//==-- llvm/CodeGen/GlobalISel/Utils.h ---------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file declares the API of helper functions used throughout the /// GlobalISel pipeline. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_UTILS_H #define LLVM_CODEGEN_GLOBALISEL_UTILS_H #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/Register.h" namespace llvm { class AnalysisUsage; class MachineFunction; class MachineInstr; class MachineOperand; class MachineOptimizationRemarkEmitter; class MachineOptimizationRemarkMissed; class MachineRegisterInfo; class MCInstrDesc; class RegisterBankInfo; class TargetInstrInfo; class TargetPassConfig; class TargetRegisterInfo; class TargetRegisterClass; class Twine; class ConstantFP; class APFloat; /// Try to constrain Reg to the specified register class. If this fails, /// create a new virtual register in the correct class. /// /// \return The virtual register constrained to the right register class. unsigned constrainRegToClass(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, unsigned Reg, const TargetRegisterClass &RegClass); /// Constrain the Register operand OpIdx, so that it is now constrained to the /// TargetRegisterClass passed as an argument (RegClass). /// If this fails, create a new virtual register in the correct class and /// insert a COPY before \p InsertPt if it is a use or after if it is a /// definition. The debug location of \p InsertPt is used for the new copy. /// /// \return The virtual register constrained to the right register class. unsigned constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, const MachineOperand &RegMO, unsigned OpIdx); /// Try to constrain Reg so that it is usable by argument OpIdx of the /// provided MCInstrDesc \p II. If this fails, create a new virtual /// register in the correct class and insert a COPY before \p InsertPt /// if it is a use or after if it is a definition. /// This is equivalent to constrainOperandRegClass(..., RegClass, ...) /// with RegClass obtained from the MCInstrDesc. The debug location of \p /// InsertPt is used for the new copy. /// /// \return The virtual register constrained to the right register class. unsigned constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, const MachineOperand &RegMO, unsigned OpIdx); /// Mutate the newly-selected instruction \p I to constrain its (possibly /// generic) virtual register operands to the instruction's register class. /// This could involve inserting COPYs before (for uses) or after (for defs). /// This requires the number of operands to match the instruction description. /// \returns whether operand regclass constraining succeeded. /// // FIXME: Not all instructions have the same number of operands. We should // probably expose a constrain helper per operand and let the target selector // constrain individual registers, like fast-isel. bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI); /// Check whether an instruction \p MI is dead: it only defines dead virtual /// registers, and doesn't have other side effects. bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI); /// Report an ISel error as a missed optimization remark to the LLVMContext's /// diagnostic stream. Set the FailedISel MachineFunction property. void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R); void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, const char *PassName, StringRef Msg, const MachineInstr &MI); /// If \p VReg is defined by a G_CONSTANT fits in int64_t /// returns it. Optional getConstantVRegVal(unsigned VReg, const MachineRegisterInfo &MRI); /// Simple struct used to hold a constant integer value and a virtual /// register. struct ValueAndVReg { int64_t Value; unsigned VReg; }; /// If \p VReg is defined by a statically evaluable chain of /// instructions rooted on a G_CONSTANT (\p LookThroughInstrs == true) /// and that constant fits in int64_t, returns its value as well as /// the virtual register defined by this G_CONSTANT. /// When \p LookThroughInstrs == false, this function behaves like /// getConstantVRegVal. Optional getConstantVRegValWithLookThrough(unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs = true); const ConstantFP* getConstantFPVRegVal(unsigned VReg, const MachineRegisterInfo &MRI); /// See if Reg is defined by an single def instruction that is /// Opcode. Also try to do trivial folding if it's a COPY with /// same types. Returns null otherwise. MachineInstr *getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI); /// Find the def instruction for \p Reg, folding away any trivial copies. Note /// it may still return a COPY, if it changes the type. May return nullptr if \p /// Reg is not a generic virtual register. MachineInstr *getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI); /// Returns an APFloat from Val converted to the appropriate size. APFloat getAPFloatFromSize(double Val, unsigned Size); /// Modify analysis usage so it preserves passes required for the SelectionDAG /// fallback. void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU); Optional ConstantFoldBinOp(unsigned Opcode, const unsigned Op1, const unsigned Op2, const MachineRegisterInfo &MRI); Optional ConstantFoldExtOp(unsigned Opcode, const unsigned Op1, uint64_t Imm, const MachineRegisterInfo &MRI); /// Returns true if \p Val can be assumed to never be a NaN. If \p SNaN is true, /// this returns if \p Val can be assumed to never be a signaling NaN. bool isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, bool SNaN = false); /// Returns true if \p Val can be assumed to never be a signaling NaN. inline bool isKnownNeverSNaN(Register Val, const MachineRegisterInfo &MRI) { return isKnownNeverNaN(Val, MRI, true); } } // End namespace llvm. #endif