/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bootimg_utils.h" #include "diagnose_usb.h" #include "engine.h" #include "fs.h" #include "tcp.h" #include "transport.h" #include "udp.h" #include "usb.h" using android::base::unique_fd; #ifndef O_BINARY #define O_BINARY 0 #endif char cur_product[FB_RESPONSE_SZ + 1]; static const char* serial = nullptr; static bool g_long_listing = false; // Don't resparse files in too-big chunks. // libsparse will support INT_MAX, but this results in large allocations, so // let's keep it at 1GB to avoid memory pressure on the host. static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024; static uint64_t sparse_limit = 0; static int64_t target_sparse_limit = -1; static unsigned g_base_addr = 0x10000000; static boot_img_hdr_v1 g_boot_img_hdr = {}; static std::string g_cmdline; static bool g_disable_verity = false; static bool g_disable_verification = false; static const std::string convert_fbe_marker_filename("convert_fbe"); enum fb_buffer_type { FB_BUFFER_FD, FB_BUFFER_SPARSE, }; struct fastboot_buffer { enum fb_buffer_type type; void* data; int64_t sz; int fd; }; static struct { const char* nickname; const char* img_name; const char* sig_name; const char* part_name; bool is_optional; bool is_secondary; } images[] = { // clang-format off { "boot", "boot.img", "boot.sig", "boot", false, false }, { nullptr, "boot_other.img", "boot.sig", "boot", true, true }, { "dtbo", "dtbo.img", "dtbo.sig", "dtbo", true, false }, { "dts", "dt.img", "dt.sig", "dts", true, false }, { "odm", "odm.img", "odm.sig", "odm", true, false }, { "product", "product.img", "product.sig", "product", true, false }, { "recovery", "recovery.img", "recovery.sig", "recovery", true, false }, { "system", "system.img", "system.sig", "system", false, false }, { nullptr, "system_other.img", "system.sig", "system", true, true }, { "vbmeta", "vbmeta.img", "vbmeta.sig", "vbmeta", true, false }, { "vendor", "vendor.img", "vendor.sig", "vendor", true, false }, { nullptr, "vendor_other.img", "vendor.sig", "vendor", true, true }, // clang-format on }; static std::string find_item_given_name(const char* img_name) { char* dir = getenv("ANDROID_PRODUCT_OUT"); if (dir == nullptr || dir[0] == '\0') { die("ANDROID_PRODUCT_OUT not set"); } return android::base::StringPrintf("%s/%s", dir, img_name); } static std::string find_item(const std::string& item) { for (size_t i = 0; i < arraysize(images); ++i) { if (images[i].nickname && item == images[i].nickname) { return find_item_given_name(images[i].img_name); } } if (item == "userdata") return find_item_given_name("userdata.img"); if (item == "cache") return find_item_given_name("cache.img"); fprintf(stderr, "unknown partition '%s'\n", item.c_str()); return ""; } static int64_t get_file_size(int fd) { struct stat sb; return fstat(fd, &sb) == -1 ? -1 : sb.st_size; } static void* load_fd(int fd, int64_t* sz) { int errno_tmp; char* data = nullptr; *sz = get_file_size(fd); if (*sz < 0) { goto oops; } data = (char*) malloc(*sz); if (data == nullptr) goto oops; if(read(fd, data, *sz) != *sz) goto oops; close(fd); return data; oops: errno_tmp = errno; close(fd); if(data != 0) free(data); errno = errno_tmp; return 0; } static void* load_file(const std::string& path, int64_t* sz) { int fd = open(path.c_str(), O_RDONLY | O_BINARY); if (fd == -1) return nullptr; return load_fd(fd, sz); } static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) { if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) { return -1; } // require matching serial number or device path if requested // at the command line with the -s option. if (local_serial && (strcmp(local_serial, info->serial_number) != 0 && strcmp(local_serial, info->device_path) != 0)) return -1; return 0; } static int match_fastboot(usb_ifc_info* info) { return match_fastboot_with_serial(info, serial); } static int list_devices_callback(usb_ifc_info* info) { if (match_fastboot_with_serial(info, nullptr) == 0) { std::string serial = info->serial_number; if (!info->writable) { serial = UsbNoPermissionsShortHelpText(); } if (!serial[0]) { serial = "????????????"; } // output compatible with "adb devices" if (!g_long_listing) { printf("%s\tfastboot", serial.c_str()); } else { printf("%-22s fastboot", serial.c_str()); if (strlen(info->device_path) > 0) printf(" %s", info->device_path); } putchar('\n'); } return -1; } // Opens a new Transport connected to a device. If |serial| is non-null it will be used to identify // a specific device, otherwise the first USB device found will be used. // // If |serial| is non-null but invalid, this exits. // Otherwise it blocks until the target is available. // // The returned Transport is a singleton, so multiple calls to this function will return the same // object, and the caller should not attempt to delete the returned Transport. static Transport* open_device() { static Transport* transport = nullptr; bool announce = true; if (transport != nullptr) { return transport; } Socket::Protocol protocol = Socket::Protocol::kTcp; std::string host; int port = 0; if (serial != nullptr) { const char* net_address = nullptr; if (android::base::StartsWith(serial, "tcp:")) { protocol = Socket::Protocol::kTcp; port = tcp::kDefaultPort; net_address = serial + strlen("tcp:"); } else if (android::base::StartsWith(serial, "udp:")) { protocol = Socket::Protocol::kUdp; port = udp::kDefaultPort; net_address = serial + strlen("udp:"); } if (net_address != nullptr) { std::string error; if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) { die("invalid network address '%s': %s\n", net_address, error.c_str()); } } } while (true) { if (!host.empty()) { std::string error; if (protocol == Socket::Protocol::kTcp) { transport = tcp::Connect(host, port, &error).release(); } else if (protocol == Socket::Protocol::kUdp) { transport = udp::Connect(host, port, &error).release(); } if (transport == nullptr && announce) { fprintf(stderr, "error: %s\n", error.c_str()); } } else { transport = usb_open(match_fastboot); } if (transport != nullptr) { return transport; } if (announce) { announce = false; fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device"); } std::this_thread::sleep_for(std::chrono::milliseconds(1)); } } static void list_devices() { // We don't actually open a USB device here, // just getting our callback called so we can // list all the connected devices. usb_open(list_devices_callback); } static void syntax_error(const char* fmt, ...) { fprintf(stderr, "fastboot: usage: "); va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fprintf(stderr, "\n"); exit(1); } static int show_help() { // clang-format off fprintf(stdout, // 1 2 3 4 5 6 7 8 // 12345678901234567890123456789012345678901234567890123456789012345678901234567890 "usage: fastboot [OPTION...] COMMAND...\n" "\n" "flashing:\n" " update ZIP Flash all partitions from an update.zip package.\n" " flashall Flash all partitions from $ANDROID_PRODUCT_OUT.\n" " On A/B devices, flashed slot is set as active.\n" " Secondary images may be flashed to inactive slot.\n" " flash PARTITION [FILENAME] Flash given partition, using the image from\n" " $ANDROID_PRODUCT_OUT if no filename is given.\n" "\n" "basics:\n" " devices [-l] List devices in bootloader (-l: with device paths).\n" " getvar NAME Display given bootloader variable.\n" " reboot [bootloader] Reboot device.\n" "\n" "locking/unlocking:\n" " flashing lock|unlock Lock/unlock partitions for flashing\n" " flashing lock_critical|unlock_critical\n" " Lock/unlock 'critical' bootloader partitions.\n" " flashing get_unlock_ability\n" " Check whether unlocking is allowed (1) or not(0).\n" "\n" "advanced:\n" " erase PARTITION Erase a flash partition.\n" " format[:FS_TYPE[:SIZE]] PARTITION\n" " Format a flash partition.\n" " set_active SLOT Set the active slot.\n" " oem [COMMAND...] Execute OEM-specific command.\n" "\n" "boot image:\n" " boot KERNEL [RAMDISK [SECOND]]\n" " Download and boot kernel from RAM.\n" " flash:raw PARTITION KERNEL [RAMDISK [SECOND]]\n" " Create boot image and flash it.\n" " --cmdline CMDLINE Override kernel command line.\n" " --base ADDRESS Set kernel base address (default: 0x10000000).\n" " --kernel-offset Set kernel offset (default: 0x00008000).\n" " --ramdisk-offset Set ramdisk offset (default: 0x01000000).\n" " --tags-offset Set tags offset (default: 0x00000100).\n" " --page-size BYTES Set flash page size (default: 2048).\n" " --header-version VERSION Set boot image header version.\n" " --os-version MAJOR[.MINOR[.PATCH]]\n" " Set boot image OS version (default: 0.0.0).\n" " --os-patch-level YYYY-MM-DD\n" " Set boot image OS security patch level.\n" // TODO: still missing: `second_addr`, `name`, `id`, `recovery_dtbo_*`. "\n" // TODO: what device(s) used this? is there any documentation? //" continue Continue with autoboot.\n" //"\n" "Android Things:\n" " stage IN_FILE Sends given file to stage for the next command.\n" " get_staged OUT_FILE Writes data staged by the last command to a file.\n" "\n" "options:\n" " -w Wipe userdata.\n" " -s SERIAL Specify a USB device.\n" " -s tcp|udp:HOST[:PORT] Specify a network device.\n" " -S SIZE[K|M|G] Break into sparse files no larger than SIZE.\n" " --slot SLOT Use SLOT; 'all' for both slots, 'other' for\n" " non-current slot (default: current active slot).\n" " --set-active[=SLOT] Sets the active slot before rebooting.\n" " --skip-secondary Don't flash secondary slots in flashall/update.\n" " --skip-reboot Don't reboot device after flashing.\n" " --disable-verity Sets disable-verity when flashing vbmeta.\n" " --disable-verification Sets disable-verification when flashing vbmeta.\n" #if !defined(_WIN32) " --wipe-and-use-fbe Enable file-based encryption, wiping userdata.\n" #endif // TODO: remove --unbuffered? " --unbuffered Don't buffer input or output.\n" " --verbose, -v Verbose output.\n" " --version Display version.\n" " --help, -h Show this message.\n" ); // clang-format off return 0; } static void* load_bootable_image(const std::string& kernel, const std::string& ramdisk, const std::string& second_stage, int64_t* sz) { int64_t ksize; void* kdata = load_file(kernel.c_str(), &ksize); if (kdata == nullptr) die("cannot load '%s': %s", kernel.c_str(), strerror(errno)); // Is this actually a boot image? if (ksize < static_cast(sizeof(boot_img_hdr_v1))) { die("cannot load '%s': too short", kernel.c_str()); } if (!memcmp(kdata, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { if (!g_cmdline.empty()) { bootimg_set_cmdline(reinterpret_cast(kdata), g_cmdline); } if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk"); *sz = ksize; return kdata; } void* rdata = nullptr; int64_t rsize = 0; if (!ramdisk.empty()) { rdata = load_file(ramdisk.c_str(), &rsize); if (rdata == nullptr) die("cannot load '%s': %s", ramdisk.c_str(), strerror(errno)); } void* sdata = nullptr; int64_t ssize = 0; if (!second_stage.empty()) { sdata = load_file(second_stage.c_str(), &ssize); if (sdata == nullptr) die("cannot load '%s': %s", second_stage.c_str(), strerror(errno)); } fprintf(stderr,"creating boot image...\n"); boot_img_hdr_v1* bdata = mkbootimg(kdata, ksize, rdata, rsize, sdata, ssize, g_base_addr, g_boot_img_hdr, sz); if (bdata == nullptr) die("failed to create boot.img"); if (!g_cmdline.empty()) bootimg_set_cmdline(bdata, g_cmdline); fprintf(stderr, "creating boot image - %" PRId64 " bytes\n", *sz); return bdata; } static void* unzip_to_memory(ZipArchiveHandle zip, const char* entry_name, int64_t* sz) { ZipString zip_entry_name(entry_name); ZipEntry zip_entry; if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) { fprintf(stderr, "archive does not contain '%s'\n", entry_name); return nullptr; } *sz = zip_entry.uncompressed_length; fprintf(stderr, "extracting %s (%" PRId64 " MB) to RAM...\n", entry_name, *sz / 1024 / 1024); uint8_t* data = reinterpret_cast(malloc(zip_entry.uncompressed_length)); if (data == nullptr) die("failed to allocate %" PRId64 " bytes for '%s'", *sz, entry_name); int error = ExtractToMemory(zip, &zip_entry, data, zip_entry.uncompressed_length); if (error != 0) die("failed to extract '%s': %s", entry_name, ErrorCodeString(error)); return data; } #if defined(_WIN32) // TODO: move this to somewhere it can be shared. #include // Windows' tmpfile(3) requires administrator rights because // it creates temporary files in the root directory. static FILE* win32_tmpfile() { char temp_path[PATH_MAX]; DWORD nchars = GetTempPath(sizeof(temp_path), temp_path); if (nchars == 0 || nchars >= sizeof(temp_path)) { die("GetTempPath failed, error %ld", GetLastError()); } char filename[PATH_MAX]; if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) { die("GetTempFileName failed, error %ld", GetLastError()); } return fopen(filename, "w+bTD"); } #define tmpfile win32_tmpfile static std::string make_temporary_directory() { die("make_temporary_directory not supported under Windows, sorry!"); } static int make_temporary_fd(const char* /*what*/) { // TODO: reimplement to avoid leaking a FILE*. return fileno(tmpfile()); } #else static std::string make_temporary_template() { const char* tmpdir = getenv("TMPDIR"); if (tmpdir == nullptr) tmpdir = P_tmpdir; return std::string(tmpdir) + "/fastboot_userdata_XXXXXX"; } static std::string make_temporary_directory() { std::string result(make_temporary_template()); if (mkdtemp(&result[0]) == nullptr) { die("unable to create temporary directory with template %s: %s", result.c_str(), strerror(errno)); } return result; } static int make_temporary_fd(const char* what) { std::string path_template(make_temporary_template()); int fd = mkstemp(&path_template[0]); if (fd == -1) { die("failed to create temporary file for %s with template %s: %s\n", path_template.c_str(), what, strerror(errno)); } unlink(path_template.c_str()); return fd; } #endif static std::string create_fbemarker_tmpdir() { std::string dir = make_temporary_directory(); std::string marker_file = dir + "/" + convert_fbe_marker_filename; int fd = open(marker_file.c_str(), O_CREAT | O_WRONLY | O_CLOEXEC, 0666); if (fd == -1) { die("unable to create FBE marker file %s locally: %s", marker_file.c_str(), strerror(errno)); } close(fd); return dir; } static void delete_fbemarker_tmpdir(const std::string& dir) { std::string marker_file = dir + "/" + convert_fbe_marker_filename; if (unlink(marker_file.c_str()) == -1) { fprintf(stderr, "Unable to delete FBE marker file %s locally: %d, %s\n", marker_file.c_str(), errno, strerror(errno)); return; } if (rmdir(dir.c_str()) == -1) { fprintf(stderr, "Unable to delete FBE marker directory %s locally: %d, %s\n", dir.c_str(), errno, strerror(errno)); return; } } static int unzip_to_file(ZipArchiveHandle zip, const char* entry_name) { unique_fd fd(make_temporary_fd(entry_name)); ZipString zip_entry_name(entry_name); ZipEntry zip_entry; if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) { fprintf(stderr, "archive does not contain '%s'\n", entry_name); return -1; } fprintf(stderr, "extracting %s (%" PRIu32 " MB) to disk...", entry_name, zip_entry.uncompressed_length / 1024 / 1024); double start = now(); int error = ExtractEntryToFile(zip, &zip_entry, fd); if (error != 0) { die("\nfailed to extract '%s': %s", entry_name, ErrorCodeString(error)); } if (lseek(fd, 0, SEEK_SET) != 0) { die("\nlseek on extracted file '%s' failed: %s", entry_name, strerror(errno)); } fprintf(stderr, " took %.3fs\n", now() - start); return fd.release(); } static char* strip(char* s) { while (*s && isspace(*s)) s++; int n = strlen(s); while (n-- > 0) { if (!isspace(s[n])) break; s[n] = 0; } return s; } #define MAX_OPTIONS 32 static void check_requirement(char* line) { char *val[MAX_OPTIONS]; unsigned count; char *x; int invert = 0; // "require product=alpha|beta|gamma" // "require version-bootloader=1234" // "require-for-product:gamma version-bootloader=istanbul|constantinople" // "require partition-exists=vendor" char* name = line; const char* product = ""; if (!strncmp(name, "reject ", 7)) { name += 7; invert = 1; } else if (!strncmp(name, "require ", 8)) { name += 8; invert = 0; } else if (!strncmp(name, "require-for-product:", 20)) { // Get the product and point name past it product = name + 20; name = strchr(name, ' '); if (!name) die("android-info.txt syntax error: %s", line); *name = 0; name += 1; invert = 0; } x = strchr(name, '='); if (x == 0) return; *x = 0; val[0] = x + 1; name = strip(name); // "require partition-exists=x" is a special case, added because of the trouble we had when // Pixel 2 shipped with new partitions and users used old versions of fastboot to flash them, // missing out new partitions. A device with new partitions can use "partition-exists" to // override the `is_optional` field in the `images` array. if (!strcmp(name, "partition-exists")) { const char* partition_name = val[0]; std::string has_slot; if (!fb_getvar(std::string("has-slot:") + partition_name, &has_slot) || (has_slot != "yes" && has_slot != "no")) { die("device doesn't have required partition %s!", partition_name); } bool known_partition = false; for (size_t i = 0; i < arraysize(images); ++i) { if (images[i].nickname && !strcmp(images[i].nickname, partition_name)) { images[i].is_optional = false; known_partition = true; } } if (!known_partition) { die("device requires partition %s which is not known to this version of fastboot", partition_name); } return; } for(count = 1; count < MAX_OPTIONS; count++) { x = strchr(val[count - 1],'|'); if (x == 0) break; *x = 0; val[count] = x + 1; } // Work around an unfortunate name mismatch. const char* var = name; if (!strcmp(name, "board")) var = "product"; const char** out = reinterpret_cast(malloc(sizeof(char*) * count)); if (out == nullptr) die("out of memory"); for (size_t i = 0; i < count; ++i) { out[i] = xstrdup(strip(val[i])); } fb_queue_require(product, var, invert, count, out); } static void check_requirements(char* data, int64_t sz) { char* s = data; while (sz-- > 0) { if (*s == '\n') { *s++ = 0; check_requirement(data); data = s; } else { s++; } } if (fb_execute_queue()) die("requirements not met!"); } static void queue_info_dump() { fb_queue_notice("--------------------------------------------"); fb_queue_display("Bootloader Version...", "version-bootloader"); fb_queue_display("Baseband Version.....", "version-baseband"); fb_queue_display("Serial Number........", "serialno"); fb_queue_notice("--------------------------------------------"); } static struct sparse_file** load_sparse_files(int fd, int64_t max_size) { struct sparse_file* s = sparse_file_import_auto(fd, false, true); if (!s) die("cannot sparse read file"); if (max_size <= 0 || max_size > std::numeric_limits::max()) { die("invalid max size %" PRId64, max_size); } int files = sparse_file_resparse(s, max_size, nullptr, 0); if (files < 0) die("Failed to resparse"); sparse_file** out_s = reinterpret_cast(calloc(sizeof(struct sparse_file *), files + 1)); if (!out_s) die("Failed to allocate sparse file array"); files = sparse_file_resparse(s, max_size, out_s, files); if (files < 0) die("Failed to resparse"); return out_s; } static int64_t get_target_sparse_limit() { std::string max_download_size; if (!fb_getvar("max-download-size", &max_download_size) || max_download_size.empty()) { verbose("target didn't report max-download-size"); return 0; } // Some bootloaders (angler, for example) send spurious whitespace too. max_download_size = android::base::Trim(max_download_size); uint64_t limit; if (!android::base::ParseUint(max_download_size, &limit)) { fprintf(stderr, "couldn't parse max-download-size '%s'\n", max_download_size.c_str()); return 0; } if (limit > 0) verbose("target reported max download size of %" PRId64 " bytes", limit); return limit; } static int64_t get_sparse_limit(int64_t size) { int64_t limit = sparse_limit; if (limit == 0) { // Unlimited, so see what the target device's limit is. // TODO: shouldn't we apply this limit even if you've used -S? if (target_sparse_limit == -1) { target_sparse_limit = get_target_sparse_limit(); } if (target_sparse_limit > 0) { limit = target_sparse_limit; } else { return 0; } } if (size > limit) { return std::min(limit, RESPARSE_LIMIT); } return 0; } static bool load_buf_fd(int fd, struct fastboot_buffer* buf) { int64_t sz = get_file_size(fd); if (sz == -1) { return false; } lseek64(fd, 0, SEEK_SET); int64_t limit = get_sparse_limit(sz); if (limit) { sparse_file** s = load_sparse_files(fd, limit); if (s == nullptr) { return false; } buf->type = FB_BUFFER_SPARSE; buf->data = s; } else { buf->type = FB_BUFFER_FD; buf->data = nullptr; buf->fd = fd; buf->sz = sz; } return true; } static bool load_buf(const char* fname, struct fastboot_buffer* buf) { unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY))); if (fd == -1) { return false; } struct stat s; if (fstat(fd, &s)) { return false; } if (!S_ISREG(s.st_mode)) { errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL; return false; } return load_buf_fd(fd.release(), buf); } static void rewrite_vbmeta_buffer(struct fastboot_buffer* buf) { // Buffer needs to be at least the size of the VBMeta struct which // is 256 bytes. if (buf->sz < 256) { return; } int fd = make_temporary_fd("vbmeta rewriting"); std::string data; if (!android::base::ReadFdToString(buf->fd, &data)) { die("Failed reading from vbmeta"); } // There's a 32-bit big endian |flags| field at offset 120 where // bit 0 corresponds to disable-verity and bit 1 corresponds to // disable-verification. // // See external/avb/libavb/avb_vbmeta_image.h for the layout of // the VBMeta struct. if (g_disable_verity) { data[123] |= 0x01; } if (g_disable_verification) { data[123] |= 0x02; } if (!android::base::WriteStringToFd(data, fd)) { die("Failed writing to modified vbmeta"); } close(buf->fd); buf->fd = fd; lseek(fd, 0, SEEK_SET); } static void flash_buf(const std::string& partition, struct fastboot_buffer *buf) { sparse_file** s; // Rewrite vbmeta if that's what we're flashing and modification has been requested. if ((g_disable_verity || g_disable_verification) && (partition == "vbmeta" || partition == "vbmeta_a" || partition == "vbmeta_b")) { rewrite_vbmeta_buffer(buf); } switch (buf->type) { case FB_BUFFER_SPARSE: { std::vector> sparse_files; s = reinterpret_cast(buf->data); while (*s) { int64_t sz = sparse_file_len(*s, true, false); sparse_files.emplace_back(*s, sz); ++s; } for (size_t i = 0; i < sparse_files.size(); ++i) { const auto& pair = sparse_files[i]; fb_queue_flash_sparse(partition, pair.first, pair.second, i + 1, sparse_files.size()); } break; } case FB_BUFFER_FD: fb_queue_flash_fd(partition, buf->fd, buf->sz); break; default: die("unknown buffer type: %d", buf->type); } } static std::string get_current_slot() { std::string current_slot; if (!fb_getvar("current-slot", ¤t_slot)) return ""; return current_slot; } static int get_slot_count() { std::string var; int count = 0; if (!fb_getvar("slot-count", &var) || !android::base::ParseInt(var, &count)) { return 0; } return count; } static bool supports_AB() { return get_slot_count() >= 2; } // Given a current slot, this returns what the 'other' slot is. static std::string get_other_slot(const std::string& current_slot, int count) { if (count == 0) return ""; char next = (current_slot[0] - 'a' + 1)%count + 'a'; return std::string(1, next); } static std::string get_other_slot(const std::string& current_slot) { return get_other_slot(current_slot, get_slot_count()); } static std::string get_other_slot(int count) { return get_other_slot(get_current_slot(), count); } static std::string get_other_slot() { return get_other_slot(get_current_slot(), get_slot_count()); } static std::string verify_slot(const std::string& slot_name, bool allow_all) { std::string slot = slot_name; if (slot == "all") { if (allow_all) { return "all"; } else { int count = get_slot_count(); if (count > 0) { return "a"; } else { die("No known slots"); } } } int count = get_slot_count(); if (count == 0) die("Device does not support slots"); if (slot == "other") { std::string other = get_other_slot( count); if (other == "") { die("No known slots"); } return other; } if (slot.size() == 1 && (slot[0]-'a' >= 0 && slot[0]-'a' < count)) return slot; fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str()); for (int i=0; i& func, bool force_slot) { std::string has_slot; std::string current_slot; if (!fb_getvar("has-slot:" + part, &has_slot)) { /* If has-slot is not supported, the answer is no. */ has_slot = "no"; } if (has_slot == "yes") { if (slot == "") { current_slot = get_current_slot(); if (current_slot == "") { die("Failed to identify current slot"); } func(part + "_" + current_slot); } else { func(part + '_' + slot); } } else { if (force_slot && slot != "") { fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n", part.c_str(), slot.c_str()); } func(part); } } /* This function will find the real partition name given a base name, and a slot. If slot is NULL or * empty, it will use the current slot. If slot is "all", it will return a list of all possible * partition names. If force_slot is true, it will fail if a slot is specified, and the given * partition does not support slots. */ static void do_for_partitions(const std::string& part, const std::string& slot, const std::function& func, bool force_slot) { std::string has_slot; if (slot == "all") { if (!fb_getvar("has-slot:" + part, &has_slot)) { die("Could not check if partition %s has slot %s", part.c_str(), slot.c_str()); } if (has_slot == "yes") { for (int i=0; i < get_slot_count(); i++) { do_for_partition(part, std::string(1, (char)(i + 'a')), func, force_slot); } } else { do_for_partition(part, "", func, force_slot); } } else { do_for_partition(part, slot, func, force_slot); } } static void do_flash(const char* pname, const char* fname) { struct fastboot_buffer buf; if (!load_buf(fname, &buf)) { die("cannot load '%s': %s", fname, strerror(errno)); } flash_buf(pname, &buf); } static void do_update_signature(ZipArchiveHandle zip, const char* filename) { int64_t sz; void* data = unzip_to_memory(zip, filename, &sz); if (data == nullptr) return; fb_queue_download("signature", data, sz); fb_queue_command("signature", "installing signature"); } // Sets slot_override as the active slot. If slot_override is blank, // set current slot as active instead. This clears slot-unbootable. static void set_active(const std::string& slot_override) { if (!supports_AB()) return; if (slot_override != "") { fb_set_active(slot_override); } else { std::string current_slot = get_current_slot(); if (current_slot != "") { fb_set_active(current_slot); } } } static void do_update(const char* filename, const std::string& slot_override, bool skip_secondary) { queue_info_dump(); fb_queue_query_save("product", cur_product, sizeof(cur_product)); ZipArchiveHandle zip; int error = OpenArchive(filename, &zip); if (error != 0) { die("failed to open zip file '%s': %s", filename, ErrorCodeString(error)); } int64_t sz; void* data = unzip_to_memory(zip, "android-info.txt", &sz); if (data == nullptr) { die("update package '%s' has no android-info.txt", filename); } check_requirements(reinterpret_cast(data), sz); std::string secondary; if (!skip_secondary) { if (slot_override != "") { secondary = get_other_slot(slot_override); } else { secondary = get_other_slot(); } if (secondary == "") { if (supports_AB()) { fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n"); } skip_secondary = true; } } for (size_t i = 0; i < arraysize(images); ++i) { const char* slot = slot_override.c_str(); if (images[i].is_secondary) { if (!skip_secondary) { slot = secondary.c_str(); } else { continue; } } int fd = unzip_to_file(zip, images[i].img_name); if (fd == -1) { if (images[i].is_optional) { continue; // An optional file is missing, so ignore it. } die("non-optional file %s missing", images[i].img_name); } fastboot_buffer buf; if (!load_buf_fd(fd, &buf)) { die("cannot load %s from flash: %s", images[i].img_name, strerror(errno)); } auto update = [&](const std::string& partition) { do_update_signature(zip, images[i].sig_name); flash_buf(partition.c_str(), &buf); /* not closing the fd here since the sparse code keeps the fd around * but hasn't mmaped data yet. The temporary file will get cleaned up when the * program exits. */ }; do_for_partitions(images[i].part_name, slot, update, false); } if (slot_override == "all") { set_active("a"); } else { set_active(slot_override); } CloseArchive(zip); } static void do_send_signature(const std::string& fn) { std::size_t extension_loc = fn.find(".img"); if (extension_loc == std::string::npos) return; std::string fs_sig = fn.substr(0, extension_loc) + ".sig"; int64_t sz; void* data = load_file(fs_sig.c_str(), &sz); if (data == nullptr) return; fb_queue_download("signature", data, sz); fb_queue_command("signature", "installing signature"); } static void do_flashall(const std::string& slot_override, bool skip_secondary) { std::string fname; queue_info_dump(); fb_queue_query_save("product", cur_product, sizeof(cur_product)); fname = find_item_given_name("android-info.txt"); if (fname.empty()) die("cannot find android-info.txt"); int64_t sz; void* data = load_file(fname.c_str(), &sz); if (data == nullptr) die("could not load android-info.txt: %s", strerror(errno)); check_requirements(reinterpret_cast(data), sz); std::string secondary; if (!skip_secondary) { if (slot_override != "") { secondary = get_other_slot(slot_override); } else { secondary = get_other_slot(); } if (secondary == "") { if (supports_AB()) { fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n"); } skip_secondary = true; } } for (size_t i = 0; i < arraysize(images); i++) { const char* slot = NULL; if (images[i].is_secondary) { if (!skip_secondary) slot = secondary.c_str(); } else { slot = slot_override.c_str(); } if (!slot) continue; fname = find_item_given_name(images[i].img_name); fastboot_buffer buf; if (!load_buf(fname.c_str(), &buf)) { if (images[i].is_optional) continue; die("could not load '%s': %s", images[i].img_name, strerror(errno)); } auto flashall = [&](const std::string &partition) { do_send_signature(fname.c_str()); flash_buf(partition.c_str(), &buf); }; do_for_partitions(images[i].part_name, slot, flashall, false); } if (slot_override == "all") { set_active("a"); } else { set_active(slot_override); } } static std::string next_arg(std::vector* args) { if (args->empty()) syntax_error("expected argument"); std::string result = args->front(); args->erase(args->begin()); return result; } static void do_oem_command(const std::string& cmd, std::vector* args) { if (args->empty()) syntax_error("empty oem command"); std::string command(cmd); while (!args->empty()) { command += " " + next_arg(args); } fb_queue_command(command, ""); } static std::string fb_fix_numeric_var(std::string var) { // Some bootloaders (angler, for example), send spurious leading whitespace. var = android::base::Trim(var); // Some bootloaders (hammerhead, for example) use implicit hex. // This code used to use strtol with base 16. if (!android::base::StartsWith(var, "0x")) var = "0x" + var; return var; } static unsigned fb_get_flash_block_size(std::string name) { std::string sizeString; if (!fb_getvar(name, &sizeString) || sizeString.empty()) { // This device does not report flash block sizes, so return 0. return 0; } sizeString = fb_fix_numeric_var(sizeString); unsigned size; if (!android::base::ParseUint(sizeString, &size)) { fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str()); return 0; } if ((size & (size - 1)) != 0) { fprintf(stderr, "Invalid %s %u: must be a power of 2.\n", name.c_str(), size); return 0; } return size; } static void fb_perform_format( const std::string& partition, int skip_if_not_supported, const std::string& type_override, const std::string& size_override, const std::string& initial_dir) { std::string partition_type, partition_size; struct fastboot_buffer buf; const char* errMsg = nullptr; const struct fs_generator* gen = nullptr; TemporaryFile output; unique_fd fd; unsigned int limit = INT_MAX; if (target_sparse_limit > 0 && target_sparse_limit < limit) { limit = target_sparse_limit; } if (sparse_limit > 0 && sparse_limit < limit) { limit = sparse_limit; } if (!fb_getvar("partition-type:" + partition, &partition_type)) { errMsg = "Can't determine partition type.\n"; goto failed; } if (!type_override.empty()) { if (partition_type != type_override) { fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n", partition.c_str(), partition_type.c_str(), type_override.c_str()); } partition_type = type_override; } if (!fb_getvar("partition-size:" + partition, &partition_size)) { errMsg = "Unable to get partition size\n"; goto failed; } if (!size_override.empty()) { if (partition_size != size_override) { fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n", partition.c_str(), partition_size.c_str(), size_override.c_str()); } partition_size = size_override; } partition_size = fb_fix_numeric_var(partition_size); gen = fs_get_generator(partition_type); if (!gen) { if (skip_if_not_supported) { fprintf(stderr, "Erase successful, but not automatically formatting.\n"); fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str()); return; } fprintf(stderr, "Formatting is not supported for file system with type '%s'.\n", partition_type.c_str()); return; } int64_t size; if (!android::base::ParseInt(partition_size, &size)) { fprintf(stderr, "Couldn't parse partition size '%s'.\n", partition_size.c_str()); return; } unsigned eraseBlkSize, logicalBlkSize; eraseBlkSize = fb_get_flash_block_size("erase-block-size"); logicalBlkSize = fb_get_flash_block_size("logical-block-size"); if (fs_generator_generate(gen, output.path, size, initial_dir, eraseBlkSize, logicalBlkSize)) { die("Cannot generate image for %s", partition.c_str()); return; } fd.reset(open(output.path, O_RDONLY)); if (fd == -1) { fprintf(stderr, "Cannot open generated image: %s\n", strerror(errno)); return; } if (!load_buf_fd(fd.release(), &buf)) { fprintf(stderr, "Cannot read image: %s\n", strerror(errno)); return; } flash_buf(partition, &buf); return; failed: if (skip_if_not_supported) { fprintf(stderr, "Erase successful, but not automatically formatting.\n"); if (errMsg) fprintf(stderr, "%s", errMsg); } fprintf(stderr, "FAILED (%s)\n", fb_get_error().c_str()); } int FastBootTool::Main(int argc, char* argv[]) { bool wants_wipe = false; bool wants_reboot = false; bool wants_reboot_bootloader = false; bool skip_reboot = false; bool wants_set_active = false; bool skip_secondary = false; bool set_fbe_marker = false; void *data; int64_t sz; int longindex; std::string slot_override; std::string next_active; g_boot_img_hdr.kernel_addr = 0x00008000; g_boot_img_hdr.ramdisk_addr = 0x01000000; g_boot_img_hdr.second_addr = 0x00f00000; g_boot_img_hdr.tags_addr = 0x00000100; g_boot_img_hdr.page_size = 2048; const struct option longopts[] = { {"base", required_argument, 0, 0}, {"cmdline", required_argument, 0, 0}, {"disable-verification", no_argument, 0, 0}, {"disable-verity", no_argument, 0, 0}, {"header-version", required_argument, 0, 0}, {"help", no_argument, 0, 'h'}, {"kernel-offset", required_argument, 0, 0}, {"os-patch-level", required_argument, 0, 0}, {"os-version", required_argument, 0, 0}, {"page-size", required_argument, 0, 0}, {"ramdisk-offset", required_argument, 0, 0}, {"set-active", optional_argument, 0, 'a'}, {"skip-reboot", no_argument, 0, 0}, {"skip-secondary", no_argument, 0, 0}, {"slot", required_argument, 0, 0}, {"tags-offset", required_argument, 0, 0}, {"unbuffered", no_argument, 0, 0}, {"verbose", no_argument, 0, 'v'}, {"version", no_argument, 0, 0}, #if !defined(_WIN32) {"wipe-and-use-fbe", no_argument, 0, 0}, #endif {0, 0, 0, 0} }; serial = getenv("ANDROID_SERIAL"); int c; while ((c = getopt_long(argc, argv, "a::hls:S:vw", longopts, &longindex)) != -1) { if (c == 0) { std::string name{longopts[longindex].name}; if (name == "base") { g_base_addr = strtoul(optarg, 0, 16); } else if (name == "cmdline") { g_cmdline = optarg; } else if (name == "disable-verification") { g_disable_verification = true; } else if (name == "disable-verity") { g_disable_verity = true; } else if (name == "header-version") { g_boot_img_hdr.header_version = strtoul(optarg, nullptr, 0); } else if (name == "kernel-offset") { g_boot_img_hdr.kernel_addr = strtoul(optarg, 0, 16); } else if (name == "os-patch-level") { ParseOsPatchLevel(&g_boot_img_hdr, optarg); } else if (name == "os-version") { ParseOsVersion(&g_boot_img_hdr, optarg); } else if (name == "page-size") { g_boot_img_hdr.page_size = strtoul(optarg, nullptr, 0); if (g_boot_img_hdr.page_size == 0) die("invalid page size"); } else if (name == "ramdisk-offset") { g_boot_img_hdr.ramdisk_addr = strtoul(optarg, 0, 16); } else if (name == "skip-reboot") { skip_reboot = true; } else if (name == "skip-secondary") { skip_secondary = true; } else if (name == "slot") { slot_override = optarg; } else if (name == "tags-offset") { g_boot_img_hdr.tags_addr = strtoul(optarg, 0, 16); } else if (name == "unbuffered") { setvbuf(stdout, nullptr, _IONBF, 0); setvbuf(stderr, nullptr, _IONBF, 0); } else if (name == "version") { fprintf(stdout, "fastboot version %s\n", FASTBOOT_VERSION); fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str()); return 0; #if !defined(_WIN32) } else if (name == "wipe-and-use-fbe") { wants_wipe = true; set_fbe_marker = true; #endif } else { die("unknown option %s", longopts[longindex].name); } } else { switch (c) { case 'a': wants_set_active = true; if (optarg) next_active = optarg; break; case 'h': return show_help(); case 'l': g_long_listing = true; break; case 's': serial = optarg; break; case 'S': if (!android::base::ParseByteCount(optarg, &sparse_limit)) { die("invalid sparse limit %s", optarg); } break; case 'v': set_verbose(); break; case 'w': wants_wipe = true; break; case '?': return 1; default: abort(); } } } argc -= optind; argv += optind; if (argc == 0 && !wants_wipe && !wants_set_active) syntax_error("no command"); if (argc > 0 && !strcmp(*argv, "devices")) { list_devices(); return 0; } if (argc > 0 && !strcmp(*argv, "help")) { return show_help(); } Transport* transport = open_device(); if (transport == nullptr) { return 1; } fastboot::FastBootDriver fb(transport); fb_init(fb); const double start = now(); if (slot_override != "") slot_override = verify_slot(slot_override); if (next_active != "") next_active = verify_slot(next_active, false); if (wants_set_active) { if (next_active == "") { if (slot_override == "") { std::string current_slot; if (fb_getvar("current-slot", ¤t_slot)) { next_active = verify_slot(current_slot, false); } else { wants_set_active = false; } } else { next_active = verify_slot(slot_override, false); } } } std::vector args(argv, argv + argc); while (!args.empty()) { std::string command = next_arg(&args); if (command == "getvar") { std::string variable = next_arg(&args); fb_queue_display(variable, variable); } else if (command == "erase") { std::string partition = next_arg(&args); auto erase = [&](const std::string& partition) { std::string partition_type; if (fb_getvar(std::string("partition-type:") + partition, &partition_type) && fs_get_generator(partition_type) != nullptr) { fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n", partition_type.c_str()); } fb_queue_erase(partition); }; do_for_partitions(partition, slot_override, erase, true); } else if (android::base::StartsWith(command, "format")) { // Parsing for: "format[:[type][:[size]]]" // Some valid things: // - select only the size, and leave default fs type: // format::0x4000000 userdata // - default fs type and size: // format userdata // format:: userdata std::vector pieces = android::base::Split(command, ":"); std::string type_override; if (pieces.size() > 1) type_override = pieces[1].c_str(); std::string size_override; if (pieces.size() > 2) size_override = pieces[2].c_str(); std::string partition = next_arg(&args); auto format = [&](const std::string& partition) { fb_perform_format(partition, 0, type_override, size_override, ""); }; do_for_partitions(partition.c_str(), slot_override, format, true); } else if (command == "signature") { std::string filename = next_arg(&args); data = load_file(filename.c_str(), &sz); if (data == nullptr) die("could not load '%s': %s", filename.c_str(), strerror(errno)); if (sz != 256) die("signature must be 256 bytes (got %" PRId64 ")", sz); fb_queue_download("signature", data, sz); fb_queue_command("signature", "installing signature"); } else if (command == "reboot") { wants_reboot = true; if (args.size() == 1) { std::string what = next_arg(&args); if (what == "bootloader") { wants_reboot = false; wants_reboot_bootloader = true; } else { syntax_error("unknown reboot target %s", what.c_str()); } } if (!args.empty()) syntax_error("junk after reboot command"); } else if (command == "reboot-bootloader") { wants_reboot_bootloader = true; } else if (command == "continue") { fb_queue_command("continue", "resuming boot"); } else if (command == "boot") { std::string kernel = next_arg(&args); std::string ramdisk; if (!args.empty()) ramdisk = next_arg(&args); std::string second_stage; if (!args.empty()) second_stage = next_arg(&args); data = load_bootable_image(kernel, ramdisk, second_stage, &sz); fb_queue_download("boot.img", data, sz); fb_queue_command("boot", "booting"); } else if (command == "flash") { std::string pname = next_arg(&args); std::string fname; if (!args.empty()) { fname = next_arg(&args); } else { fname = find_item(pname); } if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str()); auto flash = [&](const std::string &partition) { do_flash(partition.c_str(), fname.c_str()); }; do_for_partitions(pname.c_str(), slot_override, flash, true); } else if (command == "flash:raw") { std::string partition = next_arg(&args); std::string kernel = next_arg(&args); std::string ramdisk; if (!args.empty()) ramdisk = next_arg(&args); std::string second_stage; if (!args.empty()) second_stage = next_arg(&args); data = load_bootable_image(kernel, ramdisk, second_stage, &sz); auto flashraw = [&](const std::string& partition) { fb_queue_flash(partition, data, sz); }; do_for_partitions(partition, slot_override, flashraw, true); } else if (command == "flashall") { if (slot_override == "all") { fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n"); do_flashall(slot_override, true); } else { do_flashall(slot_override, skip_secondary); } wants_reboot = true; } else if (command == "update") { bool slot_all = (slot_override == "all"); if (slot_all) { fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n"); } std::string filename = "update.zip"; if (!args.empty()) { filename = next_arg(&args); } do_update(filename.c_str(), slot_override, skip_secondary || slot_all); wants_reboot = true; } else if (command == "set_active") { std::string slot = verify_slot(next_arg(&args), false); fb_set_active(slot); } else if (command == "stage") { std::string filename = next_arg(&args); struct fastboot_buffer buf; if (!load_buf(filename.c_str(), &buf) || buf.type != FB_BUFFER_FD) { die("cannot load '%s'", filename.c_str()); } fb_queue_download_fd(filename, buf.fd, buf.sz); } else if (command == "get_staged") { std::string filename = next_arg(&args); fb_queue_upload(filename); } else if (command == "oem") { do_oem_command("oem", &args); } else if (command == "flashing") { if (args.empty()) { syntax_error("missing 'flashing' command"); } else if (args.size() == 1 && (args[0] == "unlock" || args[0] == "lock" || args[0] == "unlock_critical" || args[0] == "lock_critical" || args[0] == "get_unlock_ability")) { do_oem_command("flashing", &args); } else { syntax_error("unknown 'flashing' command %s", args[0].c_str()); } } else { syntax_error("unknown command %s", command.c_str()); } } if (wants_wipe) { std::vector partitions = { "userdata", "cache", "metadata" }; for (const auto& partition : partitions) { std::string partition_type; if (!fb_getvar(std::string{"partition-type:"} + partition, &partition_type)) continue; if (partition_type.empty()) continue; fb_queue_erase(partition); if (partition == "userdata" && set_fbe_marker) { fprintf(stderr, "setting FBE marker on initial userdata...\n"); std::string initial_userdata_dir = create_fbemarker_tmpdir(); fb_perform_format(partition, 1, "", "", initial_userdata_dir); delete_fbemarker_tmpdir(initial_userdata_dir); } else { fb_perform_format(partition, 1, "", "", ""); } } } if (wants_set_active) { fb_set_active(next_active); } if (wants_reboot && !skip_reboot) { fb_queue_reboot(); fb_queue_wait_for_disconnect(); } else if (wants_reboot_bootloader) { fb_queue_command("reboot-bootloader", "rebooting into bootloader"); fb_queue_wait_for_disconnect(); } int status = fb_execute_queue() ? EXIT_FAILURE : EXIT_SUCCESS; fprintf(stderr, "Finished. Total time: %.3fs\n", (now() - start)); return status; } void FastBootTool::ParseOsPatchLevel(boot_img_hdr_v1* hdr, const char* arg) { unsigned year, month, day; if (sscanf(arg, "%u-%u-%u", &year, &month, &day) != 3) { syntax_error("OS patch level should be YYYY-MM-DD: %s", arg); } if (year < 2000 || year >= 2128) syntax_error("year out of range: %d", year); if (month < 1 || month > 12) syntax_error("month out of range: %d", month); hdr->SetOsPatchLevel(year, month); } void FastBootTool::ParseOsVersion(boot_img_hdr_v1* hdr, const char* arg) { unsigned major = 0, minor = 0, patch = 0; std::vector versions = android::base::Split(arg, "."); if (versions.size() < 1 || versions.size() > 3 || (versions.size() >= 1 && !android::base::ParseUint(versions[0], &major)) || (versions.size() >= 2 && !android::base::ParseUint(versions[1], &minor)) || (versions.size() == 3 && !android::base::ParseUint(versions[2], &patch)) || (major > 0x7f || minor > 0x7f || patch > 0x7f)) { syntax_error("bad OS version: %s", arg); } hdr->SetOsVersion(major, minor, patch); }