// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 ARM Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void mte_sync_page_tags(struct page *page, pte_t *ptep, bool check_swap) { pte_t old_pte = READ_ONCE(*ptep); if (check_swap && is_swap_pte(old_pte)) { swp_entry_t entry = pte_to_swp_entry(old_pte); if (!non_swap_entry(entry) && mte_restore_tags(entry, page)) return; } mte_clear_page_tags(page_address(page)); } void mte_sync_tags(pte_t *ptep, pte_t pte) { struct page *page = pte_page(pte); long i, nr_pages = compound_nr(page); bool check_swap = nr_pages == 1; /* if PG_mte_tagged is set, tags have already been initialised */ for (i = 0; i < nr_pages; i++, page++) { if (!test_and_set_bit(PG_mte_tagged, &page->flags)) mte_sync_page_tags(page, ptep, check_swap); } } int memcmp_pages(struct page *page1, struct page *page2) { char *addr1, *addr2; int ret; addr1 = page_address(page1); addr2 = page_address(page2); ret = memcmp(addr1, addr2, PAGE_SIZE); if (!system_supports_mte() || ret) return ret; /* * If the page content is identical but at least one of the pages is * tagged, return non-zero to avoid KSM merging. If only one of the * pages is tagged, set_pte_at() may zero or change the tags of the * other page via mte_sync_tags(). */ if (test_bit(PG_mte_tagged, &page1->flags) || test_bit(PG_mte_tagged, &page2->flags)) return addr1 != addr2; return ret; } static void update_sctlr_el1_tcf0(u64 tcf0) { /* ISB required for the kernel uaccess routines */ sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF0_MASK, tcf0); isb(); } static void set_sctlr_el1_tcf0(u64 tcf0) { /* * mte_thread_switch() checks current->thread.sctlr_tcf0 as an * optimisation. Disable preemption so that it does not see * the variable update before the SCTLR_EL1.TCF0 one. */ preempt_disable(); current->thread.sctlr_tcf0 = tcf0; update_sctlr_el1_tcf0(tcf0); preempt_enable(); } static void update_gcr_el1_excl(u64 incl) { u64 excl = ~incl & SYS_GCR_EL1_EXCL_MASK; /* * Note that 'incl' is an include mask (controlled by the user via * prctl()) while GCR_EL1 accepts an exclude mask. * No need for ISB since this only affects EL0 currently, implicit * with ERET. */ sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, excl); } static void set_gcr_el1_excl(u64 incl) { current->thread.gcr_user_incl = incl; update_gcr_el1_excl(incl); } void flush_mte_state(void) { if (!system_supports_mte()) return; /* clear any pending asynchronous tag fault */ dsb(ish); write_sysreg_s(0, SYS_TFSRE0_EL1); clear_thread_flag(TIF_MTE_ASYNC_FAULT); /* disable tag checking */ set_sctlr_el1_tcf0(SCTLR_EL1_TCF0_NONE); /* reset tag generation mask */ set_gcr_el1_excl(0); } void mte_thread_switch(struct task_struct *next) { if (!system_supports_mte()) return; /* avoid expensive SCTLR_EL1 accesses if no change */ if (current->thread.sctlr_tcf0 != next->thread.sctlr_tcf0) update_sctlr_el1_tcf0(next->thread.sctlr_tcf0); update_gcr_el1_excl(next->thread.gcr_user_incl); } void mte_suspend_exit(void) { if (!system_supports_mte()) return; update_gcr_el1_excl(current->thread.gcr_user_incl); } long set_mte_ctrl(struct task_struct *task, unsigned long arg) { u64 tcf0; u64 gcr_incl = (arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT; if (!system_supports_mte()) return 0; switch (arg & PR_MTE_TCF_MASK) { case PR_MTE_TCF_NONE: tcf0 = SCTLR_EL1_TCF0_NONE; break; case PR_MTE_TCF_SYNC: tcf0 = SCTLR_EL1_TCF0_SYNC; break; case PR_MTE_TCF_ASYNC: tcf0 = SCTLR_EL1_TCF0_ASYNC; break; default: return -EINVAL; } if (task != current) { task->thread.sctlr_tcf0 = tcf0; task->thread.gcr_user_incl = gcr_incl; } else { set_sctlr_el1_tcf0(tcf0); set_gcr_el1_excl(gcr_incl); } return 0; } long get_mte_ctrl(struct task_struct *task) { unsigned long ret; if (!system_supports_mte()) return 0; ret = task->thread.gcr_user_incl << PR_MTE_TAG_SHIFT; switch (task->thread.sctlr_tcf0) { case SCTLR_EL1_TCF0_NONE: ret |= PR_MTE_TCF_NONE; break; case SCTLR_EL1_TCF0_SYNC: ret |= PR_MTE_TCF_SYNC; break; case SCTLR_EL1_TCF0_ASYNC: ret |= PR_MTE_TCF_ASYNC; break; } return ret; } /* * Access MTE tags in another process' address space as given in mm. Update * the number of tags copied. Return 0 if any tags copied, error otherwise. * Inspired by __access_remote_vm(). */ static int __access_remote_tags(struct mm_struct *mm, unsigned long addr, struct iovec *kiov, unsigned int gup_flags) { struct vm_area_struct *vma; void __user *buf = kiov->iov_base; size_t len = kiov->iov_len; int ret; int write = gup_flags & FOLL_WRITE; if (!access_ok(buf, len)) return -EFAULT; if (mmap_read_lock_killable(mm)) return -EIO; while (len) { unsigned long tags, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) break; /* * Only copy tags if the page has been mapped as PROT_MTE * (PG_mte_tagged set). Otherwise the tags are not valid and * not accessible to user. Moreover, an mprotect(PROT_MTE) * would cause the existing tags to be cleared if the page * was never mapped with PROT_MTE. */ if (!(vma->vm_flags & VM_MTE)) { ret = -EOPNOTSUPP; put_page(page); break; } WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags)); /* limit access to the end of the page */ offset = offset_in_page(addr); tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE); maddr = page_address(page); if (write) { tags = mte_copy_tags_from_user(maddr + offset, buf, tags); set_page_dirty_lock(page); } else { tags = mte_copy_tags_to_user(buf, maddr + offset, tags); } put_page(page); /* error accessing the tracer's buffer */ if (!tags) break; len -= tags; buf += tags; addr += tags * MTE_GRANULE_SIZE; } mmap_read_unlock(mm); /* return an error if no tags copied */ kiov->iov_len = buf - kiov->iov_base; if (!kiov->iov_len) { /* check for error accessing the tracee's address space */ if (ret <= 0) return -EIO; else return -EFAULT; } return 0; } /* * Copy MTE tags in another process' address space at 'addr' to/from tracer's * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm(). */ static int access_remote_tags(struct task_struct *tsk, unsigned long addr, struct iovec *kiov, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return -EPERM; if (!tsk->ptrace || (current != tsk->parent) || ((get_dumpable(mm) != SUID_DUMP_USER) && !ptracer_capable(tsk, mm->user_ns))) { mmput(mm); return -EPERM; } ret = __access_remote_tags(mm, addr, kiov, gup_flags); mmput(mm); return ret; } int mte_ptrace_copy_tags(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret; struct iovec kiov; struct iovec __user *uiov = (void __user *)data; unsigned int gup_flags = FOLL_FORCE; if (!system_supports_mte()) return -EIO; if (get_user(kiov.iov_base, &uiov->iov_base) || get_user(kiov.iov_len, &uiov->iov_len)) return -EFAULT; if (request == PTRACE_POKEMTETAGS) gup_flags |= FOLL_WRITE; /* align addr to the MTE tag granule */ addr &= MTE_GRANULE_MASK; ret = access_remote_tags(child, addr, &kiov, gup_flags); if (!ret) ret = put_user(kiov.iov_len, &uiov->iov_len); return ret; }