/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace android::meminfo; pid_t pid = -1; class ValidateProcMemInfo : public ::testing::Test { protected: void SetUp() override { ASSERT_EQ(0, pm_kernel_create(&ker)); ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); proc_mem = new ProcMemInfo(pid); ASSERT_NE(proc_mem, nullptr); } void TearDown() override { delete proc_mem; pm_process_destroy(proc); pm_kernel_destroy(ker); } pm_kernel_t* ker; pm_process_t* proc; ProcMemInfo* proc_mem; }; TEST_F(ValidateProcMemInfo, TestMapsSize) { const std::vector& maps = proc_mem->Maps(); ASSERT_FALSE(maps.empty()) << "Process " << getpid() << " maps are empty"; } TEST_F(ValidateProcMemInfo, TestMapsEquality) { const std::vector& maps = proc_mem->Maps(); ASSERT_EQ(proc->num_maps, maps.size()); for (size_t i = 0; i < maps.size(); ++i) { EXPECT_EQ(proc->maps[i]->start, maps[i].start); EXPECT_EQ(proc->maps[i]->end, maps[i].end); EXPECT_EQ(proc->maps[i]->offset, maps[i].offset); EXPECT_EQ(std::string(proc->maps[i]->name), maps[i].name); } } TEST_F(ValidateProcMemInfo, TestMaps) { const std::vector& maps = proc_mem->Maps(); ASSERT_FALSE(maps.empty()); ASSERT_EQ(proc->num_maps, maps.size()); pm_memusage_t map_usage, proc_usage; pm_memusage_zero(&map_usage); pm_memusage_zero(&proc_usage); for (size_t i = 0; i < maps.size(); i++) { ASSERT_EQ(0, pm_map_usage(proc->maps[i], &map_usage)); EXPECT_EQ(map_usage.vss, maps[i].usage.vss) << "VSS mismatch for map: " << maps[i].name; EXPECT_EQ(map_usage.rss, maps[i].usage.rss) << "RSS mismatch for map: " << maps[i].name; EXPECT_EQ(map_usage.pss, maps[i].usage.pss) << "PSS mismatch for map: " << maps[i].name; EXPECT_EQ(map_usage.uss, maps[i].usage.uss) << "USS mismatch for map: " << maps[i].name; pm_memusage_add(&proc_usage, &map_usage); } EXPECT_EQ(proc_usage.vss, proc_mem->Usage().vss); EXPECT_EQ(proc_usage.rss, proc_mem->Usage().rss); EXPECT_EQ(proc_usage.pss, proc_mem->Usage().pss); EXPECT_EQ(proc_usage.uss, proc_mem->Usage().uss); } TEST_F(ValidateProcMemInfo, TestSwapUsage) { const std::vector& maps = proc_mem->Maps(); ASSERT_FALSE(maps.empty()); ASSERT_EQ(proc->num_maps, maps.size()); pm_memusage_t map_usage, proc_usage; pm_memusage_zero(&map_usage); pm_memusage_zero(&proc_usage); for (size_t i = 0; i < maps.size(); i++) { ASSERT_EQ(0, pm_map_usage(proc->maps[i], &map_usage)); EXPECT_EQ(map_usage.swap, maps[i].usage.swap) << "SWAP mismatch for map: " << maps[i].name; pm_memusage_add(&proc_usage, &map_usage); } EXPECT_EQ(proc_usage.swap, proc_mem->Usage().swap); } TEST_F(ValidateProcMemInfo, TestSwapOffsets) { const MemUsage& proc_usage = proc_mem->Usage(); const std::vector& swap_offsets = proc_mem->SwapOffsets(); EXPECT_EQ(proc_usage.swap / getpagesize(), swap_offsets.size()); } TEST_F(ValidateProcMemInfo, TestPageMap) { std::vector pagemap; auto vma_callback = [&](const Vma& vma) { uint64_t* pmap_out; size_t len; ASSERT_EQ(0, pm_process_pagemap_range(proc, vma.start, vma.end, &pmap_out, &len)); ASSERT_TRUE(proc_mem->PageMap(vma, &pagemap)); EXPECT_EQ(len, ((vma.end - vma.start) / getpagesize())); for (size_t i = 0; i < len; i++) { EXPECT_EQ(pmap_out[i], pagemap[i]); } }; ASSERT_TRUE(proc_mem->ForEachVma(vma_callback)); } class ValidateProcMemInfoWss : public ::testing::Test { protected: void SetUp() override { ASSERT_EQ(0, pm_kernel_create(&ker)); ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); proc_mem = new ProcMemInfo(pid, true); ASSERT_NE(proc_mem, nullptr); } void TearDown() override { delete proc_mem; pm_process_destroy(proc); pm_kernel_destroy(ker); } pm_kernel_t* ker; pm_process_t* proc; ProcMemInfo* proc_mem; }; TEST_F(ValidateProcMemInfoWss, TestWorkingTestReset) { // Expect reset to succeed EXPECT_TRUE(ProcMemInfo::ResetWorkingSet(pid)); } TEST_F(ValidateProcMemInfoWss, TestWssEquality) { // Read wss using libpagemap pm_memusage_t wss_pagemap; EXPECT_EQ(0, pm_process_workingset(proc, &wss_pagemap, 0)); // Read wss using libmeminfo MemUsage wss = proc_mem->Wss(); // compare EXPECT_EQ(wss_pagemap.rss, wss.rss); EXPECT_EQ(wss_pagemap.pss, wss.pss); EXPECT_EQ(wss_pagemap.uss, wss.uss); } class ValidatePageAcct : public ::testing::Test { protected: void SetUp() override { ASSERT_EQ(0, pm_kernel_create(&ker)); ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); } void TearDown() override { pm_process_destroy(proc); pm_kernel_destroy(ker); } pm_kernel_t* ker; pm_process_t* proc; }; TEST_F(ValidatePageAcct, TestPageFlags) { PageAcct& pi = PageAcct::Instance(); pi.InitPageAcct(false); uint64_t* pagemap; size_t num_pages; for (size_t i = 0; i < proc->num_maps; i++) { ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages)); for (size_t j = 0; j < num_pages; j++) { if (!PM_PAGEMAP_PRESENT(pagemap[j])) continue; uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]); uint64_t page_flags_pagemap, page_flags_meminfo; ASSERT_EQ(0, pm_kernel_flags(ker, pfn, &page_flags_pagemap)); ASSERT_TRUE(pi.PageFlags(pfn, &page_flags_meminfo)); // check if page flags equal EXPECT_EQ(page_flags_pagemap, page_flags_meminfo); } free(pagemap); } } TEST_F(ValidatePageAcct, TestPageCounts) { PageAcct& pi = PageAcct::Instance(); pi.InitPageAcct(false); uint64_t* pagemap; size_t num_pages; for (size_t i = 0; i < proc->num_maps; i++) { ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages)); for (size_t j = 0; j < num_pages; j++) { uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]); uint64_t map_count_pagemap, map_count_meminfo; ASSERT_EQ(0, pm_kernel_count(ker, pfn, &map_count_pagemap)); ASSERT_TRUE(pi.PageMapCount(pfn, &map_count_meminfo)); // check if map counts are equal EXPECT_EQ(map_count_pagemap, map_count_meminfo); } free(pagemap); } } TEST_F(ValidatePageAcct, TestPageIdle) { // skip the test if idle page tracking isn't enabled if (pm_kernel_init_page_idle(ker) != 0) { return; } PageAcct& pi = PageAcct::Instance(); ASSERT_TRUE(pi.InitPageAcct(true)); uint64_t* pagemap; size_t num_pages; for (size_t i = 0; i < proc->num_maps; i++) { ASSERT_EQ(0, pm_map_pagemap(proc->maps[i], &pagemap, &num_pages)); for (size_t j = 0; j < num_pages; j++) { if (!PM_PAGEMAP_PRESENT(pagemap[j])) continue; uint64_t pfn = PM_PAGEMAP_PFN(pagemap[j]); ASSERT_EQ(0, pm_kernel_mark_page_idle(ker, &pfn, 1)); int idle_status_pagemap = pm_kernel_get_page_idle(ker, pfn); int idle_status_meminfo = pi.IsPageIdle(pfn); EXPECT_EQ(idle_status_pagemap, idle_status_meminfo); } free(pagemap); } } TEST(TestProcMemInfo, MapsEmpty) { ProcMemInfo proc_mem(pid); const std::vector& maps = proc_mem.Maps(); EXPECT_GT(maps.size(), 0); } TEST(TestProcMemInfo, UsageEmpty) { // If we created the object for getting working set, // the usage must be empty ProcMemInfo proc_mem(pid, true); const MemUsage& usage = proc_mem.Usage(); EXPECT_EQ(usage.rss, 0); EXPECT_EQ(usage.vss, 0); EXPECT_EQ(usage.pss, 0); EXPECT_EQ(usage.uss, 0); EXPECT_EQ(usage.swap, 0); } TEST(TestProcMemInfo, WssEmpty) { // If we created the object for getting usage, // the working set must be empty ProcMemInfo proc_mem(pid, false); const MemUsage& wss = proc_mem.Wss(); EXPECT_EQ(wss.rss, 0); EXPECT_EQ(wss.vss, 0); EXPECT_EQ(wss.pss, 0); EXPECT_EQ(wss.uss, 0); EXPECT_EQ(wss.swap, 0); } TEST(TestProcMemInfo, SwapOffsetsEmpty) { // If we created the object for getting working set, // the swap offsets must be empty ProcMemInfo proc_mem(pid, true); const std::vector& swap_offsets = proc_mem.SwapOffsets(); EXPECT_EQ(swap_offsets.size(), 0); } TEST(TestProcMemInfo, IsSmapsSupportedTest) { std::string path = ::android::base::StringPrintf("/proc/%d/smaps_rollup", pid); bool supported = IsSmapsRollupSupported(pid); EXPECT_EQ(!access(path.c_str(), F_OK | R_OK), supported); // Second call must return what the first one returned regardless of the pid parameter. // So, deliberately pass invalid pid. EXPECT_EQ(supported, IsSmapsRollupSupported(-1)); } TEST(TestProcMemInfo, SmapsOrRollupTest) { std::string rollup = R"rollup(12c00000-7fe859e000 ---p 00000000 00:00 0 [rollup] Rss: 331908 kB Pss: 202052 kB Shared_Clean: 158492 kB Shared_Dirty: 18928 kB Private_Clean: 90472 kB Private_Dirty: 64016 kB Referenced: 318700 kB Anonymous: 81984 kB AnonHugePages: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 5344 kB SwapPss: 442 kB Locked: 1523537 kB)rollup"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(rollup, tf.fd)); MemUsage stats; ASSERT_EQ(SmapsOrRollupFromFile(tf.path, &stats), true); EXPECT_EQ(stats.rss, 331908); EXPECT_EQ(stats.pss, 202052); EXPECT_EQ(stats.uss, 154488); EXPECT_EQ(stats.private_clean, 90472); EXPECT_EQ(stats.private_dirty, 64016); EXPECT_EQ(stats.swap_pss, 442); } TEST(TestProcMemInfo, SmapsOrRollupSmapsTest) { // This is a made up smaps for the test std::string smaps = R"smaps(12c00000-13440000 rw-p 00000000 00:00 0 [anon:dalvik-main space (region space)] Name: [anon:dalvik-main space (region space)] Size: 8448 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Rss: 2652 kB Pss: 2652 kB Shared_Clean: 840 kB Shared_Dirty: 40 kB Private_Clean: 84 kB Private_Dirty: 2652 kB Referenced: 2652 kB Anonymous: 2652 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 102 kB SwapPss: 70 kB Locked: 2652 kB VmFlags: rd wr mr mw me ac )smaps"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(smaps, tf.fd)); MemUsage stats; ASSERT_EQ(SmapsOrRollupFromFile(tf.path, &stats), true); EXPECT_EQ(stats.rss, 2652); EXPECT_EQ(stats.pss, 2652); EXPECT_EQ(stats.uss, 2736); EXPECT_EQ(stats.private_clean, 84); EXPECT_EQ(stats.private_dirty, 2652); EXPECT_EQ(stats.swap_pss, 70); } TEST(TestProcMemInfo, SmapsOrRollupPssRollupTest) { // This is a made up smaps for the test std::string smaps = R"smaps(12c00000-13440000 rw-p 00000000 00:00 0 [anon:dalvik-main space (region space)] Name: [anon:dalvik-main space (region space)] Size: 8448 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Rss: 2652 kB Pss: 2652 kB Shared_Clean: 840 kB Shared_Dirty: 40 kB Private_Clean: 84 kB Private_Dirty: 2652 kB Referenced: 2652 kB Anonymous: 2652 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 102 kB SwapPss: 70 kB Locked: 2652 kB VmFlags: rd wr mr mw me ac )smaps"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(smaps, tf.fd)); uint64_t pss; ASSERT_EQ(SmapsOrRollupPssFromFile(tf.path, &pss), true); EXPECT_EQ(pss, 2652); } TEST(TestProcMemInfo, SmapsOrRollupPssSmapsTest) { std::string exec_dir = ::android::base::GetExecutableDirectory(); std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str()); uint64_t pss; ASSERT_EQ(SmapsOrRollupPssFromFile(path, &pss), true); EXPECT_EQ(pss, 19119); } TEST(TestProcMemInfo, ForEachVmaFromFileTest) { std::string exec_dir = ::android::base::GetExecutableDirectory(); std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str()); ProcMemInfo proc_mem(pid); std::vector vmas; auto collect_vmas = [&](const Vma& v) { vmas.push_back(v); }; ASSERT_TRUE(ForEachVmaFromFile(path, collect_vmas)); // We should get a total of 6 vmas ASSERT_EQ(vmas.size(), 6); // Expect values to be equal to what we have in testdata1/smaps_short // Check for sizes first ASSERT_EQ(vmas[0].usage.vss, 32768); EXPECT_EQ(vmas[1].usage.vss, 11204); EXPECT_EQ(vmas[2].usage.vss, 16896); EXPECT_EQ(vmas[3].usage.vss, 260); EXPECT_EQ(vmas[4].usage.vss, 6060); EXPECT_EQ(vmas[5].usage.vss, 4); // Check for names EXPECT_EQ(vmas[0].name, "[anon:dalvik-zygote-jit-code-cache]"); EXPECT_EQ(vmas[1].name, "/system/framework/x86_64/boot-framework.art"); EXPECT_EQ(vmas[2].name, "[anon:libc_malloc]"); EXPECT_EQ(vmas[3].name, "/system/priv-app/SettingsProvider/oat/x86_64/SettingsProvider.odex"); EXPECT_EQ(vmas[4].name, "/system/lib64/libhwui.so"); EXPECT_EQ(vmas[5].name, "[vsyscall]"); EXPECT_EQ(vmas[0].usage.rss, 2048); EXPECT_EQ(vmas[1].usage.rss, 11188); EXPECT_EQ(vmas[2].usage.rss, 15272); EXPECT_EQ(vmas[3].usage.rss, 260); EXPECT_EQ(vmas[4].usage.rss, 4132); EXPECT_EQ(vmas[5].usage.rss, 0); EXPECT_EQ(vmas[0].usage.pss, 113); EXPECT_EQ(vmas[1].usage.pss, 2200); EXPECT_EQ(vmas[2].usage.pss, 15272); EXPECT_EQ(vmas[3].usage.pss, 260); EXPECT_EQ(vmas[4].usage.pss, 1274); EXPECT_EQ(vmas[5].usage.pss, 0); EXPECT_EQ(vmas[0].usage.uss, 0); EXPECT_EQ(vmas[1].usage.uss, 1660); EXPECT_EQ(vmas[2].usage.uss, 15272); EXPECT_EQ(vmas[3].usage.uss, 260); EXPECT_EQ(vmas[4].usage.uss, 0); EXPECT_EQ(vmas[5].usage.uss, 0); EXPECT_EQ(vmas[0].usage.private_clean, 0); EXPECT_EQ(vmas[1].usage.private_clean, 0); EXPECT_EQ(vmas[2].usage.private_clean, 0); EXPECT_EQ(vmas[3].usage.private_clean, 260); EXPECT_EQ(vmas[4].usage.private_clean, 0); EXPECT_EQ(vmas[5].usage.private_clean, 0); EXPECT_EQ(vmas[0].usage.private_dirty, 0); EXPECT_EQ(vmas[1].usage.private_dirty, 1660); EXPECT_EQ(vmas[2].usage.private_dirty, 15272); EXPECT_EQ(vmas[3].usage.private_dirty, 0); EXPECT_EQ(vmas[4].usage.private_dirty, 0); EXPECT_EQ(vmas[5].usage.private_dirty, 0); EXPECT_EQ(vmas[0].usage.shared_clean, 0); EXPECT_EQ(vmas[1].usage.shared_clean, 80); EXPECT_EQ(vmas[2].usage.shared_clean, 0); EXPECT_EQ(vmas[3].usage.shared_clean, 0); EXPECT_EQ(vmas[4].usage.shared_clean, 4132); EXPECT_EQ(vmas[5].usage.shared_clean, 0); EXPECT_EQ(vmas[0].usage.shared_dirty, 2048); EXPECT_EQ(vmas[1].usage.shared_dirty, 9448); EXPECT_EQ(vmas[2].usage.shared_dirty, 0); EXPECT_EQ(vmas[3].usage.shared_dirty, 0); EXPECT_EQ(vmas[4].usage.shared_dirty, 0); EXPECT_EQ(vmas[5].usage.shared_dirty, 0); EXPECT_EQ(vmas[0].usage.swap, 0); EXPECT_EQ(vmas[1].usage.swap, 0); EXPECT_EQ(vmas[2].usage.swap, 0); EXPECT_EQ(vmas[3].usage.swap, 0); EXPECT_EQ(vmas[4].usage.swap, 0); EXPECT_EQ(vmas[5].usage.swap, 0); EXPECT_EQ(vmas[0].usage.swap_pss, 0); EXPECT_EQ(vmas[1].usage.swap_pss, 0); EXPECT_EQ(vmas[2].usage.swap_pss, 0); EXPECT_EQ(vmas[3].usage.swap_pss, 0); EXPECT_EQ(vmas[4].usage.swap_pss, 0); EXPECT_EQ(vmas[5].usage.swap_pss, 0); } TEST(TestProcMemInfo, SmapsReturnTest) { ProcMemInfo proc_mem(pid); auto vmas = proc_mem.Smaps(); EXPECT_FALSE(vmas.empty()); } TEST(TestProcMemInfo, SmapsTest) { std::string exec_dir = ::android::base::GetExecutableDirectory(); std::string path = ::android::base::StringPrintf("%s/testdata1/smaps_short", exec_dir.c_str()); ProcMemInfo proc_mem(pid); auto vmas = proc_mem.Smaps(path); ASSERT_FALSE(vmas.empty()); // We should get a total of 6 vmas ASSERT_EQ(vmas.size(), 6); // Expect values to be equal to what we have in testdata1/smaps_short // Check for sizes first ASSERT_EQ(vmas[0].usage.vss, 32768); EXPECT_EQ(vmas[1].usage.vss, 11204); EXPECT_EQ(vmas[2].usage.vss, 16896); EXPECT_EQ(vmas[3].usage.vss, 260); EXPECT_EQ(vmas[4].usage.vss, 6060); EXPECT_EQ(vmas[5].usage.vss, 4); // Check for names EXPECT_EQ(vmas[0].name, "[anon:dalvik-zygote-jit-code-cache]"); EXPECT_EQ(vmas[1].name, "/system/framework/x86_64/boot-framework.art"); EXPECT_EQ(vmas[2].name, "[anon:libc_malloc]"); EXPECT_EQ(vmas[3].name, "/system/priv-app/SettingsProvider/oat/x86_64/SettingsProvider.odex"); EXPECT_EQ(vmas[4].name, "/system/lib64/libhwui.so"); EXPECT_EQ(vmas[5].name, "[vsyscall]"); EXPECT_EQ(vmas[0].usage.rss, 2048); EXPECT_EQ(vmas[1].usage.rss, 11188); EXPECT_EQ(vmas[2].usage.rss, 15272); EXPECT_EQ(vmas[3].usage.rss, 260); EXPECT_EQ(vmas[4].usage.rss, 4132); EXPECT_EQ(vmas[5].usage.rss, 0); EXPECT_EQ(vmas[0].usage.pss, 113); EXPECT_EQ(vmas[1].usage.pss, 2200); EXPECT_EQ(vmas[2].usage.pss, 15272); EXPECT_EQ(vmas[3].usage.pss, 260); EXPECT_EQ(vmas[4].usage.pss, 1274); EXPECT_EQ(vmas[5].usage.pss, 0); EXPECT_EQ(vmas[0].usage.uss, 0); EXPECT_EQ(vmas[1].usage.uss, 1660); EXPECT_EQ(vmas[2].usage.uss, 15272); EXPECT_EQ(vmas[3].usage.uss, 260); EXPECT_EQ(vmas[4].usage.uss, 0); EXPECT_EQ(vmas[5].usage.uss, 0); EXPECT_EQ(vmas[0].usage.private_clean, 0); EXPECT_EQ(vmas[1].usage.private_clean, 0); EXPECT_EQ(vmas[2].usage.private_clean, 0); EXPECT_EQ(vmas[3].usage.private_clean, 260); EXPECT_EQ(vmas[4].usage.private_clean, 0); EXPECT_EQ(vmas[5].usage.private_clean, 0); EXPECT_EQ(vmas[0].usage.private_dirty, 0); EXPECT_EQ(vmas[1].usage.private_dirty, 1660); EXPECT_EQ(vmas[2].usage.private_dirty, 15272); EXPECT_EQ(vmas[3].usage.private_dirty, 0); EXPECT_EQ(vmas[4].usage.private_dirty, 0); EXPECT_EQ(vmas[5].usage.private_dirty, 0); EXPECT_EQ(vmas[0].usage.shared_clean, 0); EXPECT_EQ(vmas[1].usage.shared_clean, 80); EXPECT_EQ(vmas[2].usage.shared_clean, 0); EXPECT_EQ(vmas[3].usage.shared_clean, 0); EXPECT_EQ(vmas[4].usage.shared_clean, 4132); EXPECT_EQ(vmas[5].usage.shared_clean, 0); EXPECT_EQ(vmas[0].usage.shared_dirty, 2048); EXPECT_EQ(vmas[1].usage.shared_dirty, 9448); EXPECT_EQ(vmas[2].usage.shared_dirty, 0); EXPECT_EQ(vmas[3].usage.shared_dirty, 0); EXPECT_EQ(vmas[4].usage.shared_dirty, 0); EXPECT_EQ(vmas[5].usage.shared_dirty, 0); EXPECT_EQ(vmas[0].usage.swap, 0); EXPECT_EQ(vmas[1].usage.swap, 0); EXPECT_EQ(vmas[2].usage.swap, 0); EXPECT_EQ(vmas[3].usage.swap, 0); EXPECT_EQ(vmas[4].usage.swap, 0); EXPECT_EQ(vmas[5].usage.swap, 0); EXPECT_EQ(vmas[0].usage.swap_pss, 0); EXPECT_EQ(vmas[1].usage.swap_pss, 0); EXPECT_EQ(vmas[2].usage.swap_pss, 0); EXPECT_EQ(vmas[3].usage.swap_pss, 0); EXPECT_EQ(vmas[4].usage.swap_pss, 0); EXPECT_EQ(vmas[5].usage.swap_pss, 0); } TEST(ValidateProcMemInfoFlags, TestPageFlags1) { // Create proc object using libpagemap pm_kernel_t* ker; ASSERT_EQ(0, pm_kernel_create(&ker)); pm_process_t* proc; ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); // count swapbacked pages using libpagemap pm_memusage_t proc_usage; pm_memusage_zero(&proc_usage); ASSERT_EQ(0, pm_process_usage_flags(proc, &proc_usage, (1 << KPF_SWAPBACKED), (1 << KPF_SWAPBACKED))); // Create ProcMemInfo that counts swapbacked pages ProcMemInfo proc_mem(pid, false, (1 << KPF_SWAPBACKED), (1 << KPF_SWAPBACKED)); EXPECT_EQ(proc_usage.vss, proc_mem.Usage().vss); EXPECT_EQ(proc_usage.rss, proc_mem.Usage().rss); EXPECT_EQ(proc_usage.pss, proc_mem.Usage().pss); EXPECT_EQ(proc_usage.uss, proc_mem.Usage().uss); pm_process_destroy(proc); pm_kernel_destroy(ker); } TEST(ValidateProcMemInfoFlags, TestPageFlags2) { // Create proc object using libpagemap pm_kernel_t* ker; ASSERT_EQ(0, pm_kernel_create(&ker)); pm_process_t* proc; ASSERT_EQ(0, pm_process_create(ker, pid, &proc)); // count non-swapbacked pages using libpagemap pm_memusage_t proc_usage; pm_memusage_zero(&proc_usage); ASSERT_EQ(0, pm_process_usage_flags(proc, &proc_usage, (1 << KPF_SWAPBACKED), 0)); // Create ProcMemInfo that counts non-swapbacked pages ProcMemInfo proc_mem(pid, false, 0, (1 << KPF_SWAPBACKED)); EXPECT_EQ(proc_usage.vss, proc_mem.Usage().vss); EXPECT_EQ(proc_usage.rss, proc_mem.Usage().rss); EXPECT_EQ(proc_usage.pss, proc_mem.Usage().pss); EXPECT_EQ(proc_usage.uss, proc_mem.Usage().uss); pm_process_destroy(proc); pm_kernel_destroy(ker); } TEST(SysMemInfoParser, TestSysMemInfoFile) { std::string meminfo = R"meminfo(MemTotal: 3019740 kB MemFree: 1809728 kB MemAvailable: 2546560 kB Buffers: 54736 kB Cached: 776052 kB SwapCached: 0 kB Active: 445856 kB Inactive: 459092 kB Active(anon): 78492 kB Inactive(anon): 2240 kB Active(file): 367364 kB Inactive(file): 456852 kB Unevictable: 3096 kB Mlocked: 3096 kB SwapTotal: 32768 kB SwapFree: 4096 kB Dirty: 32 kB Writeback: 0 kB AnonPages: 74988 kB Mapped: 62624 kB Shmem: 4020 kB Slab: 86464 kB SReclaimable: 44432 kB SUnreclaim: 42032 kB KernelStack: 4880 kB PageTables: 2900 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 1509868 kB Committed_AS: 80296 kB VmallocTotal: 263061440 kB VmallocUsed: 65536 kB VmallocChunk: 0 kB AnonHugePages: 6144 kB ShmemHugePages: 0 kB ShmemPmdMapped: 0 kB CmaTotal: 131072 kB CmaFree: 130380 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB)meminfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(meminfo, tf.fd)); SysMemInfo mi; ASSERT_TRUE(mi.ReadMemInfo(tf.path)); EXPECT_EQ(mi.mem_total_kb(), 3019740); EXPECT_EQ(mi.mem_free_kb(), 1809728); EXPECT_EQ(mi.mem_buffers_kb(), 54736); EXPECT_EQ(mi.mem_cached_kb(), 776052); EXPECT_EQ(mi.mem_shmem_kb(), 4020); EXPECT_EQ(mi.mem_slab_kb(), 86464); EXPECT_EQ(mi.mem_slab_reclaimable_kb(), 44432); EXPECT_EQ(mi.mem_slab_unreclaimable_kb(), 42032); EXPECT_EQ(mi.mem_swap_kb(), 32768); EXPECT_EQ(mi.mem_swap_free_kb(), 4096); EXPECT_EQ(mi.mem_mapped_kb(), 62624); EXPECT_EQ(mi.mem_vmalloc_used_kb(), 65536); EXPECT_EQ(mi.mem_page_tables_kb(), 2900); EXPECT_EQ(mi.mem_kernel_stack_kb(), 4880); } TEST(SysMemInfoParser, TestEmptyFile) { TemporaryFile tf; std::string empty_string = ""; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(empty_string, tf.fd)); SysMemInfo mi; EXPECT_TRUE(mi.ReadMemInfo(tf.path)); EXPECT_EQ(mi.mem_total_kb(), 0); } TEST(SysMemInfoParser, TestZramTotal) { std::string exec_dir = ::android::base::GetExecutableDirectory(); SysMemInfo mi; std::string zram_mmstat_dir = exec_dir + "/testdata1/"; EXPECT_EQ(mi.mem_zram_kb(zram_mmstat_dir), 30504); std::string zram_memused_dir = exec_dir + "/testdata2/"; EXPECT_EQ(mi.mem_zram_kb(zram_memused_dir), 30504); } enum { MEMINFO_TOTAL, MEMINFO_FREE, MEMINFO_BUFFERS, MEMINFO_CACHED, MEMINFO_SHMEM, MEMINFO_SLAB, MEMINFO_SLAB_RECLAIMABLE, MEMINFO_SLAB_UNRECLAIMABLE, MEMINFO_SWAP_TOTAL, MEMINFO_SWAP_FREE, MEMINFO_ZRAM_TOTAL, MEMINFO_MAPPED, MEMINFO_VMALLOC_USED, MEMINFO_PAGE_TABLES, MEMINFO_KERNEL_STACK, MEMINFO_COUNT }; TEST(SysMemInfoParser, TestZramWithTags) { std::string meminfo = R"meminfo(MemTotal: 3019740 kB MemFree: 1809728 kB MemAvailable: 2546560 kB Buffers: 54736 kB Cached: 776052 kB SwapCached: 0 kB Active: 445856 kB Inactive: 459092 kB Active(anon): 78492 kB Inactive(anon): 2240 kB Active(file): 367364 kB Inactive(file): 456852 kB Unevictable: 3096 kB Mlocked: 3096 kB SwapTotal: 32768 kB SwapFree: 4096 kB Dirty: 32 kB Writeback: 0 kB AnonPages: 74988 kB Mapped: 62624 kB Shmem: 4020 kB Slab: 86464 kB SReclaimable: 44432 kB SUnreclaim: 42032 kB KernelStack: 4880 kB PageTables: 2900 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 1509868 kB Committed_AS: 80296 kB VmallocTotal: 263061440 kB VmallocUsed: 65536 kB VmallocChunk: 0 kB AnonHugePages: 6144 kB ShmemHugePages: 0 kB ShmemPmdMapped: 0 kB CmaTotal: 131072 kB CmaFree: 130380 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB)meminfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(meminfo, tf.fd)); std::string file = std::string(tf.path); std::vector mem(MEMINFO_COUNT); std::vector tags(SysMemInfo::kDefaultSysMemInfoTags); auto it = tags.begin(); tags.insert(it + MEMINFO_ZRAM_TOTAL, "Zram:"); SysMemInfo mi; // Read system memory info EXPECT_TRUE(mi.ReadMemInfo(tags, &mem, file)); EXPECT_EQ(mem[MEMINFO_TOTAL], 3019740); EXPECT_EQ(mem[MEMINFO_FREE], 1809728); EXPECT_EQ(mem[MEMINFO_BUFFERS], 54736); EXPECT_EQ(mem[MEMINFO_CACHED], 776052); EXPECT_EQ(mem[MEMINFO_SHMEM], 4020); EXPECT_EQ(mem[MEMINFO_SLAB], 86464); EXPECT_EQ(mem[MEMINFO_SLAB_RECLAIMABLE], 44432); EXPECT_EQ(mem[MEMINFO_SLAB_UNRECLAIMABLE], 42032); EXPECT_EQ(mem[MEMINFO_SWAP_TOTAL], 32768); EXPECT_EQ(mem[MEMINFO_SWAP_FREE], 4096); EXPECT_EQ(mem[MEMINFO_MAPPED], 62624); EXPECT_EQ(mem[MEMINFO_VMALLOC_USED], 65536); EXPECT_EQ(mem[MEMINFO_PAGE_TABLES], 2900); EXPECT_EQ(mem[MEMINFO_KERNEL_STACK], 4880); } TEST(SysMemInfoParser, TestVmallocInfoNoMemory) { std::string vmallocinfo = R"vmallocinfo(0x0000000000000000-0x0000000000000000 69632 of_iomap+0x78/0xb0 phys=17a00000 ioremap 0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=b220000 ioremap 0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17c90000 ioremap 0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17ca0000 ioremap)vmallocinfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd)); std::string file = std::string(tf.path); EXPECT_EQ(ReadVmallocInfo(file), 0); } TEST(SysMemInfoParser, TestVmallocInfoKernel) { std::string vmallocinfo = R"vmallocinfo(0x0000000000000000-0x0000000000000000 8192 drm_property_create_blob+0x44/0xec pages=1 vmalloc)vmallocinfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd)); std::string file = std::string(tf.path); EXPECT_EQ(ReadVmallocInfo(file), getpagesize()); } TEST(SysMemInfoParser, TestVmallocInfoModule) { std::string vmallocinfo = R"vmallocinfo(0x0000000000000000-0x0000000000000000 28672 pktlog_alloc_buf+0xc4/0x15c [wlan] pages=6 vmalloc)vmallocinfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd)); std::string file = std::string(tf.path); EXPECT_EQ(ReadVmallocInfo(file), 6 * getpagesize()); } TEST(SysMemInfoParser, TestVmallocInfoAll) { std::string vmallocinfo = R"vmallocinfo(0x0000000000000000-0x0000000000000000 69632 of_iomap+0x78/0xb0 phys=17a00000 ioremap 0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=b220000 ioremap 0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17c90000 ioremap 0x0000000000000000-0x0000000000000000 8192 of_iomap+0x78/0xb0 phys=17ca0000 ioremap 0x0000000000000000-0x0000000000000000 8192 drm_property_create_blob+0x44/0xec pages=1 vmalloc 0x0000000000000000-0x0000000000000000 28672 pktlog_alloc_buf+0xc4/0x15c [wlan] pages=6 vmalloc)vmallocinfo"; TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); ASSERT_TRUE(::android::base::WriteStringToFd(vmallocinfo, tf.fd)); std::string file = std::string(tf.path); EXPECT_EQ(ReadVmallocInfo(file), 7 * getpagesize()); } int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); if (argc <= 1) { cerr << "Pid of a permanently sleeping process must be provided." << endl; exit(EXIT_FAILURE); } ::android::base::InitLogging(argv, android::base::StderrLogger); pid = std::stoi(std::string(argv[1])); return RUN_ALL_TESTS(); }