassRoots, class_linker->GetClassRoots()); for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { CHECK(image_roots->Get(i) != NULL); } return image_roots.Get(); } // Walk instance fields of the given Class. Separate function to allow recursion on the super // class. void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) { // Visit fields of parent classes first. StackHandleScope<1> hs(Thread::Current()); Handle h_class(hs.NewHandle(klass)); mirror::Class* super = h_class->GetSuperClass(); if (super != nullptr) { WalkInstanceFields(obj, super); } // size_t num_reference_fields = h_class->NumReferenceInstanceFields(); MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset(); for (size_t i = 0; i < num_reference_fields; ++i) { mirror::Object* value = obj->GetFieldObject(field_offset); if (value != nullptr) { WalkFieldsInOrder(value); } field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference)); } } // For an unvisited object, visit it then all its children found via fields. void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) { // Use our own visitor routine (instead of GC visitor) to get better locality between // an object and its fields if (!IsImageBinSlotAssigned(obj)) { // Walk instance fields of all objects StackHandleScope<2> hs(Thread::Current()); Handle h_obj(hs.NewHandle(obj)); Handle klass(hs.NewHandle(obj->GetClass())); // visit the object itself. CalculateObjectBinSlots(h_obj.Get()); WalkInstanceFields(h_obj.Get(), klass.Get()); // Walk static fields of a Class. if (h_obj->IsClass()) { size_t num_static_fields = klass->NumReferenceStaticFields(); MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(); for (size_t i = 0; i < num_static_fields; ++i) { mirror::Object* value = h_obj->GetFieldObject(field_offset); if (value != nullptr) { WalkFieldsInOrder(value); } field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference)); } } else if (h_obj->IsObjectArray()) { // Walk elements of an object array. int32_t length = h_obj->AsObjectArray()->GetLength(); for (int32_t i = 0; i < length; i++) { mirror::ObjectArray* obj_array = h_obj->AsObjectArray(); mirror::Object* value = obj_array->Get(i); if (value != nullptr) { WalkFieldsInOrder(value); } } } } } void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) { ImageWriter* writer = reinterpret_cast(arg); DCHECK(writer != nullptr); writer->WalkFieldsInOrder(obj); } void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) { ImageWriter* writer = reinterpret_cast(arg); DCHECK(writer != nullptr); writer->UnbinObjectsIntoOffset(obj); } void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { CHECK(obj != nullptr); // We know the bin slot, and the total bin sizes for all objects by now, // so calculate the object's final image offset. DCHECK(IsImageBinSlotAssigned(obj)); BinSlot bin_slot = GetImageBinSlot(obj); // Change the lockword from a bin slot into an offset AssignImageOffset(obj, bin_slot); } void ImageWriter::CalculateNewObjectOffsets() { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle> image_roots(hs.NewHandle(CreateImageRoots())); gc::Heap* heap = Runtime::Current()->GetHeap(); DCHECK_EQ(0U, image_end_); // Leave space for the header, but do not write it yet, we need to // know where image_roots is going to end up image_end_ += RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment // TODO: Image spaces only? DCHECK_LT(image_end_, image_->Size()); image_objects_offset_begin_ = image_end_; // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots. heap->VisitObjects(WalkFieldsCallback, this); // Transform each object's bin slot into an offset which will be used to do the final copy. heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this); DCHECK(saved_hashes_map_.empty()); // All binslot hashes should've been put into vector by now. DCHECK_GT(image_end_, GetBinSizeSum()); image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Get())); // Note that image_end_ is left at end of used space } void ImageWriter::CreateHeader(size_t oat_loaded_size, size_t oat_data_offset) { CHECK_NE(0U, oat_loaded_size); const uint8_t* oat_file_begin = GetOatFileBegin(); const uint8_t* oat_file_end = oat_file_begin + oat_loaded_size; oat_data_begin_ = oat_file_begin + oat_data_offset; const uint8_t* oat_data_end = oat_data_begin_ + oat_file_->Size(); // Return to write header at start of image with future location of image_roots. At this point, // image_end_ is the size of the image (excluding bitmaps). const size_t heap_bytes_per_bitmap_byte = kBitsPerByte * kObjectAlignment; const size_t bitmap_bytes = RoundUp(image_end_, heap_bytes_per_bitmap_byte) / heap_bytes_per_bitmap_byte; new (image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_begin_), static_cast(image_end_), RoundUp(image_end_, kPageSize), RoundUp(bitmap_bytes, kPageSize), image_roots_address_, oat_file_->GetOatHeader().GetChecksum(), PointerToLowMemUInt32(oat_file_begin), PointerToLowMemUInt32(oat_data_begin_), PointerToLowMemUInt32(oat_data_end), PointerToLowMemUInt32(oat_file_end), compile_pic_); } void ImageWriter::CopyAndFixupObjects() { gc::Heap* heap = Runtime::Current()->GetHeap(); // TODO: heap validation can't handle this fix up pass heap->DisableObjectValidation(); // TODO: Image spaces only? heap->VisitObjects(CopyAndFixupObjectsCallback, this); // Fix up the object previously had hash codes. for (const std::pair& hash_pair : saved_hashes_) { hash_pair.first->SetLockWord(LockWord::FromHashCode(hash_pair.second), false); } saved_hashes_.clear(); } void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { DCHECK(obj != nullptr); DCHECK(arg != nullptr); ImageWriter* image_writer = reinterpret_cast(arg); // see GetLocalAddress for similar computation size_t offset = image_writer->GetImageOffset(obj); uint8_t* dst = image_writer->image_->Begin() + offset; const uint8_t* src = reinterpret_cast(obj); size_t n; if (obj->IsArtMethod()) { // Size without pointer fields since we don't want to overrun the buffer if target art method // is 32 bits but source is 64 bits. n = mirror::ArtMethod::SizeWithoutPointerFields(image_writer->target_ptr_size_); } else { n = obj->SizeOf(); } DCHECK_LT(offset + n, image_writer->image_->Size()); memcpy(dst, src, n); Object* copy = reinterpret_cast(dst); // Write in a hash code of objects which have inflated monitors or a hash code in their monitor // word. copy->SetLockWord(LockWord(), false); image_writer->FixupObject(obj, copy); } // Rewrite all the references in the copied object to point to their image address equivalent class FixupVisitor { public: FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { } void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { Object* ref = obj->GetFieldObject(offset); // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the // image. copy_->SetFieldObjectWithoutWriteBarrier( offset, image_writer_->GetImageAddress(ref)); } // java.lang.ref.Reference visitor. void operator()(mirror::Class* /*klass*/, mirror::Reference* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { copy_->SetFieldObjectWithoutWriteBarrier( mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent())); } protected: ImageWriter* const image_writer_; mirror::Object* const copy_; }; class FixupClassVisitor FINAL : public FixupVisitor { public: FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { } void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { DCHECK(obj->IsClass()); FixupVisitor::operator()(obj, offset, /*is_static*/false); // TODO: Remove dead code if (offset.Uint32Value() < mirror::Class::EmbeddedVTableOffset().Uint32Value()) { return; } } void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref ATTRIBUTE_UNUSED) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { LOG(FATAL) << "Reference not expected here."; } }; void ImageWriter::FixupObject(Object* orig, Object* copy) { DCHECK(orig != nullptr); DCHECK(copy != nullptr); if (kUseBakerOrBrooksReadBarrier) { orig->AssertReadBarrierPointer(); if (kUseBrooksReadBarrier) { // Note the address 'copy' isn't the same as the image address of 'orig'. copy->SetReadBarrierPointer(GetImageAddress(orig)); DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); } } if (orig->IsClass() && orig->AsClass()->ShouldHaveEmbeddedImtAndVTable()) { FixupClassVisitor visitor(this, copy); orig->VisitReferences(visitor, visitor); } else { FixupVisitor visitor(this, copy); orig->VisitReferences(visitor, visitor); } if (orig->IsArtMethod()) { FixupMethod(orig->AsArtMethod(), down_cast(copy)); } } const uint8_t* ImageWriter::GetQuickCode(mirror::ArtMethod* method, bool* quick_is_interpreted) { DCHECK(!method->IsResolutionMethod() && !method->IsImtConflictMethod() && !method->IsImtUnimplementedMethod() && !method->IsAbstract()) << PrettyMethod(method); // Use original code if it exists. Otherwise, set the code pointer to the resolution // trampoline. // Quick entrypoint: uint32_t quick_oat_code_offset = PointerToLowMemUInt32( method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_)); const uint8_t* quick_code = GetOatAddress(quick_oat_code_offset); *quick_is_interpreted = false; if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || method->GetDeclaringClass()->IsInitialized())) { // We have code for a non-static or initialized method, just use the code. } else if (quick_code == nullptr && method->IsNative() && (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { // Non-static or initialized native method missing compiled code, use generic JNI version. quick_code = GetOatAddress(quick_generic_jni_trampoline_offset_); } else if (quick_code == nullptr && !method->IsNative()) { // We don't have code at all for a non-native method, use the interpreter. quick_code = GetOatAddress(quick_to_interpreter_bridge_offset_); *quick_is_interpreted = true; } else { CHECK(!method->GetDeclaringClass()->IsInitialized()); // We have code for a static method, but need to go through the resolution stub for class // initialization. quick_code = GetOatAddress(quick_resolution_trampoline_offset_); } return quick_code; } const uint8_t* ImageWriter::GetQuickEntryPoint(mirror::ArtMethod* method) { // Calculate the quick entry point following the same logic as FixupMethod() below. // The resolution method has a special trampoline to call. Runtime* runtime = Runtime::Current(); if (UNLIKELY(method == runtime->GetResolutionMethod())) { return GetOatAddress(quick_resolution_trampoline_offset_); } else if (UNLIKELY(method == runtime->GetImtConflictMethod() || method == runtime->GetImtUnimplementedMethod())) { return GetOatAddress(quick_imt_conflict_trampoline_offset_); } else { // We assume all methods have code. If they don't currently then we set them to the use the // resolution trampoline. Abstract methods never have code and so we need to make sure their // use results in an AbstractMethodError. We use the interpreter to achieve this. if (UNLIKELY(method->IsAbstract())) { return GetOatAddress(quick_to_interpreter_bridge_offset_); } else { bool quick_is_interpreted; return GetQuickCode(method, &quick_is_interpreted); } } } void ImageWriter::FixupMethod(ArtMethod* orig, ArtMethod* copy) { // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to // oat_begin_ // For 64 bit targets we need to repack the current runtime pointer sized fields to the right // locations. // Copy all of the fields from the runtime methods to the target methods first since we did a // bytewise copy earlier. copy->SetEntryPointFromInterpreterPtrSize( orig->GetEntryPointFromInterpreterPtrSize(target_ptr_size_), target_ptr_size_); copy->SetEntryPointFromJniPtrSize( orig->GetEntryPointFromJniPtrSize(target_ptr_size_), target_ptr_size_); copy->SetEntryPointFromQuickCompiledCodePtrSize( orig->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_), target_ptr_size_); // The resolution method has a special trampoline to call. Runtime* runtime = Runtime::Current(); if (UNLIKELY(orig == runtime->GetResolutionMethod())) { copy->SetEntryPointFromQuickCompiledCodePtrSize( GetOatAddress(quick_resolution_trampoline_offset_), target_ptr_size_); } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() || orig == runtime->GetImtUnimplementedMethod())) { copy->SetEntryPointFromQuickCompiledCodePtrSize( GetOatAddress(quick_imt_conflict_trampoline_offset_), target_ptr_size_); } else { // We assume all methods have code. If they don't currently then we set them to the use the // resolution trampoline. Abstract methods never have code and so we need to make sure their // use results in an AbstractMethodError. We use the interpreter to achieve this. if (UNLIKELY(orig->IsAbstract())) { copy->SetEntryPointFromQuickCompiledCodePtrSize( GetOatAddress(quick_to_interpreter_bridge_offset_), target_ptr_size_); copy->SetEntryPointFromInterpreterPtrSize( reinterpret_cast(const_cast( GetOatAddress(interpreter_to_interpreter_bridge_offset_))), target_ptr_size_); } else { bool quick_is_interpreted; const uint8_t* quick_code = GetQuickCode(orig, &quick_is_interpreted); copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_); // JNI entrypoint: if (orig->IsNative()) { // The native method's pointer is set to a stub to lookup via dlsym. // Note this is not the code_ pointer, that is handled above. copy->SetEntryPointFromJniPtrSize(GetOatAddress(jni_dlsym_lookup_offset_), target_ptr_size_); } // Interpreter entrypoint: // Set the interpreter entrypoint depending on whether there is compiled code or not. uint32_t interpreter_code = (quick_is_interpreted) ? interpreter_to_interpreter_bridge_offset_ : interpreter_to_compiled_code_bridge_offset_; EntryPointFromInterpreter* interpreter_entrypoint = reinterpret_cast( const_cast(GetOatAddress(interpreter_code))); copy->SetEntryPointFromInterpreterPtrSize( interpreter_entrypoint, target_ptr_size_); } } } static OatHeader* GetOatHeaderFromElf(ElfFile* elf) { uint64_t data_sec_offset; bool has_data_sec = elf->GetSectionOffsetAndSize(".rodata", &data_sec_offset, nullptr); if (!has_data_sec) { return nullptr; } return reinterpret_cast(elf->Begin() + data_sec_offset); } void ImageWriter::SetOatChecksumFromElfFile(File* elf_file) { std::string error_msg; std::unique_ptr elf(ElfFile::Open(elf_file, PROT_READ|PROT_WRITE, MAP_SHARED, &error_msg)); if (elf.get() == nullptr) { LOG(FATAL) << "Unable open oat file: " << error_msg; return; } OatHeader* oat_header = GetOatHeaderFromElf(elf.get()); CHECK(oat_header != nullptr); CHECK(oat_header->IsValid()); ImageHeader* image_header = reinterpret_cast(image_->Begin()); image_header->SetOatChecksum(oat_header->GetChecksum()); } size_t ImageWriter::GetBinSizeSum(ImageWriter::Bin up_to) const { DCHECK_LE(up_to, kBinSize); return std::accumulate(&bin_slot_sizes_[0], &bin_slot_sizes_[up_to], /*init*/0); } ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { // These values may need to get updated if more bins are added to the enum Bin static_assert(kBinBits == 3, "wrong number of bin bits"); static_assert(kBinShift == 29, "wrong number of shift"); static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); DCHECK_LT(GetBin(), kBinSize); DCHECK_ALIGNED(GetIndex(), kObjectAlignment); } ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) : BinSlot(index | (static_cast(bin) << kBinShift)) { DCHECK_EQ(index, GetIndex()); } ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { return static_cast((lockword_ & kBinMask) >> kBinShift); } uint32_t ImageWriter::BinSlot::GetIndex() const { return lockword_ & ~kBinMask; } void ImageWriter::FreeStringDataArray() { if (string_data_array_ != nullptr) { gc::space::LargeObjectSpace* los = Runtime::Current()->GetHeap()->GetLargeObjectsSpace(); if (los != nullptr) { los->Free(Thread::Current(), reinterpret_cast(string_data_array_)); } } } } // namespace art