/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "BacktraceOffline.h" extern "C" { #define UNW_REMOTE_ONLY #include } #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-parameter" #include #include #include #include #pragma clang diagnostic pop #include "BacktraceLog.h" struct EhFrame { uint64_t hdr_vaddr; uint64_t vaddr; uint64_t fde_table_offset; uint64_t min_func_vaddr; std::vector hdr_data; std::vector data; }; struct ArmIdxEntry { uint32_t func_offset; uint32_t value; }; struct ArmExidx { uint64_t exidx_vaddr; uint64_t extab_vaddr; std::vector exidx_data; std::vector extab_data; // There is a one-to-one map from exidx_data.func_offset to func_vaddr_array. std::vector func_vaddr_array; }; struct DebugFrameInfo { bool has_arm_exidx; bool has_eh_frame; bool has_debug_frame; bool has_gnu_debugdata; EhFrame eh_frame; ArmExidx arm_exidx; uint64_t min_vaddr; uint64_t text_end_vaddr; DebugFrameInfo() : has_arm_exidx(false), has_eh_frame(false), has_debug_frame(false), has_gnu_debugdata(false) { } }; void Space::Clear() { start = 0; end = 0; data = nullptr; } size_t Space::Read(uint64_t addr, uint8_t* buffer, size_t size) { if (addr >= start && addr < end) { size_t read_size = std::min(size, static_cast(end - addr)); memcpy(buffer, data + (addr - start), read_size); return read_size; } return 0; } static int FindProcInfo(unw_addr_space_t addr_space, unw_word_t ip, unw_proc_info* proc_info, int need_unwind_info, void* arg) { BacktraceOffline* backtrace = reinterpret_cast(arg); bool result = backtrace->FindProcInfo(addr_space, ip, proc_info, need_unwind_info); return result ? 0 : -UNW_EINVAL; } static void PutUnwindInfo(unw_addr_space_t, unw_proc_info_t*, void*) { } static int GetDynInfoListAddr(unw_addr_space_t, unw_word_t*, void*) { return -UNW_ENOINFO; } static int AccessMem(unw_addr_space_t, unw_word_t addr, unw_word_t* value, int write, void* arg) { if (write == 1) { return -UNW_EINVAL; } BacktraceOffline* backtrace = reinterpret_cast(arg); *value = 0; size_t read_size = backtrace->Read(addr, reinterpret_cast(value), sizeof(unw_word_t)); // Strictly we should check if read_size matches sizeof(unw_word_t), but it is possible in // .eh_frame_hdr that the section can end at a position not aligned in sizeof(unw_word_t), and // we should permit the read at the end of the section. return (read_size > 0u ? 0 : -UNW_EINVAL); } static int AccessReg(unw_addr_space_t, unw_regnum_t unwind_reg, unw_word_t* value, int write, void* arg) { if (write == 1) { return -UNW_EINVAL; } BacktraceOffline* backtrace = reinterpret_cast(arg); uint64_t reg_value; bool result = backtrace->ReadReg(unwind_reg, ®_value); if (result) { *value = static_cast(reg_value); } return result ? 0 : -UNW_EINVAL; } static int AccessFpReg(unw_addr_space_t, unw_regnum_t, unw_fpreg_t*, int, void*) { return -UNW_EINVAL; } static int Resume(unw_addr_space_t, unw_cursor_t*, void*) { return -UNW_EINVAL; } static int GetProcName(unw_addr_space_t, unw_word_t, char*, size_t, unw_word_t*, void*) { return -UNW_EINVAL; } static unw_accessors_t accessors = { .find_proc_info = FindProcInfo, .put_unwind_info = PutUnwindInfo, .get_dyn_info_list_addr = GetDynInfoListAddr, .access_mem = AccessMem, .access_reg = AccessReg, .access_fpreg = AccessFpReg, .resume = Resume, .get_proc_name = GetProcName, }; bool BacktraceOffline::Unwind(size_t num_ignore_frames, ucontext_t* context) { if (context == nullptr) { BACK_LOGW("The context is needed for offline backtracing."); error_.error_code = BACKTRACE_UNWIND_ERROR_NO_CONTEXT; return false; } context_ = context; error_.error_code = BACKTRACE_UNWIND_NO_ERROR; unw_addr_space_t addr_space = unw_create_addr_space(&accessors, 0); unw_cursor_t cursor; int ret = unw_init_remote(&cursor, addr_space, this); if (ret != 0) { BACK_LOGW("unw_init_remote failed %d", ret); unw_destroy_addr_space(addr_space); error_.error_code = BACKTRACE_UNWIND_ERROR_SETUP_FAILED; return false; } size_t num_frames = 0; while (true) { unw_word_t pc; ret = unw_get_reg(&cursor, UNW_REG_IP, &pc); if (ret < 0) { BACK_LOGW("Failed to read IP %d", ret); error_.error_code = BACKTRACE_UNWIND_ERROR_ACCESS_REG_FAILED; error_.error_info.regno = UNW_REG_IP; break; } unw_word_t sp; ret = unw_get_reg(&cursor, UNW_REG_SP, &sp); if (ret < 0) { BACK_LOGW("Failed to read SP %d", ret); error_.error_code = BACKTRACE_UNWIND_ERROR_ACCESS_REG_FAILED; error_.error_info.regno = UNW_REG_SP; break; } if (num_ignore_frames == 0) { backtrace_map_t map; FillInMap(pc, &map); if (map.start == 0 || (map.flags & PROT_EXEC) == 0) { // .eh_frame and .ARM.exidx doesn't know how to unwind from instructions setting up or // destroying stack frames. It can lead to wrong callchains, which may contain pcs outside // executable mapping areas. Stop unwinding once this is detected. error_.error_code = BACKTRACE_UNWIND_ERROR_MAP_MISSING; break; } frames_.resize(num_frames + 1); backtrace_frame_data_t* frame = &frames_[num_frames]; frame->num = num_frames; frame->pc = static_cast(pc); frame->sp = static_cast(sp); frame->stack_size = 0; if (num_frames > 0) { backtrace_frame_data_t* prev = &frames_[num_frames - 1]; prev->stack_size = frame->sp - prev->sp; } frame->func_name = GetFunctionName(frame->pc, &frame->func_offset); frame->map = map; num_frames++; } else { num_ignore_frames--; } is_debug_frame_used_ = false; ret = unw_step(&cursor); if (ret <= 0) { if (error_.error_code == BACKTRACE_UNWIND_NO_ERROR) { error_.error_code = BACKTRACE_UNWIND_ERROR_EXECUTE_DWARF_INSTRUCTION_FAILED; } break; } if (num_frames == MAX_BACKTRACE_FRAMES) { error_.error_code = BACKTRACE_UNWIND_ERROR_EXCEED_MAX_FRAMES_LIMIT; break; } } unw_destroy_addr_space(addr_space); context_ = nullptr; return true; } bool BacktraceOffline::ReadWord(uint64_t ptr, word_t* out_value) { size_t bytes_read = Read(ptr, reinterpret_cast(out_value), sizeof(word_t)); return bytes_read == sizeof(word_t); } size_t BacktraceOffline::Read(uint64_t addr, uint8_t* buffer, size_t bytes) { // Normally, libunwind needs stack information and call frame information to do remote unwinding. // If call frame information is stored in .debug_frame, libunwind can read it from file // by itself. If call frame information is stored in .eh_frame, we need to provide data in // .eh_frame/.eh_frame_hdr sections. // The order of readings below doesn't matter, as the spaces don't overlap with each other. size_t read_size = eh_frame_hdr_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } read_size = eh_frame_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } read_size = arm_exidx_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } read_size = arm_extab_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } read_size = stack_space_.Read(addr, buffer, bytes); if (read_size != 0) { return read_size; } // In some libraries (like /system/lib64/libskia.so), some CIE entries in .eh_frame use // augmentation "P", which makes libunwind/libunwindstack try to read personality routine in // memory. However, that is not available in offline unwinding. Work around this by returning // all zero data. error_.error_code = BACKTRACE_UNWIND_ERROR_ACCESS_MEM_FAILED; error_.error_info.addr = addr; memset(buffer, 0, bytes); return bytes; } bool BacktraceOffline::FindProcInfo(unw_addr_space_t addr_space, uint64_t ip, unw_proc_info_t* proc_info, int need_unwind_info) { backtrace_map_t map; FillInMap(ip, &map); if (!BacktraceMap::IsValid(map)) { error_.error_code = BACKTRACE_UNWIND_ERROR_FIND_PROC_INFO_FAILED; return false; } const std::string& filename = map.name; DebugFrameInfo* debug_frame = GetDebugFrameInFile(filename); if (debug_frame == nullptr) { error_.error_code = BACKTRACE_UNWIND_ERROR_FIND_PROC_INFO_FAILED; return false; } // Each FindProcInfo() is a new attempt to unwind, so reset the reason. error_.error_code = BACKTRACE_UNWIND_NO_ERROR; eh_frame_hdr_space_.Clear(); eh_frame_space_.Clear(); arm_exidx_space_.Clear(); arm_extab_space_.Clear(); // vaddr in the elf file. uint64_t ip_vaddr = ip - map.start + debug_frame->min_vaddr; // The unwind info can come from .ARM.exidx or .eh_frame, or .debug_frame/.gnu_debugdata. // First check .eh_frame/.debug_frame, then check .ARM.exidx. Because .eh_frame/.debug_frame has // function range for each entry, by matching ip address with the function range, we know exactly // whether the ip address hits an entry. But .ARM.exidx doesn't have function range for each // entry, it thinks that an ip address hits an entry when (entry.addr <= ip < next_entry.addr). // To prevent ip addresses hit in .eh_frame/.debug_frame being regarded as addresses hit in // .ARM.exidx, we need to check .eh_frame/.debug_frame first. // Check .debug_frame/.gnu_debugdata before .eh_frame, because .debug_frame can unwind from // instructions setting up or destroying stack frames, while .eh_frame can't. if (!is_debug_frame_used_ && (debug_frame->has_debug_frame || debug_frame->has_gnu_debugdata)) { is_debug_frame_used_ = true; unw_dyn_info_t di; unw_word_t segbase = map.start - debug_frame->min_vaddr; // TODO: http://b/32916571 // TODO: Do it ourselves is more efficient than calling libunwind functions. int found = dwarf_find_debug_frame(0, &di, ip, segbase, filename.c_str(), map.start, map.end); if (found == 1) { int ret = dwarf_search_unwind_table(addr_space, ip, &di, proc_info, need_unwind_info, this); if (ret == 0) { return true; } } } if (debug_frame->has_eh_frame) { if (ip_vaddr >= debug_frame->eh_frame.min_func_vaddr && ip_vaddr < debug_frame->text_end_vaddr) { // Prepare eh_frame_hdr space and eh_frame space. eh_frame_hdr_space_.start = ip - ip_vaddr + debug_frame->eh_frame.hdr_vaddr; eh_frame_hdr_space_.end = eh_frame_hdr_space_.start + debug_frame->eh_frame.hdr_data.size(); eh_frame_hdr_space_.data = debug_frame->eh_frame.hdr_data.data(); eh_frame_space_.start = ip - ip_vaddr + debug_frame->eh_frame.vaddr; eh_frame_space_.end = eh_frame_space_.start + debug_frame->eh_frame.data.size(); eh_frame_space_.data = debug_frame->eh_frame.data.data(); unw_dyn_info di; memset(&di, '\0', sizeof(di)); di.start_ip = map.start; di.end_ip = map.end; di.format = UNW_INFO_FORMAT_REMOTE_TABLE; di.u.rti.name_ptr = 0; di.u.rti.segbase = eh_frame_hdr_space_.start; di.u.rti.table_data = eh_frame_hdr_space_.start + debug_frame->eh_frame.fde_table_offset; di.u.rti.table_len = (eh_frame_hdr_space_.end - di.u.rti.table_data) / sizeof(unw_word_t); // TODO: Do it ourselves is more efficient than calling this function. int ret = dwarf_search_unwind_table(addr_space, ip, &di, proc_info, need_unwind_info, this); if (ret == 0) { return true; } } } if (debug_frame->has_arm_exidx) { auto& func_vaddrs = debug_frame->arm_exidx.func_vaddr_array; if (ip_vaddr >= func_vaddrs[0] && ip_vaddr < debug_frame->text_end_vaddr) { // Use binary search to find the correct function. auto it = std::upper_bound(func_vaddrs.begin(), func_vaddrs.end(), static_cast(ip_vaddr)); if (it != func_vaddrs.begin()) { --it; // Found the exidx entry. size_t index = it - func_vaddrs.begin(); proc_info->start_ip = *it; proc_info->format = UNW_INFO_FORMAT_ARM_EXIDX; proc_info->unwind_info = reinterpret_cast( static_cast(index * sizeof(ArmIdxEntry) + debug_frame->arm_exidx.exidx_vaddr + debug_frame->min_vaddr)); eh_frame_hdr_space_.Clear(); eh_frame_space_.Clear(); // Prepare arm_exidx space and arm_extab space. arm_exidx_space_.start = debug_frame->min_vaddr + debug_frame->arm_exidx.exidx_vaddr; arm_exidx_space_.end = arm_exidx_space_.start + debug_frame->arm_exidx.exidx_data.size() * sizeof(ArmIdxEntry); arm_exidx_space_.data = reinterpret_cast( debug_frame->arm_exidx.exidx_data.data()); arm_extab_space_.start = debug_frame->min_vaddr + debug_frame->arm_exidx.extab_vaddr; arm_extab_space_.end = arm_extab_space_.start + debug_frame->arm_exidx.extab_data.size(); arm_extab_space_.data = debug_frame->arm_exidx.extab_data.data(); return true; } } } error_.error_code = BACKTRACE_UNWIND_ERROR_FIND_PROC_INFO_FAILED; return false; } bool BacktraceOffline::ReadReg(size_t reg, uint64_t* value) { bool result = true; #if defined(__arm__) switch (reg) { case UNW_ARM_R0: *value = context_->uc_mcontext.arm_r0; break; case UNW_ARM_R1: *value = context_->uc_mcontext.arm_r1; break; case UNW_ARM_R2: *value = context_->uc_mcontext.arm_r2; break; case UNW_ARM_R3: *value = context_->uc_mcontext.arm_r3; break; case UNW_ARM_R4: *value = context_->uc_mcontext.arm_r4; break; case UNW_ARM_R5: *value = context_->uc_mcontext.arm_r5; break; case UNW_ARM_R6: *value = context_->uc_mcontext.arm_r6; break; case UNW_ARM_R7: *value = context_->uc_mcontext.arm_r7; break; case UNW_ARM_R8: *value = context_->uc_mcontext.arm_r8; break; case UNW_ARM_R9: *value = context_->uc_mcontext.arm_r9; break; case UNW_ARM_R10: *value = context_->uc_mcontext.arm_r10; break; case UNW_ARM_R11: *value = context_->uc_mcontext.arm_fp; break; case UNW_ARM_R12: *value = context_->uc_mcontext.arm_ip; break; case UNW_ARM_R13: *value = context_->uc_mcontext.arm_sp; break; case UNW_ARM_R14: *value = context_->uc_mcontext.arm_lr; break; case UNW_ARM_R15: *value = context_->uc_mcontext.arm_pc; break; default: result = false; } #elif defined(__aarch64__) if (reg <= UNW_AARCH64_PC) { *value = context_->uc_mcontext.regs[reg]; } else { result = false; } #elif defined(__x86_64__) switch (reg) { case UNW_X86_64_R8: *value = context_->uc_mcontext.gregs[REG_R8]; break; case UNW_X86_64_R9: *value = context_->uc_mcontext.gregs[REG_R9]; break; case UNW_X86_64_R10: *value = context_->uc_mcontext.gregs[REG_R10]; break; case UNW_X86_64_R11: *value = context_->uc_mcontext.gregs[REG_R11]; break; case UNW_X86_64_R12: *value = context_->uc_mcontext.gregs[REG_R12]; break; case UNW_X86_64_R13: *value = context_->uc_mcontext.gregs[REG_R13]; break; case UNW_X86_64_R14: *value = context_->uc_mcontext.gregs[REG_R14]; break; case UNW_X86_64_R15: *value = context_->uc_mcontext.gregs[REG_R15]; break; case UNW_X86_64_RDI: *value = context_->uc_mcontext.gregs[REG_RDI]; break; case UNW_X86_64_RSI: *value = context_->uc_mcontext.gregs[REG_RSI]; break; case UNW_X86_64_RBP: *value = context_->uc_mcontext.gregs[REG_RBP]; break; case UNW_X86_64_RBX: *value = context_->uc_mcontext.gregs[REG_RBX]; break; case UNW_X86_64_RDX: *value = context_->uc_mcontext.gregs[REG_RDX]; break; case UNW_X86_64_RAX: *value = context_->uc_mcontext.gregs[REG_RAX]; break; case UNW_X86_64_RCX: *value = context_->uc_mcontext.gregs[REG_RCX]; break; case UNW_X86_64_RSP: *value = context_->uc_mcontext.gregs[REG_RSP]; break; case UNW_X86_64_RIP: *value = context_->uc_mcontext.gregs[REG_RIP]; break; default: result = false; } #elif defined(__i386__) switch (reg) { case UNW_X86_GS: *value = context_->uc_mcontext.gregs[REG_GS]; break; case UNW_X86_FS: *value = context_->uc_mcontext.gregs[REG_FS]; break; case UNW_X86_ES: *value = context_->uc_mcontext.gregs[REG_ES]; break; case UNW_X86_DS: *value = context_->uc_mcontext.gregs[REG_DS]; break; case UNW_X86_EAX: *value = context_->uc_mcontext.gregs[REG_EAX]; break; case UNW_X86_EBX: *value = context_->uc_mcontext.gregs[REG_EBX]; break; case UNW_X86_ECX: *value = context_->uc_mcontext.gregs[REG_ECX]; break; case UNW_X86_EDX: *value = context_->uc_mcontext.gregs[REG_EDX]; break; case UNW_X86_ESI: *value = context_->uc_mcontext.gregs[REG_ESI]; break; case UNW_X86_EDI: *value = context_->uc_mcontext.gregs[REG_EDI]; break; case UNW_X86_EBP: *value = context_->uc_mcontext.gregs[REG_EBP]; break; case UNW_X86_EIP: *value = context_->uc_mcontext.gregs[REG_EIP]; break; case UNW_X86_ESP: *value = context_->uc_mcontext.gregs[REG_ESP]; break; case UNW_X86_TRAPNO: *value = context_->uc_mcontext.gregs[REG_TRAPNO]; break; case UNW_X86_CS: *value = context_->uc_mcontext.gregs[REG_CS]; break; case UNW_X86_EFLAGS: *value = context_->uc_mcontext.gregs[REG_EFL]; break; case UNW_X86_SS: *value = context_->uc_mcontext.gregs[REG_SS]; break; default: result = false; } #else UNUSED(reg); UNUSED(value); result = false; #endif if (!result) { error_.error_code = BACKTRACE_UNWIND_ERROR_ACCESS_REG_FAILED; error_.error_info.regno = reg; } return result; } std::string BacktraceOffline::GetFunctionNameRaw(uint64_t, uint64_t* offset) { // We don't have enough information to support this. And it is expensive. *offset = 0; return ""; } static std::mutex g_lock; static std::unordered_map>* g_debug_frames = nullptr; static DebugFrameInfo* ReadDebugFrameFromFile(const std::string& filename); DebugFrameInfo* BacktraceOffline::GetDebugFrameInFile(const std::string& filename) { if (cache_file_) { std::lock_guard lock(g_lock); if (g_debug_frames != nullptr) { auto it = g_debug_frames->find(filename); if (it != g_debug_frames->end()) { return it->second.get(); } } } DebugFrameInfo* debug_frame = ReadDebugFrameFromFile(filename); if (cache_file_) { std::lock_guard lock(g_lock); if (g_debug_frames == nullptr) { g_debug_frames = new std::unordered_map>; } auto pair = g_debug_frames->emplace(filename, std::unique_ptr(debug_frame)); if (!pair.second) { debug_frame = pair.first->second.get(); } } return debug_frame; } static bool OmitEncodedValue(uint8_t encode, const uint8_t*& p, bool is_elf64) { if (encode == DW_EH_PE_omit) { return 0; } uint8_t format = encode & 0x0f; switch (format) { case DW_EH_PE_ptr: p += is_elf64 ? 8 : 4; break; case DW_EH_PE_uleb128: case DW_EH_PE_sleb128: while ((*p & 0x80) != 0) { ++p; } ++p; break; case DW_EH_PE_udata2: case DW_EH_PE_sdata2: p += 2; break; case DW_EH_PE_udata4: case DW_EH_PE_sdata4: p += 4; break; case DW_EH_PE_udata8: case DW_EH_PE_sdata8: p += 8; break; default: return false; } return true; } static bool GetFdeTableOffsetInEhFrameHdr(const std::vector& data, uint64_t* table_offset_in_eh_frame_hdr, bool is_elf64) { const uint8_t* p = data.data(); const uint8_t* end = p + data.size(); if (p + 4 > end) { return false; } uint8_t version = *p++; if (version != 1) { return false; } uint8_t eh_frame_ptr_encode = *p++; uint8_t fde_count_encode = *p++; uint8_t fde_table_encode = *p++; if (fde_table_encode != (DW_EH_PE_datarel | DW_EH_PE_sdata4)) { return false; } if (!OmitEncodedValue(eh_frame_ptr_encode, p, is_elf64) || !OmitEncodedValue(fde_count_encode, p, is_elf64)) { return false; } if (p >= end) { return false; } *table_offset_in_eh_frame_hdr = p - data.data(); return true; } static uint64_t ReadFromBuffer(const uint8_t*& p, size_t size) { uint64_t result = 0; int shift = 0; while (size-- > 0) { uint64_t tmp = *p++; result |= tmp << shift; shift += 8; } return result; } static uint64_t ReadSignValueFromBuffer(const uint8_t*& p, size_t size) { uint64_t result = 0; int shift = 0; for (size_t i = 0; i < size; ++i) { uint64_t tmp = *p++; result |= tmp << shift; shift += 8; } if (*(p - 1) & 0x80) { result |= (-1ULL) << (size * 8); } return result; } static const char* ReadStrFromBuffer(const uint8_t*& p) { const char* result = reinterpret_cast(p); p += strlen(result) + 1; return result; } static int64_t ReadLEB128FromBuffer(const uint8_t*& p) { int64_t result = 0; int64_t tmp; int shift = 0; while (*p & 0x80) { tmp = *p & 0x7f; result |= tmp << shift; shift += 7; p++; } tmp = *p; result |= tmp << shift; if (*p & 0x40) { result |= -((tmp & 0x40) << shift); } p++; return result; } static uint64_t ReadULEB128FromBuffer(const uint8_t*& p) { uint64_t result = 0; uint64_t tmp; int shift = 0; while (*p & 0x80) { tmp = *p & 0x7f; result |= tmp << shift; shift += 7; p++; } tmp = *p; result |= tmp << shift; p++; return result; } static uint64_t ReadEhEncoding(const uint8_t*& p, uint8_t encoding, bool is_elf64, uint64_t section_vaddr, const uint8_t* section_begin) { const uint8_t* init_addr = p; uint64_t result = 0; switch (encoding & 0x0f) { case DW_EH_PE_absptr: result = ReadFromBuffer(p, is_elf64 ? 8 : 4); break; case DW_EH_PE_omit: result = 0; break; case DW_EH_PE_uleb128: result = ReadULEB128FromBuffer(p); break; case DW_EH_PE_udata2: result = ReadFromBuffer(p, 2); break; case DW_EH_PE_udata4: result = ReadFromBuffer(p, 4); break; case DW_EH_PE_udata8: result = ReadFromBuffer(p, 8); break; case DW_EH_PE_sleb128: result = ReadLEB128FromBuffer(p); break; case DW_EH_PE_sdata2: result = ReadSignValueFromBuffer(p, 2); break; case DW_EH_PE_sdata4: result = ReadSignValueFromBuffer(p, 4); break; case DW_EH_PE_sdata8: result = ReadSignValueFromBuffer(p, 8); break; } switch (encoding & 0xf0) { case DW_EH_PE_pcrel: result += init_addr - section_begin + section_vaddr; break; case DW_EH_PE_datarel: result += section_vaddr; break; } return result; } static bool BuildEhFrameHdr(DebugFrameInfo* info, bool is_elf64) { // For each fde entry, collect its (func_vaddr, fde_vaddr) pair. std::vector> index_table; // Map form cie_offset to fde encoding. std::unordered_map cie_map; const uint8_t* eh_frame_begin = info->eh_frame.data.data(); const uint8_t* eh_frame_end = eh_frame_begin + info->eh_frame.data.size(); const uint8_t* p = eh_frame_begin; uint64_t eh_frame_vaddr = info->eh_frame.vaddr; while (p < eh_frame_end) { const uint8_t* unit_begin = p; uint64_t unit_len = ReadFromBuffer(p, 4); size_t secbytes = 4; if (unit_len == 0xffffffff) { unit_len = ReadFromBuffer(p, 8); secbytes = 8; } const uint8_t* unit_end = p + unit_len; uint64_t cie_id = ReadFromBuffer(p, secbytes); if (cie_id == 0) { // This is a CIE. // Read version uint8_t version = *p++; // Read augmentation const char* augmentation = ReadStrFromBuffer(p); if (version >= 4) { // Read address size and segment size p += 2; } // Read code alignment factor ReadULEB128FromBuffer(p); // Read data alignment factor ReadLEB128FromBuffer(p); // Read return address register if (version == 1) { p++; } else { ReadULEB128FromBuffer(p); } uint8_t fde_pointer_encoding = 0; if (augmentation[0] == 'z') { // Read augmentation length. ReadULEB128FromBuffer(p); for (int i = 1; augmentation[i] != '\0'; ++i) { char c = augmentation[i]; if (c == 'R') { fde_pointer_encoding = *p++; } else if (c == 'P') { // Read personality handler uint8_t encoding = *p++; OmitEncodedValue(encoding, p, is_elf64); } else if (c == 'L') { // Read lsda encoding p++; } } } cie_map[unit_begin - eh_frame_begin] = fde_pointer_encoding; } else { // This is an FDE. size_t cie_offset = p - secbytes - eh_frame_begin - cie_id; auto it = cie_map.find(cie_offset); if (it != cie_map.end()) { uint8_t fde_pointer_encoding = it->second; uint64_t initial_location = ReadEhEncoding(p, fde_pointer_encoding, is_elf64, eh_frame_vaddr, eh_frame_begin); uint64_t fde_vaddr = unit_begin - eh_frame_begin + eh_frame_vaddr; index_table.push_back(std::make_pair(initial_location, fde_vaddr)); } } p = unit_end; } if (index_table.empty()) { return false; } std::sort(index_table.begin(), index_table.end()); info->eh_frame.hdr_vaddr = 0; info->eh_frame.hdr_data.resize(index_table.size() * 8); uint32_t* ptr = reinterpret_cast(info->eh_frame.hdr_data.data()); for (auto& pair : index_table) { *ptr++ = static_cast(pair.first - info->eh_frame.hdr_vaddr); *ptr++ = static_cast(pair.second - info->eh_frame.hdr_vaddr); } info->eh_frame.fde_table_offset = 0; info->eh_frame.min_func_vaddr = index_table[0].first; return true; } template DebugFrameInfo* ReadDebugFrameFromELFFile(const llvm::object::ELFFile* elf) { DebugFrameInfo* result = new DebugFrameInfo; result->eh_frame.hdr_vaddr = 0; result->text_end_vaddr = std::numeric_limits::max(); bool is_elf64 = (elf->getHeader()->getFileClass() == llvm::ELF::ELFCLASS64); bool has_eh_frame_hdr = false; bool has_eh_frame = false; for (auto it = elf->section_begin(); it != elf->section_end(); ++it) { llvm::ErrorOr name = elf->getSectionName(&*it); if (name) { std::string s = name.get(); if (s == ".debug_frame") { result->has_debug_frame = true; } else if (s == ".gnu_debugdata") { result->has_gnu_debugdata = true; } else if (s == ".eh_frame_hdr") { result->eh_frame.hdr_vaddr = it->sh_addr; llvm::ErrorOr> data = elf->getSectionContents(&*it); if (data) { result->eh_frame.hdr_data.insert(result->eh_frame.hdr_data.end(), data->data(), data->data() + data->size()); uint64_t fde_table_offset; if (GetFdeTableOffsetInEhFrameHdr(result->eh_frame.hdr_data, &fde_table_offset, is_elf64)) { result->eh_frame.fde_table_offset = fde_table_offset; // Make sure we have at least one entry in fde_table. if (fde_table_offset + 2 * sizeof(int32_t) <= data->size()) { intptr_t eh_frame_hdr_vaddr = it->sh_addr; int32_t sdata; uint8_t* p = result->eh_frame.hdr_data.data() + fde_table_offset; memcpy(&sdata, p, sizeof(sdata)); result->eh_frame.min_func_vaddr = eh_frame_hdr_vaddr + sdata; has_eh_frame_hdr = true; } } } } else if (s == ".eh_frame") { result->eh_frame.vaddr = it->sh_addr; llvm::ErrorOr> data = elf->getSectionContents(&*it); if (data) { result->eh_frame.data.insert(result->eh_frame.data.end(), data->data(), data->data() + data->size()); has_eh_frame = true; } } else if (s == ".ARM.exidx") { result->arm_exidx.exidx_vaddr = it->sh_addr; llvm::ErrorOr> data = elf->getSectionContents(&*it); if (data) { size_t entry_count = data->size() / sizeof(ArmIdxEntry); result->arm_exidx.exidx_data.resize(entry_count); memcpy(result->arm_exidx.exidx_data.data(), data->data(), entry_count * sizeof(ArmIdxEntry)); if (entry_count > 0u) { // Change IdxEntry.func_offset into vaddr. result->arm_exidx.func_vaddr_array.reserve(entry_count); uint32_t vaddr = it->sh_addr; for (auto& entry : result->arm_exidx.exidx_data) { uint32_t func_offset = entry.func_offset + vaddr; // Clear bit 31 for the prel31 offset. // Arm sets bit 0 to mark it as thumb code, remove the flag. result->arm_exidx.func_vaddr_array.push_back( func_offset & 0x7ffffffe); vaddr += 8; } result->has_arm_exidx = true; } } } else if (s == ".ARM.extab") { result->arm_exidx.extab_vaddr = it->sh_addr; llvm::ErrorOr> data = elf->getSectionContents(&*it); if (data) { result->arm_exidx.extab_data.insert(result->arm_exidx.extab_data.end(), data->data(), data->data() + data->size()); } } else if (s == ".text") { result->text_end_vaddr = it->sh_addr + it->sh_size; } } } if (has_eh_frame) { if (!has_eh_frame_hdr) { // Some libraries (like /vendor/lib64/egl/eglSubDriverAndroid.so) contain empty // .eh_frame_hdr. if (BuildEhFrameHdr(result, is_elf64)) { has_eh_frame_hdr = true; } } if (has_eh_frame_hdr) { result->has_eh_frame = true; } } if (has_eh_frame_hdr && has_eh_frame) { result->has_eh_frame = true; } result->min_vaddr = std::numeric_limits::max(); for (auto it = elf->program_header_begin(); it != elf->program_header_end(); ++it) { if ((it->p_type == llvm::ELF::PT_LOAD) && (it->p_flags & llvm::ELF::PF_X)) { if (it->p_vaddr < result->min_vaddr) { result->min_vaddr = it->p_vaddr; } } } if (!result->has_eh_frame && !result->has_arm_exidx && !result->has_debug_frame && !result->has_gnu_debugdata) { delete result; return nullptr; } return result; } static bool IsValidElfPath(const std::string& filename) { static const char elf_magic[] = {0x7f, 'E', 'L', 'F'}; struct stat st; if (stat(filename.c_str(), &st) != 0 || !S_ISREG(st.st_mode)) { return false; } FILE* fp = fopen(filename.c_str(), "reb"); if (fp == nullptr) { return false; } char buf[4]; if (fread(buf, 4, 1, fp) != 1) { fclose(fp); return false; } fclose(fp); return memcmp(buf, elf_magic, 4) == 0; } static bool IsValidApkPath(const std::string& apk_path) { static const char zip_preamble[] = {0x50, 0x4b, 0x03, 0x04}; struct stat st; if (stat(apk_path.c_str(), &st) != 0 || !S_ISREG(st.st_mode)) { return false; } FILE* fp = fopen(apk_path.c_str(), "reb"); if (fp == nullptr) { return false; } char buf[4]; if (fread(buf, 4, 1, fp) != 1) { fclose(fp); return false; } fclose(fp); return memcmp(buf, zip_preamble, 4) == 0; } class ScopedZiparchiveHandle { public: explicit ScopedZiparchiveHandle(ZipArchiveHandle handle) : handle_(handle) { } ~ScopedZiparchiveHandle() { CloseArchive(handle_); } private: ZipArchiveHandle handle_; }; llvm::object::OwningBinary OpenEmbeddedElfFile(const std::string& filename) { llvm::object::OwningBinary nothing; size_t pos = filename.find("!/"); if (pos == std::string::npos) { return nothing; } std::string apk_file = filename.substr(0, pos); std::string elf_file = filename.substr(pos + 2); if (!IsValidApkPath(apk_file)) { BACK_LOGW("%s is not a valid apk file", apk_file.c_str()); return nothing; } ZipArchiveHandle handle; int32_t ret_code = OpenArchive(apk_file.c_str(), &handle); if (ret_code != 0) { CloseArchive(handle); BACK_LOGW("failed to open archive %s: %s", apk_file.c_str(), ErrorCodeString(ret_code)); return nothing; } ScopedZiparchiveHandle scoped_handle(handle); ZipEntry zentry; ret_code = FindEntry(handle, ZipString(elf_file.c_str()), &zentry); if (ret_code != 0) { BACK_LOGW("failed to find %s in %s: %s", elf_file.c_str(), apk_file.c_str(), ErrorCodeString(ret_code)); return nothing; } if (zentry.method != kCompressStored || zentry.compressed_length != zentry.uncompressed_length) { BACK_LOGW("%s is compressed in %s, which doesn't support running directly", elf_file.c_str(), apk_file.c_str()); return nothing; } auto buffer_or_err = llvm::MemoryBuffer::getOpenFileSlice(GetFileDescriptor(handle), apk_file, zentry.uncompressed_length, zentry.offset); if (!buffer_or_err) { BACK_LOGW("failed to read %s in %s: %s", elf_file.c_str(), apk_file.c_str(), buffer_or_err.getError().message().c_str()); return nothing; } auto binary_or_err = llvm::object::createBinary(buffer_or_err.get()->getMemBufferRef()); if (!binary_or_err) { BACK_LOGW("failed to create binary for %s in %s: %s", elf_file.c_str(), apk_file.c_str(), llvm::toString(binary_or_err.takeError()).c_str()); return nothing; } return llvm::object::OwningBinary(std::move(binary_or_err.get()), std::move(buffer_or_err.get())); } static DebugFrameInfo* ReadDebugFrameFromFile(const std::string& filename) { llvm::object::OwningBinary owning_binary; if (filename.find("!/") != std::string::npos) { owning_binary = OpenEmbeddedElfFile(filename); } else { if (!IsValidElfPath(filename)) { return nullptr; } auto binary_or_err = llvm::object::createBinary(llvm::StringRef(filename)); if (!binary_or_err) { return nullptr; } owning_binary = std::move(binary_or_err.get()); } llvm::object::Binary* binary = owning_binary.getBinary(); auto obj = llvm::dyn_cast(binary); if (obj == nullptr) { return nullptr; } if (auto elf = llvm::dyn_cast(obj)) { return ReadDebugFrameFromELFFile(elf->getELFFile()); } if (auto elf = llvm::dyn_cast(obj)) { return ReadDebugFrameFromELFFile(elf->getELFFile()); } return nullptr; } Backtrace* Backtrace::CreateOffline(pid_t pid, pid_t tid, BacktraceMap* map, const backtrace_stackinfo_t& stack, bool cache_file) { return new BacktraceOffline(pid, tid, map, stack, cache_file); }