summaryrefslogtreecommitdiffstats
path: root/libc/bionic/pthread.c
blob: ab806c0dc759cf7beef63dec408558907beba5c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <pthread.h>

#include <errno.h>
#include <limits.h>
#include <sys/atomics.h>
#include <sys/mman.h>
#include <unistd.h>

#include "bionic_atomic_inline.h"
#include "bionic_futex.h"
#include "bionic_pthread.h"
#include "bionic_tls.h"
#include "pthread_internal.h"
#include "thread_private.h"

extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);

extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int status);
extern void _exit_thread(int status);

int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
{
    return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
}

int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
{
    return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
}

/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
 *         and thread cancelation
 */

void __pthread_cleanup_push( __pthread_cleanup_t*      c,
                             __pthread_cleanup_func_t  routine,
                             void*                     arg )
{
    pthread_internal_t*  thread = __get_thread();

    c->__cleanup_routine  = routine;
    c->__cleanup_arg      = arg;
    c->__cleanup_prev     = thread->cleanup_stack;
    thread->cleanup_stack = c;
}

void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
{
    pthread_internal_t*  thread = __get_thread();

    thread->cleanup_stack = c->__cleanup_prev;
    if (execute)
        c->__cleanup_routine(c->__cleanup_arg);
}

void pthread_exit(void * retval)
{
    pthread_internal_t*  thread     = __get_thread();
    void*                stack_base = thread->attr.stack_base;
    int                  stack_size = thread->attr.stack_size;
    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
    sigset_t mask;

    // call the cleanup handlers first
    while (thread->cleanup_stack) {
        __pthread_cleanup_t*  c = thread->cleanup_stack;
        thread->cleanup_stack   = c->__cleanup_prev;
        c->__cleanup_routine(c->__cleanup_arg);
    }

    // call the TLS destructors, it is important to do that before removing this
    // thread from the global list. this will ensure that if someone else deletes
    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
    // space (see pthread_key_delete)
    pthread_key_clean_all();

    if (thread->alternate_signal_stack != NULL) {
      // Tell the kernel to stop using the alternate signal stack.
      stack_t ss;
      ss.ss_sp = NULL;
      ss.ss_flags = SS_DISABLE;
      sigaltstack(&ss, NULL);

      // Free it.
      munmap(thread->alternate_signal_stack, SIGSTKSZ);
      thread->alternate_signal_stack = NULL;
    }

    // if the thread is detached, destroy the pthread_internal_t
    // otherwise, keep it in memory and signal any joiners.
    pthread_mutex_lock(&gThreadListLock);
    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
        _pthread_internal_remove_locked(thread);
    } else {
       /* make sure that the thread struct doesn't have stale pointers to a stack that
        * will be unmapped after the exit call below.
        */
        if (!user_stack) {
            thread->attr.stack_base = NULL;
            thread->attr.stack_size = 0;
            thread->tls = NULL;
        }

       /* Indicate that the thread has exited for joining threads. */
        thread->attr.flags |= PTHREAD_ATTR_FLAG_ZOMBIE;
        thread->return_value = retval;

       /* Signal the joining thread if present. */
        if (thread->attr.flags & PTHREAD_ATTR_FLAG_JOINED) {
            pthread_cond_signal(&thread->join_cond);
        }
    }
    pthread_mutex_unlock(&gThreadListLock);

    sigfillset(&mask);
    sigdelset(&mask, SIGSEGV);
    sigprocmask(SIG_SETMASK, &mask, NULL);

    if (user_stack) {
        // Cleaning up this thread's stack is the creator's responsibility, not ours.
        _exit_thread(0);
    } else {
        // We need to munmap the stack we're running on before calling exit.
        // That's not something we can do in C.
        _exit_with_stack_teardown(stack_base, stack_size, 0);
    }
}

/* a mutex is implemented as a 32-bit integer holding the following fields
 *
 * bits:     name     description
 * 31-16     tid      owner thread's tid (recursive and errorcheck only)
 * 15-14     type     mutex type
 * 13        shared   process-shared flag
 * 12-2      counter  counter of recursive mutexes
 * 1-0       state    lock state (0, 1 or 2)
 */

/* Convenience macro, creates a mask of 'bits' bits that starts from
 * the 'shift'-th least significant bit in a 32-bit word.
 *
 * Examples: FIELD_MASK(0,4)  -> 0xf
 *           FIELD_MASK(16,9) -> 0x1ff0000
 */
#define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))

/* This one is used to create a bit pattern from a given field value */
#define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))

/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
#define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))

/* Mutex state:
 *
 * 0 for unlocked
 * 1 for locked, no waiters
 * 2 for locked, maybe waiters
 */
#define  MUTEX_STATE_SHIFT      0
#define  MUTEX_STATE_LEN        2

#define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)

#define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
#define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
#define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */

#define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)

#define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
#define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
#define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)

/* return true iff the mutex if locked with no waiters */
#define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)

/* return true iff the mutex if locked with maybe waiters */
#define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)

/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
#define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))

/* Mutex counter:
 *
 * We need to check for overflow before incrementing, and we also need to
 * detect when the counter is 0
 */
#define  MUTEX_COUNTER_SHIFT         2
#define  MUTEX_COUNTER_LEN           11
#define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)

#define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
#define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)

/* Used to increment the counter directly after overflow has been checked */
#define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)

/* Returns true iff the counter is 0 */
#define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)

/* Mutex shared bit flag
 *
 * This flag is set to indicate that the mutex is shared among processes.
 * This changes the futex opcode we use for futex wait/wake operations
 * (non-shared operations are much faster).
 */
#define  MUTEX_SHARED_SHIFT    13
#define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)

/* Mutex type:
 *
 * We support normal, recursive and errorcheck mutexes.
 *
 * The constants defined here *cannot* be changed because they must match
 * the C library ABI which defines the following initialization values in
 * <pthread.h>:
 *
 *   __PTHREAD_MUTEX_INIT_VALUE
 *   __PTHREAD_RECURSIVE_MUTEX_VALUE
 *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
 */
#define  MUTEX_TYPE_SHIFT      14
#define  MUTEX_TYPE_LEN        2
#define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)

#define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
#define  MUTEX_TYPE_RECURSIVE       1
#define  MUTEX_TYPE_ERRORCHECK      2

#define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)

#define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
#define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
#define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)

/* Mutex owner field:
 *
 * This is only used for recursive and errorcheck mutexes. It holds the
 * tid of the owning thread. Note that this works because the Linux
 * kernel _only_ uses 16-bit values for tids.
 *
 * More specifically, it will wrap to 10000 when it reaches over 32768 for
 * application processes. You can check this by running the following inside
 * an adb shell session:
 *
    OLDPID=$$;
    while true; do
    NEWPID=$(sh -c 'echo $$')
    if [ "$NEWPID" -gt 32768 ]; then
        echo "AARGH: new PID $NEWPID is too high!"
        exit 1
    fi
    if [ "$NEWPID" -lt "$OLDPID" ]; then
        echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
    else
        echo -n "$NEWPID!"
    fi
    OLDPID=$NEWPID
    done

 * Note that you can run the same example on a desktop Linux system,
 * the wrapping will also happen at 32768, but will go back to 300 instead.
 */
#define  MUTEX_OWNER_SHIFT     16
#define  MUTEX_OWNER_LEN       16

#define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
#define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)

/* Convenience macros.
 *
 * These are used to form or modify the bit pattern of a given mutex value
 */



/* a mutex attribute holds the following fields
 *
 * bits:     name       description
 * 0-3       type       type of mutex
 * 4         shared     process-shared flag
 */
#define  MUTEXATTR_TYPE_MASK   0x000f
#define  MUTEXATTR_SHARED_MASK 0x0010


int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
    if (attr) {
        *attr = PTHREAD_MUTEX_DEFAULT;
        return 0;
    } else {
        return EINVAL;
    }
}

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
    if (attr) {
        *attr = -1;
        return 0;
    } else {
        return EINVAL;
    }
}

int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
    if (attr) {
        int  atype = (*attr & MUTEXATTR_TYPE_MASK);

         if (atype >= PTHREAD_MUTEX_NORMAL &&
             atype <= PTHREAD_MUTEX_ERRORCHECK) {
            *type = atype;
            return 0;
        }
    }
    return EINVAL;
}

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
                type <= PTHREAD_MUTEX_ERRORCHECK ) {
        *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
        return 0;
    }
    return EINVAL;
}

/* process-shared mutexes are not supported at the moment */

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
{
    if (!attr)
        return EINVAL;

    switch (pshared) {
    case PTHREAD_PROCESS_PRIVATE:
        *attr &= ~MUTEXATTR_SHARED_MASK;
        return 0;

    case PTHREAD_PROCESS_SHARED:
        /* our current implementation of pthread actually supports shared
         * mutexes but won't cleanup if a process dies with the mutex held.
         * Nevertheless, it's better than nothing. Shared mutexes are used
         * by surfaceflinger and audioflinger.
         */
        *attr |= MUTEXATTR_SHARED_MASK;
        return 0;
    }
    return EINVAL;
}

int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
{
    if (!attr || !pshared)
        return EINVAL;

    *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
                                               : PTHREAD_PROCESS_PRIVATE;
    return 0;
}

int pthread_mutex_init(pthread_mutex_t *mutex,
                       const pthread_mutexattr_t *attr)
{
    int value = 0;

    if (mutex == NULL)
        return EINVAL;

    if (__predict_true(attr == NULL)) {
        mutex->value = MUTEX_TYPE_BITS_NORMAL;
        return 0;
    }

    if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
        value |= MUTEX_SHARED_MASK;

    switch (*attr & MUTEXATTR_TYPE_MASK) {
    case PTHREAD_MUTEX_NORMAL:
        value |= MUTEX_TYPE_BITS_NORMAL;
        break;
    case PTHREAD_MUTEX_RECURSIVE:
        value |= MUTEX_TYPE_BITS_RECURSIVE;
        break;
    case PTHREAD_MUTEX_ERRORCHECK:
        value |= MUTEX_TYPE_BITS_ERRORCHECK;
        break;
    default:
        return EINVAL;
    }

    mutex->value = value;
    return 0;
}


/*
 * Lock a non-recursive mutex.
 *
 * As noted above, there are three states:
 *   0 (unlocked, no contention)
 *   1 (locked, no contention)
 *   2 (locked, contention)
 *
 * Non-recursive mutexes don't use the thread-id or counter fields, and the
 * "type" value is zero, so the only bits that will be set are the ones in
 * the lock state field.
 */
static __inline__ void
_normal_lock(pthread_mutex_t*  mutex, int shared)
{
    /* convenience shortcuts */
    const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
    const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    /*
     * The common case is an unlocked mutex, so we begin by trying to
     * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
     * __bionic_cmpxchg() returns 0 if it made the swap successfully.
     * If the result is nonzero, this lock is already held by another thread.
     */
    if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
        const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
        /*
         * We want to go to sleep until the mutex is available, which
         * requires promoting it to state 2 (CONTENDED). We need to
         * swap in the new state value and then wait until somebody wakes us up.
         *
         * __bionic_swap() returns the previous value.  We swap 2 in and
         * see if we got zero back; if so, we have acquired the lock.  If
         * not, another thread still holds the lock and we wait again.
         *
         * The second argument to the __futex_wait() call is compared
         * against the current value.  If it doesn't match, __futex_wait()
         * returns immediately (otherwise, it sleeps for a time specified
         * by the third argument; 0 means sleep forever).  This ensures
         * that the mutex is in state 2 when we go to sleep on it, which
         * guarantees a wake-up call.
         */
        while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
            __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
    }
    ANDROID_MEMBAR_FULL();
}

/*
 * Release a non-recursive mutex.  The caller is responsible for determining
 * that we are in fact the owner of this lock.
 */
static __inline__ void
_normal_unlock(pthread_mutex_t*  mutex, int shared)
{
    ANDROID_MEMBAR_FULL();

    /*
     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
     * to release the lock.  __bionic_atomic_dec() returns the previous value;
     * if it wasn't 1 we have to do some additional work.
     */
    if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
        /*
         * Start by releasing the lock.  The decrement changed it from
         * "contended lock" to "uncontended lock", which means we still
         * hold it, and anybody who tries to sneak in will push it back
         * to state 2.
         *
         * Once we set it to zero the lock is up for grabs.  We follow
         * this with a __futex_wake() to ensure that one of the waiting
         * threads has a chance to grab it.
         *
         * This doesn't cause a race with the swap/wait pair in
         * _normal_lock(), because the __futex_wait() call there will
         * return immediately if the mutex value isn't 2.
         */
        mutex->value = shared;

        /*
         * Wake up one waiting thread.  We don't know which thread will be
         * woken or when it'll start executing -- futexes make no guarantees
         * here.  There may not even be a thread waiting.
         *
         * The newly-woken thread will replace the 0 we just set above
         * with 2, which means that when it eventually releases the mutex
         * it will also call FUTEX_WAKE.  This results in one extra wake
         * call whenever a lock is contended, but lets us avoid forgetting
         * anyone without requiring us to track the number of sleepers.
         *
         * It's possible for another thread to sneak in and grab the lock
         * between the zero assignment above and the wake call below.  If
         * the new thread is "slow" and holds the lock for a while, we'll
         * wake up a sleeper, which will swap in a 2 and then go back to
         * sleep since the lock is still held.  If the new thread is "fast",
         * running to completion before we call wake, the thread we
         * eventually wake will find an unlocked mutex and will execute.
         * Either way we have correct behavior and nobody is orphaned on
         * the wait queue.
         */
        __futex_wake_ex(&mutex->value, shared, 1);
    }
}

/* This common inlined function is used to increment the counter of an
 * errorcheck or recursive mutex.
 *
 * For errorcheck mutexes, it will return EDEADLK
 * If the counter overflows, it will return EAGAIN
 * Otherwise, it atomically increments the counter and returns 0
 * after providing an acquire barrier.
 *
 * mtype is the current mutex type
 * mvalue is the current mutex value (already loaded)
 * mutex pointers to the mutex.
 */
static __inline__ __attribute__((always_inline)) int
_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
{
    if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
        /* trying to re-lock a mutex we already acquired */
        return EDEADLK;
    }

    /* Detect recursive lock overflow and return EAGAIN.
     * This is safe because only the owner thread can modify the
     * counter bits in the mutex value.
     */
    if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
        return EAGAIN;
    }

    /* We own the mutex, but other threads are able to change
     * the lower bits (e.g. promoting it to "contended"), so we
     * need to use an atomic cmpxchg loop to update the counter.
     */
    for (;;) {
        /* increment counter, overflow was already checked */
        int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
        if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
            /* mutex is still locked, not need for a memory barrier */
            return 0;
        }
        /* the value was changed, this happens when another thread changes
         * the lower state bits from 1 to 2 to indicate contention. This
         * cannot change the counter, so simply reload and try again.
         */
        mvalue = mutex->value;
    }
}

__LIBC_HIDDEN__
int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
{
    int mvalue, mtype, tid, shared;

    if (__predict_false(mutex == NULL))
        return EINVAL;

    mvalue = mutex->value;
    mtype = (mvalue & MUTEX_TYPE_MASK);
    shared = (mvalue & MUTEX_SHARED_MASK);

    /* Handle normal case first */
    if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
        _normal_lock(mutex, shared);
        return 0;
    }

    /* Do we already own this recursive or error-check mutex ? */
    tid = __get_thread()->tid;
    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
        return _recursive_increment(mutex, mvalue, mtype);

    /* Add in shared state to avoid extra 'or' operations below */
    mtype |= shared;

    /* First, if the mutex is unlocked, try to quickly acquire it.
     * In the optimistic case where this works, set the state to 1 to
     * indicate locked with no contention */
    if (mvalue == mtype) {
        int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
        if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
            ANDROID_MEMBAR_FULL();
            return 0;
        }
        /* argh, the value changed, reload before entering the loop */
        mvalue = mutex->value;
    }

    for (;;) {
        int newval;

        /* if the mutex is unlocked, its value should be 'mtype' and
         * we try to acquire it by setting its owner and state atomically.
         * NOTE: We put the state to 2 since we _know_ there is contention
         * when we are in this loop. This ensures all waiters will be
         * unlocked.
         */
        if (mvalue == mtype) {
            newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
            /* TODO: Change this to __bionic_cmpxchg_acquire when we
             *        implement it to get rid of the explicit memory
             *        barrier below.
             */
            if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
                mvalue = mutex->value;
                continue;
            }
            ANDROID_MEMBAR_FULL();
            return 0;
        }

        /* the mutex is already locked by another thread, if its state is 1
         * we will change it to 2 to indicate contention. */
        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
            newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
            if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
                mvalue = mutex->value;
                continue;
            }
            mvalue = newval;
        }

        /* wait until the mutex is unlocked */
        __futex_wait_ex(&mutex->value, shared, mvalue, NULL);

        mvalue = mutex->value;
    }
    /* NOTREACHED */
}

int pthread_mutex_lock(pthread_mutex_t *mutex)
{
    int err = pthread_mutex_lock_impl(mutex);
#ifdef PTHREAD_DEBUG
    if (PTHREAD_DEBUG_ENABLED) {
        if (!err) {
            pthread_debug_mutex_lock_check(mutex);
        }
    }
#endif
    return err;
}

__LIBC_HIDDEN__
int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
{
    int mvalue, mtype, tid, shared;

    if (__predict_false(mutex == NULL))
        return EINVAL;

    mvalue = mutex->value;
    mtype  = (mvalue & MUTEX_TYPE_MASK);
    shared = (mvalue & MUTEX_SHARED_MASK);

    /* Handle common case first */
    if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
        _normal_unlock(mutex, shared);
        return 0;
    }

    /* Do we already own this recursive or error-check mutex ? */
    tid = __get_thread()->tid;
    if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
        return EPERM;

    /* If the counter is > 0, we can simply decrement it atomically.
     * Since other threads can mutate the lower state bits (and only the
     * lower state bits), use a cmpxchg to do it.
     */
    if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
        for (;;) {
            int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
            if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
                /* success: we still own the mutex, so no memory barrier */
                return 0;
            }
            /* the value changed, so reload and loop */
            mvalue = mutex->value;
        }
    }

    /* the counter is 0, so we're going to unlock the mutex by resetting
     * its value to 'unlocked'. We need to perform a swap in order
     * to read the current state, which will be 2 if there are waiters
     * to awake.
     *
     * TODO: Change this to __bionic_swap_release when we implement it
     *        to get rid of the explicit memory barrier below.
     */
    ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
    mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);

    /* Wake one waiting thread, if any */
    if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
        __futex_wake_ex(&mutex->value, shared, 1);
    }
    return 0;
}

int pthread_mutex_unlock(pthread_mutex_t *mutex)
{
#ifdef PTHREAD_DEBUG
    if (PTHREAD_DEBUG_ENABLED) {
        pthread_debug_mutex_unlock_check(mutex);
    }
#endif
    return pthread_mutex_unlock_impl(mutex);
}

__LIBC_HIDDEN__
int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
{
    int mvalue, mtype, tid, shared;

    if (__predict_false(mutex == NULL))
        return EINVAL;

    mvalue = mutex->value;
    mtype  = (mvalue & MUTEX_TYPE_MASK);
    shared = (mvalue & MUTEX_SHARED_MASK);

    /* Handle common case first */
    if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
    {
        if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
                             shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
                             &mutex->value) == 0) {
            ANDROID_MEMBAR_FULL();
            return 0;
        }

        return EBUSY;
    }

    /* Do we already own this recursive or error-check mutex ? */
    tid = __get_thread()->tid;
    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
        return _recursive_increment(mutex, mvalue, mtype);

    /* Same as pthread_mutex_lock, except that we don't want to wait, and
     * the only operation that can succeed is a single cmpxchg to acquire the
     * lock if it is released / not owned by anyone. No need for a complex loop.
     */
    mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
    mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;

    if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
        ANDROID_MEMBAR_FULL();
        return 0;
    }

    return EBUSY;
}

int pthread_mutex_trylock(pthread_mutex_t *mutex)
{
    int err = pthread_mutex_trylock_impl(mutex);
#ifdef PTHREAD_DEBUG
    if (PTHREAD_DEBUG_ENABLED) {
        if (!err) {
            pthread_debug_mutex_lock_check(mutex);
        }
    }
#endif
    return err;
}

/* initialize 'ts' with the difference between 'abstime' and the current time
 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
 */
static int
__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
{
    clock_gettime(clock, ts);
    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
    if (ts->tv_nsec < 0) {
        ts->tv_sec--;
        ts->tv_nsec += 1000000000;
    }
    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
        return -1;

    return 0;
}

/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
 * milliseconds.
 */
static void
__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
{
    clock_gettime(clock, abstime);
    abstime->tv_sec  += msecs/1000;
    abstime->tv_nsec += (msecs%1000)*1000000;
    if (abstime->tv_nsec >= 1000000000) {
        abstime->tv_sec++;
        abstime->tv_nsec -= 1000000000;
    }
}

__LIBC_HIDDEN__
int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
{
    clockid_t        clock = CLOCK_MONOTONIC;
    struct timespec  abstime;
    struct timespec  ts;
    int               mvalue, mtype, tid, shared;

    /* compute absolute expiration time */
    __timespec_to_relative_msec(&abstime, msecs, clock);

    if (__predict_false(mutex == NULL))
        return EINVAL;

    mvalue = mutex->value;
    mtype  = (mvalue & MUTEX_TYPE_MASK);
    shared = (mvalue & MUTEX_SHARED_MASK);

    /* Handle common case first */
    if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
    {
        const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
        const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
        const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;

        /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
        if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
            ANDROID_MEMBAR_FULL();
            return 0;
        }

        /* loop while needed */
        while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
                return EBUSY;

            __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
        }
        ANDROID_MEMBAR_FULL();
        return 0;
    }

    /* Do we already own this recursive or error-check mutex ? */
    tid = __get_thread()->tid;
    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
        return _recursive_increment(mutex, mvalue, mtype);

    /* the following implements the same loop than pthread_mutex_lock_impl
     * but adds checks to ensure that the operation never exceeds the
     * absolute expiration time.
     */
    mtype |= shared;

    /* first try a quick lock */
    if (mvalue == mtype) {
        mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
        if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
            ANDROID_MEMBAR_FULL();
            return 0;
        }
        mvalue = mutex->value;
    }

    for (;;) {
        struct timespec ts;

        /* if the value is 'unlocked', try to acquire it directly */
        /* NOTE: put state to 2 since we know there is contention */
        if (mvalue == mtype) /* unlocked */ {
            mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
            if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
                ANDROID_MEMBAR_FULL();
                return 0;
            }
            /* the value changed before we could lock it. We need to check
             * the time to avoid livelocks, reload the value, then loop again. */
            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
                return EBUSY;

            mvalue = mutex->value;
            continue;
        }

        /* The value is locked. If 'uncontended', try to switch its state
         * to 'contented' to ensure we get woken up later. */
        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
            int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
            if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
                /* this failed because the value changed, reload it */
                mvalue = mutex->value;
            } else {
                /* this succeeded, update mvalue */
                mvalue = newval;
            }
        }

        /* check time and update 'ts' */
        if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
            return EBUSY;

        /* Only wait to be woken up if the state is '2', otherwise we'll
         * simply loop right now. This can happen when the second cmpxchg
         * in our loop failed because the mutex was unlocked by another
         * thread.
         */
        if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
            if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
                return EBUSY;
            }
            mvalue = mutex->value;
        }
    }
    /* NOTREACHED */
}

int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
{
    int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
#ifdef PTHREAD_DEBUG
    if (PTHREAD_DEBUG_ENABLED) {
        if (!err) {
            pthread_debug_mutex_lock_check(mutex);
        }
    }
#endif
    return err;
}

int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
    int ret;

    /* use trylock to ensure that the mutex value is
     * valid and is not already locked. */
    ret = pthread_mutex_trylock_impl(mutex);
    if (ret != 0)
        return ret;

    mutex->value = 0xdead10cc;
    return 0;
}



int pthread_condattr_init(pthread_condattr_t *attr)
{
    if (attr == NULL)
        return EINVAL;

    *attr = PTHREAD_PROCESS_PRIVATE;
    return 0;
}

int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
{
    if (attr == NULL || pshared == NULL)
        return EINVAL;

    *pshared = *attr;
    return 0;
}

int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
{
    if (attr == NULL)
        return EINVAL;

    if (pshared != PTHREAD_PROCESS_SHARED &&
        pshared != PTHREAD_PROCESS_PRIVATE)
        return EINVAL;

    *attr = pshared;
    return 0;
}

int pthread_condattr_destroy(pthread_condattr_t *attr)
{
    if (attr == NULL)
        return EINVAL;

    *attr = 0xdeada11d;
    return 0;
}

/* We use one bit in condition variable values as the 'shared' flag
 * The rest is a counter.
 */
#define COND_SHARED_MASK        0x0001
#define COND_COUNTER_INCREMENT  0x0002
#define COND_COUNTER_MASK       (~COND_SHARED_MASK)

#define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)

/* XXX *technically* there is a race condition that could allow
 * XXX a signal to be missed.  If thread A is preempted in _wait()
 * XXX after unlocking the mutex and before waiting, and if other
 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
 * XXX before thread A is scheduled again and calls futex_wait(),
 * XXX then the signal will be lost.
 */

int pthread_cond_init(pthread_cond_t *cond,
                      const pthread_condattr_t *attr)
{
    if (cond == NULL)
        return EINVAL;

    cond->value = 0;

    if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
        cond->value |= COND_SHARED_MASK;

    return 0;
}

int pthread_cond_destroy(pthread_cond_t *cond)
{
    if (cond == NULL)
        return EINVAL;

    cond->value = 0xdeadc04d;
    return 0;
}

/* This function is used by pthread_cond_broadcast and
 * pthread_cond_signal to atomically decrement the counter
 * then wake-up 'counter' threads.
 */
static int
__pthread_cond_pulse(pthread_cond_t *cond, int  counter)
{
    long flags;

    if (__predict_false(cond == NULL))
        return EINVAL;

    flags = (cond->value & ~COND_COUNTER_MASK);
    for (;;) {
        long oldval = cond->value;
        long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
                      | flags;
        if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
            break;
    }

    /*
     * Ensure that all memory accesses previously made by this thread are
     * visible to the woken thread(s).  On the other side, the "wait"
     * code will issue any necessary barriers when locking the mutex.
     *
     * This may not strictly be necessary -- if the caller follows
     * recommended practice and holds the mutex before signaling the cond
     * var, the mutex ops will provide correct semantics.  If they don't
     * hold the mutex, they're subject to race conditions anyway.
     */
    ANDROID_MEMBAR_FULL();

    __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
    return 0;
}

int pthread_cond_broadcast(pthread_cond_t *cond)
{
    return __pthread_cond_pulse(cond, INT_MAX);
}

int pthread_cond_signal(pthread_cond_t *cond)
{
    return __pthread_cond_pulse(cond, 1);
}

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
    return pthread_cond_timedwait(cond, mutex, NULL);
}

int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
                                      pthread_mutex_t * mutex,
                                      const struct timespec *reltime)
{
    int  status;
    int  oldvalue = cond->value;

    pthread_mutex_unlock(mutex);
    status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
    pthread_mutex_lock(mutex);

    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
    return 0;
}

int __pthread_cond_timedwait(pthread_cond_t *cond,
                             pthread_mutex_t * mutex,
                             const struct timespec *abstime,
                             clockid_t clock)
{
    struct timespec ts;
    struct timespec * tsp;

    if (abstime != NULL) {
        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
            return ETIMEDOUT;
        tsp = &ts;
    } else {
        tsp = NULL;
    }

    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
}

int pthread_cond_timedwait(pthread_cond_t *cond,
                           pthread_mutex_t * mutex,
                           const struct timespec *abstime)
{
    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
}


/* this one exists only for backward binary compatibility */
int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
                                     pthread_mutex_t * mutex,
                                     const struct timespec *abstime)
{
    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
}

int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
                                     pthread_mutex_t * mutex,
                                     const struct timespec *abstime)
{
    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
}

int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
                                      pthread_mutex_t * mutex,
                                      const struct timespec *reltime)
{
    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
}

int pthread_cond_timeout_np(pthread_cond_t *cond,
                            pthread_mutex_t * mutex,
                            unsigned msecs)
{
    struct timespec ts;

    ts.tv_sec = msecs / 1000;
    ts.tv_nsec = (msecs % 1000) * 1000000;

    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
}


/* NOTE: this implementation doesn't support a init function that throws a C++ exception
 *       or calls fork()
 */
int pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
{
    volatile pthread_once_t* ocptr = once_control;

    /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
     *
     *   bit 0 set  -> initialization is under way
     *   bit 1 set  -> initialization is complete
     */
#define ONCE_INITIALIZING           (1 << 0)
#define ONCE_COMPLETED              (1 << 1)

    /* First check if the once is already initialized. This will be the common
    * case and we want to make this as fast as possible. Note that this still
    * requires a load_acquire operation here to ensure that all the
    * stores performed by the initialization function are observable on
    * this CPU after we exit.
    */
    if (__predict_true((*ocptr & ONCE_COMPLETED) != 0)) {
        ANDROID_MEMBAR_FULL();
        return 0;
    }

    for (;;) {
        /* Try to atomically set the INITIALIZING flag.
         * This requires a cmpxchg loop, and we may need
         * to exit prematurely if we detect that
         * COMPLETED is now set.
         */
        int32_t  oldval, newval;

        do {
            oldval = *ocptr;
            if ((oldval & ONCE_COMPLETED) != 0)
                break;

            newval = oldval | ONCE_INITIALIZING;
        } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);

        if ((oldval & ONCE_COMPLETED) != 0) {
            /* We detected that COMPLETED was set while in our loop */
            ANDROID_MEMBAR_FULL();
            return 0;
        }

        if ((oldval & ONCE_INITIALIZING) == 0) {
            /* We got there first, we can jump out of the loop to
             * handle the initialization */
            break;
        }

        /* Another thread is running the initialization and hasn't completed
         * yet, so wait for it, then try again. */
        __futex_wait_ex(ocptr, 0, oldval, NULL);
    }

    /* call the initialization function. */
    (*init_routine)();

    /* Do a store_release indicating that initialization is complete */
    ANDROID_MEMBAR_FULL();
    *ocptr = ONCE_COMPLETED;

    /* Wake up any waiters, if any */
    __futex_wake_ex(ocptr, 0, INT_MAX);

    return 0;
}

pid_t __pthread_gettid(pthread_t thid) {
  pthread_internal_t* thread = (pthread_internal_t*) thid;
  return thread->tid;
}

int __pthread_settid(pthread_t thid, pid_t tid) {
  if (thid == 0) {
      return EINVAL;
  }

  pthread_internal_t* thread = (pthread_internal_t*) thid;
  thread->tid = tid;

  return 0;
}