/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "parallel_move_resolver.h" #include "nodes.h" namespace art { void ParallelMoveResolver::BuildInitialMoveList(HParallelMove* parallel_move) { // Perform a linear sweep of the moves to add them to the initial list of // moves to perform, ignoring any move that is redundant (the source is // the same as the destination, the destination is ignored and // unallocated, or the move was already eliminated). for (size_t i = 0; i < parallel_move->NumMoves(); ++i) { MoveOperands* move = parallel_move->MoveOperandsAt(i); if (!move->IsRedundant()) { moves_.Add(move); } } } void ParallelMoveResolverWithSwap::EmitNativeCode(HParallelMove* parallel_move) { DCHECK(moves_.IsEmpty()); // Build up a worklist of moves. BuildInitialMoveList(parallel_move); for (size_t i = 0; i < moves_.Size(); ++i) { const MoveOperands& move = *moves_.Get(i); // Skip constants to perform them last. They don't block other moves // and skipping such moves with register destinations keeps those // registers free for the whole algorithm. if (!move.IsEliminated() && !move.GetSource().IsConstant()) { PerformMove(i); } } // Perform the moves with constant sources. for (size_t i = 0; i < moves_.Size(); ++i) { MoveOperands* move = moves_.Get(i); if (!move->IsEliminated()) { DCHECK(move->GetSource().IsConstant()); EmitMove(i); // Eliminate the move, in case following moves need a scratch register. move->Eliminate(); } } moves_.Reset(); } Location LowOf(Location location) { if (location.IsRegisterPair()) { return Location::RegisterLocation(location.low()); } else if (location.IsFpuRegisterPair()) { return Location::FpuRegisterLocation(location.low()); } else if (location.IsDoubleStackSlot()) { return Location::StackSlot(location.GetStackIndex()); } else { return Location::NoLocation(); } } Location HighOf(Location location) { if (location.IsRegisterPair()) { return Location::RegisterLocation(location.high()); } else if (location.IsFpuRegisterPair()) { return Location::FpuRegisterLocation(location.high()); } else if (location.IsDoubleStackSlot()) { return Location::StackSlot(location.GetHighStackIndex(4)); } else { return Location::NoLocation(); } } // Update the source of `move`, knowing that `updated_location` has been swapped // with `new_source`. Note that `updated_location` can be a pair, therefore if // `move` is non-pair, we need to extract which register to use. static void UpdateSourceOf(MoveOperands* move, Location updated_location, Location new_source) { Location source = move->GetSource(); if (LowOf(updated_location).Equals(source)) { move->SetSource(LowOf(new_source)); } else if (HighOf(updated_location).Equals(source)) { move->SetSource(HighOf(new_source)); } else { DCHECK(updated_location.Equals(source)) << updated_location << " " << source; move->SetSource(new_source); } } MoveOperands* ParallelMoveResolverWithSwap::PerformMove(size_t index) { // Each call to this function performs a move and deletes it from the move // graph. We first recursively perform any move blocking this one. We // mark a move as "pending" on entry to PerformMove in order to detect // cycles in the move graph. We use operand swaps to resolve cycles, // which means that a call to PerformMove could change any source operand // in the move graph. MoveOperands* move = moves_.Get(index); DCHECK(!move->IsPending()); if (move->IsRedundant()) { // Because we swap register pairs first, following, un-pending // moves may become redundant. move->Eliminate(); return nullptr; } // Clear this move's destination to indicate a pending move. The actual // destination is saved in a stack-allocated local. Recursion may allow // multiple moves to be pending. DCHECK(!move->GetSource().IsInvalid()); Location destination = move->MarkPending(); // Perform a depth-first traversal of the move graph to resolve // dependencies. Any unperformed, unpending move with a source the same // as this one's destination blocks this one so recursively perform all // such moves. MoveOperands* required_swap = nullptr; for (size_t i = 0; i < moves_.Size(); ++i) { const MoveOperands& other_move = *moves_.Get(i); if (other_move.Blocks(destination) && !other_move.IsPending()) { // Though PerformMove can change any source operand in the move graph, // calling `PerformMove` cannot create a blocking move via a swap // (this loop does not miss any). // For example, assume there is a non-blocking move with source A // and this move is blocked on source B and there is a swap of A and // B. Then A and B must be involved in the same cycle (or they would // not be swapped). Since this move's destination is B and there is // only a single incoming edge to an operand, this move must also be // involved in the same cycle. In that case, the blocking move will // be created but will be "pending" when we return from PerformMove. required_swap = PerformMove(i); if (required_swap == move) { // If this move is required to swap, we do so without looking // at the next moves. Swapping is not blocked by anything, it just // updates other moves's source. break; } else if (required_swap == moves_.Get(i)) { // If `other_move` was swapped, we iterate again to find a new // potential cycle. required_swap = nullptr; i = 0; } else if (required_swap != nullptr) { // A move is required to swap. We walk back the cycle to find the // move by just returning from this `PerforrmMove`. moves_.Get(index)->ClearPending(destination); return required_swap; } } } // We are about to resolve this move and don't need it marked as // pending, so restore its destination. move->ClearPending(destination); // This move's source may have changed due to swaps to resolve cycles and // so it may now be the last move in the cycle. If so remove it. if (move->GetSource().Equals(destination)) { move->Eliminate(); DCHECK(required_swap == nullptr); return nullptr; } // The move may be blocked on a (at most one) pending move, in which case // we have a cycle. Search for such a blocking move and perform a swap to // resolve it. bool do_swap = false; if (required_swap != nullptr) { DCHECK_EQ(required_swap, move); do_swap = true; } else { for (size_t i = 0; i < moves_.Size(); ++i) { const MoveOperands& other_move = *moves_.Get(i); if (other_move.Blocks(destination)) { DCHECK(other_move.IsPending()); if (!move->Is64BitMove() && other_move.Is64BitMove()) { // We swap 64bits moves before swapping 32bits moves. Go back from the // cycle by returning the move that must be swapped. return moves_.Get(i); } do_swap = true; break; } } } if (do_swap) { EmitSwap(index); // Any unperformed (including pending) move with a source of either // this move's source or destination needs to have their source // changed to reflect the state of affairs after the swap. Location source = move->GetSource(); Location swap_destination = move->GetDestination(); move->Eliminate(); for (size_t i = 0; i < moves_.Size(); ++i) { const MoveOperands& other_move = *moves_.Get(i); if (other_move.Blocks(source)) { UpdateSourceOf(moves_.Get(i), source, swap_destination); } else if (other_move.Blocks(swap_destination)) { UpdateSourceOf(moves_.Get(i), swap_destination, source); } } // If the swap was required because of a 64bits move in the middle of a cycle, // we return the swapped move, so that the caller knows it needs to re-iterate // its dependency loop. return required_swap; } else { // This move is not blocked. EmitMove(index); move->Eliminate(); DCHECK(required_swap == nullptr); return nullptr; } } bool ParallelMoveResolverWithSwap::IsScratchLocation(Location loc) { for (size_t i = 0; i < moves_.Size(); ++i) { if (moves_.Get(i)->Blocks(loc)) { return false; } } for (size_t i = 0; i < moves_.Size(); ++i) { if (moves_.Get(i)->GetDestination().Equals(loc)) { return true; } } return false; } int ParallelMoveResolverWithSwap::AllocateScratchRegister(int blocked, int register_count, int if_scratch, bool* spilled) { DCHECK_NE(blocked, if_scratch); int scratch = -1; for (int reg = 0; reg < register_count; ++reg) { if ((blocked != reg) && IsScratchLocation(Location::RegisterLocation(reg))) { scratch = reg; break; } } if (scratch == -1) { *spilled = true; scratch = if_scratch; } else { *spilled = false; } return scratch; } ParallelMoveResolverWithSwap::ScratchRegisterScope::ScratchRegisterScope( ParallelMoveResolverWithSwap* resolver, int blocked, int if_scratch, int number_of_registers) : resolver_(resolver), reg_(kNoRegister), spilled_(false) { reg_ = resolver_->AllocateScratchRegister(blocked, number_of_registers, if_scratch, &spilled_); if (spilled_) { resolver->SpillScratch(reg_); } } ParallelMoveResolverWithSwap::ScratchRegisterScope::~ScratchRegisterScope() { if (spilled_) { resolver_->RestoreScratch(reg_); } } void ParallelMoveResolverNoSwap::EmitNativeCode(HParallelMove* parallel_move) { DCHECK_EQ(GetNumberOfPendingMoves(), 0u); DCHECK(moves_.IsEmpty()); DCHECK(scratches_.IsEmpty()); // Backend dependent initialization. PrepareForEmitNativeCode(); // Build up a worklist of moves. BuildInitialMoveList(parallel_move); for (size_t i = 0; i < moves_.Size(); ++i) { const MoveOperands& move = *moves_.Get(i); // Skip constants to perform them last. They don't block other moves and // skipping such moves with register destinations keeps those registers // free for the whole algorithm. if (!move.IsEliminated() && !move.GetSource().IsConstant()) { PerformMove(i); } } // Perform the moves with constant sources and register destinations with UpdateMoveSource() // to reduce the number of literal loads. Stack destinations are skipped since we won't be benefit // from changing the constant sources to stack locations. for (size_t i = 0; i < moves_.Size(); ++i) { MoveOperands* move = moves_.Get(i); Location destination = move->GetDestination(); if (!move->IsEliminated() && !destination.IsStackSlot() && !destination.IsDoubleStackSlot()) { Location source = move->GetSource(); EmitMove(i); move->Eliminate(); // This may introduce additional instruction dependency, but reduce number // of moves and possible literal loads. For example, // Original moves: // 1234.5678 -> D0 // 1234.5678 -> D1 // Updated moves: // 1234.5678 -> D0 // D0 -> D1 UpdateMoveSource(source, destination); } } // Perform the rest of the moves. for (size_t i = 0; i < moves_.Size(); ++i) { MoveOperands* move = moves_.Get(i); if (!move->IsEliminated()) { EmitMove(i); move->Eliminate(); } } // All pending moves that we have added for resolve cycles should be performed. DCHECK_EQ(GetNumberOfPendingMoves(), 0u); // Backend dependent cleanup. FinishEmitNativeCode(); moves_.Reset(); scratches_.Reset(); } Location ParallelMoveResolverNoSwap::GetScratchLocation(Location::Kind kind) { for (size_t i = 0; i < scratches_.Size(); ++i) { Location loc = scratches_.Get(i); if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) { return loc; } } for (size_t i = 0; i < moves_.Size(); ++i) { Location loc = moves_.Get(i)->GetDestination(); if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) { return loc; } } return Location::NoLocation(); } void ParallelMoveResolverNoSwap::AddScratchLocation(Location loc) { if (kIsDebugBuild) { for (size_t i = 0; i < scratches_.Size(); ++i) { DCHECK(!loc.Equals(scratches_.Get(i))); } } scratches_.Add(loc); } void ParallelMoveResolverNoSwap::RemoveScratchLocation(Location loc) { DCHECK(!IsBlockedByMoves(loc)); for (size_t i = 0; i < scratches_.Size(); ++i) { if (loc.Equals(scratches_.Get(i))) { scratches_.DeleteAt(i); break; } } } void ParallelMoveResolverNoSwap::PerformMove(size_t index) { // Each call to this function performs a move and deletes it from the move // graph. We first recursively perform any move blocking this one. We mark // a move as "pending" on entry to PerformMove in order to detect cycles // in the move graph. We use scratch location to resolve cycles, also // additional pending moves might be added. After move has been performed, // we will update source operand in the move graph to reduce dependencies in // the graph. MoveOperands* move = moves_.Get(index); DCHECK(!move->IsPending()); DCHECK(!move->IsEliminated()); if (move->IsRedundant()) { // Previous operations on the list of moves have caused this particular move // to become a no-op, so we can safely eliminate it. Consider for example // (0 -> 1) (1 -> 0) (1 -> 2). There is a cycle (0 -> 1) (1 -> 0), that we will // resolve as (1 -> scratch) (0 -> 1) (scratch -> 0). If, by chance, '2' is // used as the scratch location, the move (1 -> 2) will occur while resolving // the cycle. When that move is emitted, the code will update moves with a '1' // as their source to use '2' instead (see `UpdateMoveSource()`. In our example // the initial move (1 -> 2) would then become the no-op (2 -> 2) that can be // eliminated here. move->Eliminate(); return; } // Clear this move's destination to indicate a pending move. The actual // destination is saved in a stack-allocated local. Recursion may allow // multiple moves to be pending. DCHECK(!move->GetSource().IsInvalid()); Location destination = move->MarkPending(); // Perform a depth-first traversal of the move graph to resolve // dependencies. Any unperformed, unpending move with a source the same // as this one's destination blocks this one so recursively perform all // such moves. for (size_t i = 0; i < moves_.Size(); ++i) { const MoveOperands& other_move = *moves_.Get(i); if (other_move.Blocks(destination) && !other_move.IsPending()) { PerformMove(i); } } // We are about to resolve this move and don't need it marked as // pending, so restore its destination. move->ClearPending(destination); // No one else should write to the move destination when the it is pending. DCHECK(!move->IsRedundant()); Location source = move->GetSource(); // The move may be blocked on several pending moves, in case we have a cycle. if (IsBlockedByMoves(destination)) { // For a cycle like: (A -> B) (B -> C) (C -> A), we change it to following // sequence: // (C -> scratch) # Emit right now. // (A -> B) (B -> C) # Unblocked. // (scratch -> A) # Add to pending_moves_, blocked by (A -> B). Location::Kind kind = source.GetKind(); DCHECK_NE(kind, Location::kConstant); Location scratch = AllocateScratchLocationFor(kind); // We only care about the move size. Primitive::Type type = move->Is64BitMove() ? Primitive::kPrimLong : Primitive::kPrimInt; // Perform (C -> scratch) move->SetDestination(scratch); EmitMove(index); move->Eliminate(); UpdateMoveSource(source, scratch); // Add (scratch -> A). AddPendingMove(scratch, destination, type); } else { // This move is not blocked. EmitMove(index); move->Eliminate(); UpdateMoveSource(source, destination); } // Moves in the pending list should not block any other moves. But performing // unblocked moves in the pending list can free scratch registers, so we do this // as early as possible. MoveOperands* pending_move; while ((pending_move = GetUnblockedPendingMove(source)) != nullptr) { Location pending_source = pending_move->GetSource(); Location pending_destination = pending_move->GetDestination(); // We do not depend on the pending move index. So just delete the move instead // of eliminating it to make the pending list cleaner. DeletePendingMove(pending_move); move->SetSource(pending_source); move->SetDestination(pending_destination); EmitMove(index); move->Eliminate(); UpdateMoveSource(pending_source, pending_destination); // Free any unblocked locations in the scratch location list. for (size_t i = 0; i < scratches_.Size(); ++i) { Location scratch = scratches_.Get(i); // Only scratch overlapping with performed move source can be unblocked. if (scratch.OverlapsWith(pending_source) && !IsBlockedByMoves(scratch)) { FreeScratchLocation(pending_source); } } } } void ParallelMoveResolverNoSwap::UpdateMoveSource(Location from, Location to) { // This function is used to reduce the dependencies in the graph after // (from -> to) has been performed. Since we ensure there is no move with the same // destination, (to -> X) can not be blocked while (from -> X) might still be // blocked. Consider for example the moves (0 -> 1) (1 -> 2) (1 -> 3). After // (1 -> 2) has been performed, the moves left are (0 -> 1) and (1 -> 3). There is // a dependency between the two. If we update the source location from 1 to 2, we // will get (0 -> 1) and (2 -> 3). There is no dependency between the two. // // This is not something we must do, but we can use fewer scratch locations with // this trick. For example, we can avoid using additional scratch locations for // moves (0 -> 1), (1 -> 2), (1 -> 0). for (size_t i = 0; i < moves_.Size(); ++i) { MoveOperands* move = moves_.Get(i); if (move->GetSource().Equals(from)) { move->SetSource(to); } } } void ParallelMoveResolverNoSwap::AddPendingMove(Location source, Location destination, Primitive::Type type) { pending_moves_.Add(new (allocator_) MoveOperands(source, destination, type, nullptr)); } void ParallelMoveResolverNoSwap::DeletePendingMove(MoveOperands* move) { pending_moves_.Delete(move); } MoveOperands* ParallelMoveResolverNoSwap::GetUnblockedPendingMove(Location loc) { for (size_t i = 0; i < pending_moves_.Size(); ++i) { MoveOperands* move = pending_moves_.Get(i); Location destination = move->GetDestination(); // Only moves with destination overlapping with input loc can be unblocked. if (destination.OverlapsWith(loc) && !IsBlockedByMoves(destination)) { return move; } } return nullptr; } bool ParallelMoveResolverNoSwap::IsBlockedByMoves(Location loc) { for (size_t i = 0; i < pending_moves_.Size(); ++i) { if (pending_moves_.Get(i)->Blocks(loc)) { return true; } } for (size_t i = 0; i < moves_.Size(); ++i) { if (moves_.Get(i)->Blocks(loc)) { return true; } } return false; } // So far it is only used for debugging purposes to make sure all pending moves // have been performed. size_t ParallelMoveResolverNoSwap::GetNumberOfPendingMoves() { return pending_moves_.Size(); } } // namespace art