/* http://frotznet.googlecode.com/svn/trunk/utils/fdevent.c ** ** Copyright 2006, Brian Swetland ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define TRACE_TAG FDEVENT #include "sysdeps.h" #include "fdevent.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adb_io.h" #include "adb_trace.h" #include "adb_unique_fd.h" #include "adb_utils.h" #include "sysdeps/chrono.h" #define FDE_EVENTMASK 0x00ff #define FDE_STATEMASK 0xff00 #define FDE_ACTIVE 0x0100 #define FDE_PENDING 0x0200 #define FDE_CREATED 0x0400 struct PollNode { fdevent* fde; adb_pollfd pollfd; explicit PollNode(fdevent* fde) : fde(fde) { memset(&pollfd, 0, sizeof(pollfd)); pollfd.fd = fde->fd.get(); #if defined(__linux__) // Always enable POLLRDHUP, so the host server can take action when some clients disconnect. // Then we can avoid leaving many sockets in CLOSE_WAIT state. See http://b/23314034. pollfd.events = POLLRDHUP; #endif } }; // All operations to fdevent should happen only in the main thread. // That's why we don't need a lock for fdevent. static auto& g_poll_node_map = *new std::unordered_map(); static auto& g_pending_list = *new std::list(); static std::atomic terminate_loop(false); static bool main_thread_valid; static uint64_t main_thread_id; static uint64_t fdevent_id; static bool run_needs_flush = false; static auto& run_queue_notify_fd = *new unique_fd(); static auto& run_queue_mutex = *new std::mutex(); static auto& run_queue GUARDED_BY(run_queue_mutex) = *new std::deque>(); void check_main_thread() { if (main_thread_valid) { CHECK_EQ(main_thread_id, android::base::GetThreadId()); } } void set_main_thread() { main_thread_valid = true; main_thread_id = android::base::GetThreadId(); } static std::string dump_fde(const fdevent* fde) { std::string state; if (fde->state & FDE_ACTIVE) { state += "A"; } if (fde->state & FDE_PENDING) { state += "P"; } if (fde->state & FDE_CREATED) { state += "C"; } if (fde->state & FDE_READ) { state += "R"; } if (fde->state & FDE_WRITE) { state += "W"; } if (fde->state & FDE_ERROR) { state += "E"; } return android::base::StringPrintf("(fdevent %" PRIu64 ": fd %d %s)", fde->id, fde->fd.get(), state.c_str()); } template static fdevent* fdevent_create_impl(int fd, F func, void* arg) { check_main_thread(); CHECK_GE(fd, 0); fdevent* fde = new fdevent(); fde->id = fdevent_id++; fde->state = FDE_ACTIVE; fde->fd.reset(fd); fde->func = func; fde->arg = arg; if (!set_file_block_mode(fd, false)) { // Here is not proper to handle the error. If it fails here, some error is // likely to be detected by poll(), then we can let the callback function // to handle it. LOG(ERROR) << "failed to set non-blocking mode for fd " << fd; } auto pair = g_poll_node_map.emplace(fde->fd.get(), PollNode(fde)); CHECK(pair.second) << "install existing fd " << fd; fde->state |= FDE_CREATED; return fde; } fdevent* fdevent_create(int fd, fd_func func, void* arg) { return fdevent_create_impl(fd, func, arg); } fdevent* fdevent_create(int fd, fd_func2 func, void* arg) { return fdevent_create_impl(fd, func, arg); } unique_fd fdevent_release(fdevent* fde) { check_main_thread(); if (!fde) { return {}; } if (!(fde->state & FDE_CREATED)) { LOG(FATAL) << "destroying fde not created by fdevent_create(): " << dump_fde(fde); } unique_fd result = std::move(fde->fd); if (fde->state & FDE_ACTIVE) { g_poll_node_map.erase(result.get()); if (fde->state & FDE_PENDING) { g_pending_list.remove(fde); } fde->state = 0; fde->events = 0; } delete fde; return result; } void fdevent_destroy(fdevent* fde) { // Release, and then let unique_fd's destructor cleanup. fdevent_release(fde); } static void fdevent_update(fdevent* fde, unsigned events) { auto it = g_poll_node_map.find(fde->fd.get()); CHECK(it != g_poll_node_map.end()); PollNode& node = it->second; if (events & FDE_READ) { node.pollfd.events |= POLLIN; } else { node.pollfd.events &= ~POLLIN; } if (events & FDE_WRITE) { node.pollfd.events |= POLLOUT; } else { node.pollfd.events &= ~POLLOUT; } fde->state = (fde->state & FDE_STATEMASK) | events; } void fdevent_set(fdevent* fde, unsigned events) { check_main_thread(); events &= FDE_EVENTMASK; if ((fde->state & FDE_EVENTMASK) == events) { return; } CHECK(fde->state & FDE_ACTIVE); fdevent_update(fde, events); D("fdevent_set: %s, events = %u", dump_fde(fde).c_str(), events); if (fde->state & FDE_PENDING) { // If we are pending, make sure we don't signal an event that is no longer wanted. fde->events &= events; if (fde->events == 0) { g_pending_list.remove(fde); fde->state &= ~FDE_PENDING; } } } void fdevent_add(fdevent* fde, unsigned events) { check_main_thread(); CHECK(!(events & FDE_TIMEOUT)); fdevent_set(fde, (fde->state & FDE_EVENTMASK) | events); } void fdevent_del(fdevent* fde, unsigned events) { check_main_thread(); CHECK(!(events & FDE_TIMEOUT)); fdevent_set(fde, (fde->state & FDE_EVENTMASK) & ~events); } void fdevent_set_timeout(fdevent* fde, std::optional timeout) { check_main_thread(); fde->timeout = timeout; fde->last_active = std::chrono::steady_clock::now(); } static std::string dump_pollfds(const std::vector& pollfds) { std::string result; for (const auto& pollfd : pollfds) { std::string op; if (pollfd.events & POLLIN) { op += "R"; } if (pollfd.events & POLLOUT) { op += "W"; } android::base::StringAppendF(&result, " %d(%s)", pollfd.fd, op.c_str()); } return result; } static std::optional calculate_timeout() { std::optional result = std::nullopt; auto now = std::chrono::steady_clock::now(); check_main_thread(); for (const auto& [fd, pollnode] : g_poll_node_map) { UNUSED(fd); auto timeout_opt = pollnode.fde->timeout; if (timeout_opt) { auto deadline = pollnode.fde->last_active + *timeout_opt; auto time_left = std::chrono::duration_cast(deadline - now); if (time_left < std::chrono::milliseconds::zero()) { time_left = std::chrono::milliseconds::zero(); } if (!result) { result = time_left; } else { result = std::min(*result, time_left); } } } return result; } static void fdevent_process() { std::vector pollfds; for (const auto& pair : g_poll_node_map) { pollfds.push_back(pair.second.pollfd); } CHECK_GT(pollfds.size(), 0u); D("poll(), pollfds = %s", dump_pollfds(pollfds).c_str()); auto timeout = calculate_timeout(); int timeout_ms; if (!timeout) { timeout_ms = -1; } else { timeout_ms = timeout->count(); } int ret = adb_poll(&pollfds[0], pollfds.size(), timeout_ms); if (ret == -1) { PLOG(ERROR) << "poll(), ret = " << ret; return; } auto post_poll = std::chrono::steady_clock::now(); for (const auto& pollfd : pollfds) { if (pollfd.revents != 0) { D("for fd %d, revents = %x", pollfd.fd, pollfd.revents); } unsigned events = 0; if (pollfd.revents & POLLIN) { events |= FDE_READ; } if (pollfd.revents & POLLOUT) { events |= FDE_WRITE; } if (pollfd.revents & (POLLERR | POLLHUP | POLLNVAL)) { // We fake a read, as the rest of the code assumes that errors will // be detected at that point. events |= FDE_READ | FDE_ERROR; } #if defined(__linux__) if (pollfd.revents & POLLRDHUP) { events |= FDE_READ | FDE_ERROR; } #endif auto it = g_poll_node_map.find(pollfd.fd); CHECK(it != g_poll_node_map.end()); fdevent* fde = it->second.fde; if (events == 0) { // Check for timeout. if (fde->timeout) { auto deadline = fde->last_active + *fde->timeout; if (deadline < post_poll) { events |= FDE_TIMEOUT; } } } if (events != 0) { CHECK_EQ(fde->fd.get(), pollfd.fd); fde->events |= events; fde->last_active = post_poll; D("%s got events %x", dump_fde(fde).c_str(), events); fde->state |= FDE_PENDING; g_pending_list.push_back(fde); } } } template struct always_false : std::false_type {}; static void fdevent_call_fdfunc(fdevent* fde) { unsigned events = fde->events; fde->events = 0; CHECK(fde->state & FDE_PENDING); fde->state &= (~FDE_PENDING); D("fdevent_call_fdfunc %s", dump_fde(fde).c_str()); std::visit( [&](auto&& f) { using F = std::decay_t; if constexpr (std::is_same_v) { f(fde->fd.get(), events, fde->arg); } else if constexpr (std::is_same_v) { f(fde, events, fde->arg); } else { static_assert(always_false::value, "non-exhaustive visitor"); } }, fde->func); } static void fdevent_run_flush() EXCLUDES(run_queue_mutex) { // We need to be careful around reentrancy here, since a function we call can queue up another // function. while (true) { std::function fn; { std::lock_guard lock(run_queue_mutex); if (run_queue.empty()) { break; } fn = run_queue.front(); run_queue.pop_front(); } fn(); } } static void fdevent_run_func(int fd, unsigned ev, void* /* userdata */) { CHECK_GE(fd, 0); CHECK(ev & FDE_READ); char buf[1024]; // Empty the fd. if (adb_read(fd, buf, sizeof(buf)) == -1) { PLOG(FATAL) << "failed to empty run queue notify fd"; } // Mark that we need to flush, and then run it at the end of fdevent_loop. run_needs_flush = true; } static void fdevent_run_setup() { { std::lock_guard lock(run_queue_mutex); CHECK(run_queue_notify_fd.get() == -1); int s[2]; if (adb_socketpair(s) != 0) { PLOG(FATAL) << "failed to create run queue notify socketpair"; } if (!set_file_block_mode(s[0], false) || !set_file_block_mode(s[1], false)) { PLOG(FATAL) << "failed to make run queue notify socket nonblocking"; } run_queue_notify_fd.reset(s[0]); fdevent* fde = fdevent_create(s[1], fdevent_run_func, nullptr); CHECK(fde != nullptr); fdevent_add(fde, FDE_READ); } fdevent_run_flush(); } void fdevent_run_on_main_thread(std::function fn) { std::lock_guard lock(run_queue_mutex); run_queue.push_back(std::move(fn)); // run_queue_notify_fd could still be -1 if we're called before fdevent has finished setting up. // In that case, rely on the setup code to flush the queue without a notification being needed. if (run_queue_notify_fd != -1) { int rc = adb_write(run_queue_notify_fd.get(), "", 1); // It's possible that we get EAGAIN here, if lots of notifications came in while handling. if (rc == 0) { PLOG(FATAL) << "run queue notify fd was closed?"; } else if (rc == -1 && errno != EAGAIN) { PLOG(FATAL) << "failed to write to run queue notify fd"; } } } static void fdevent_check_spin(uint64_t cycle) { // Check to see if we're spinning because we forgot about an fdevent // by keeping track of how long fdevents have been continuously pending. struct SpinCheck { fdevent* fde; android::base::boot_clock::time_point timestamp; uint64_t cycle; }; static auto& g_continuously_pending = *new std::unordered_map(); static auto last_cycle = android::base::boot_clock::now(); auto now = android::base::boot_clock::now(); if (now - last_cycle > 10ms) { // We're not spinning. g_continuously_pending.clear(); last_cycle = now; return; } last_cycle = now; for (auto* fde : g_pending_list) { auto it = g_continuously_pending.find(fde->id); if (it == g_continuously_pending.end()) { g_continuously_pending[fde->id] = SpinCheck{.fde = fde, .timestamp = now, .cycle = cycle}; } else { it->second.cycle = cycle; } } for (auto it = g_continuously_pending.begin(); it != g_continuously_pending.end();) { if (it->second.cycle != cycle) { it = g_continuously_pending.erase(it); } else { // Use an absurdly long window, since all we really care about is // getting a bugreport eventually. if (now - it->second.timestamp > 300s) { LOG(FATAL_WITHOUT_ABORT) << "detected spin in fdevent: " << dump_fde(it->second.fde); #if defined(__linux__) int fd = it->second.fde->fd.get(); std::string fd_path = android::base::StringPrintf("/proc/self/fd/%d", fd); std::string path; if (!android::base::Readlink(fd_path, &path)) { PLOG(FATAL_WITHOUT_ABORT) << "readlink of fd " << fd << " failed"; } LOG(FATAL_WITHOUT_ABORT) << "fd " << fd << " = " << path; #endif abort(); } ++it; } } } void fdevent_loop() { set_main_thread(); fdevent_run_setup(); uint64_t cycle = 0; while (true) { if (terminate_loop) { return; } D("--- --- waiting for events"); fdevent_process(); fdevent_check_spin(cycle++); while (!g_pending_list.empty()) { fdevent* fde = g_pending_list.front(); g_pending_list.pop_front(); fdevent_call_fdfunc(fde); } if (run_needs_flush) { fdevent_run_flush(); run_needs_flush = false; } } } void fdevent_terminate_loop() { terminate_loop = true; } size_t fdevent_installed_count() { return g_poll_node_map.size(); } void fdevent_reset() { g_poll_node_map.clear(); g_pending_list.clear(); std::lock_guard lock(run_queue_mutex); run_queue_notify_fd.reset(); run_queue.clear(); main_thread_valid = false; terminate_loop = false; }