/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "gvn.h" #include "side_effects_analysis.h" #include "utils.h" #include "utils/arena_bit_vector.h" #include "base/bit_vector-inl.h" namespace art { /** * A ValueSet holds instructions that can replace other instructions. It is updated * through the `Add` method, and the `Kill` method. The `Kill` method removes * instructions that are affected by the given side effect. * * The `Lookup` method returns an equivalent instruction to the given instruction * if there is one in the set. In GVN, we would say those instructions have the * same "number". */ class ValueSet : public ArenaObject { public: // Constructs an empty ValueSet which owns all its buckets. explicit ValueSet(ArenaAllocator* allocator) : allocator_(allocator), num_buckets_(kMinimumNumberOfBuckets), buckets_(allocator->AllocArray(num_buckets_)), buckets_owned_(allocator, num_buckets_, false), num_entries_(0) { // ArenaAllocator returns zeroed memory, so no need to set buckets to null. DCHECK(IsPowerOfTwo(num_buckets_)); buckets_owned_.SetInitialBits(num_buckets_); } // Copy constructor. Depending on the load factor, it will either make a deep // copy (all buckets owned) or a shallow one (buckets pointing to the parent). ValueSet(ArenaAllocator* allocator, const ValueSet& to_copy) : allocator_(allocator), num_buckets_(to_copy.IdealBucketCount()), buckets_(allocator->AllocArray(num_buckets_)), buckets_owned_(allocator, num_buckets_, false), num_entries_(to_copy.num_entries_) { // ArenaAllocator returns zeroed memory, so entries of buckets_ and // buckets_owned_ are initialized to null and false, respectively. DCHECK(IsPowerOfTwo(num_buckets_)); if (num_buckets_ == to_copy.num_buckets_) { // Hash table remains the same size. We copy the bucket pointers and leave // all buckets_owned_ bits false. memcpy(buckets_, to_copy.buckets_, num_buckets_ * sizeof(Node*)); } else { // Hash table size changes. We copy and rehash all entries, and set all // buckets_owned_ bits to true. for (size_t i = 0; i < to_copy.num_buckets_; ++i) { for (Node* node = to_copy.buckets_[i]; node != nullptr; node = node->GetNext()) { size_t new_index = BucketIndex(node->GetHashCode()); buckets_[new_index] = node->Dup(allocator_, buckets_[new_index]); } } buckets_owned_.SetInitialBits(num_buckets_); } } // Adds an instruction in the set. void Add(HInstruction* instruction) { DCHECK(Lookup(instruction) == nullptr); size_t hash_code = HashCode(instruction); size_t index = BucketIndex(hash_code); if (!buckets_owned_.IsBitSet(index)) { CloneBucket(index); } buckets_[index] = new (allocator_) Node(instruction, hash_code, buckets_[index]); ++num_entries_; } // If in the set, returns an equivalent instruction to the given instruction. // Returns null otherwise. HInstruction* Lookup(HInstruction* instruction) const { size_t hash_code = HashCode(instruction); size_t index = BucketIndex(hash_code); for (Node* node = buckets_[index]; node != nullptr; node = node->GetNext()) { if (node->GetHashCode() == hash_code) { HInstruction* existing = node->GetInstruction(); if (existing->Equals(instruction)) { return existing; } } } return nullptr; } // Returns whether instruction is in the set. bool Contains(HInstruction* instruction) const { size_t hash_code = HashCode(instruction); size_t index = BucketIndex(hash_code); for (Node* node = buckets_[index]; node != nullptr; node = node->GetNext()) { if (node->GetInstruction() == instruction) { return true; } } return false; } // Removes all instructions in the set affected by the given side effects. void Kill(SideEffects side_effects) { DeleteAllImpureWhich([side_effects](Node* node) { return node->GetInstruction()->GetSideEffects().DependsOn(side_effects); }); } // Updates this set by intersecting with instructions in a predecessor's set. void IntersectWith(ValueSet* predecessor) { if (IsEmpty()) { return; } else if (predecessor->IsEmpty()) { Clear(); } else { // Pure instructions do not need to be tested because only impure // instructions can be killed. DeleteAllImpureWhich([predecessor](Node* node) { return !predecessor->Contains(node->GetInstruction()); }); } } bool IsEmpty() const { return num_entries_ == 0; } size_t GetNumberOfEntries() const { return num_entries_; } private: class Node : public ArenaObject { public: Node(HInstruction* instruction, size_t hash_code, Node* next) : instruction_(instruction), hash_code_(hash_code), next_(next) {} size_t GetHashCode() const { return hash_code_; } HInstruction* GetInstruction() const { return instruction_; } Node* GetNext() const { return next_; } void SetNext(Node* node) { next_ = node; } Node* Dup(ArenaAllocator* allocator, Node* new_next = nullptr) { return new (allocator) Node(instruction_, hash_code_, new_next); } private: HInstruction* const instruction_; const size_t hash_code_; Node* next_; DISALLOW_COPY_AND_ASSIGN(Node); }; // Creates our own copy of a bucket that is currently pointing to a parent. // This algorithm can be called while iterating over the bucket because it // preserves the order of entries in the bucket and will return the clone of // the given 'iterator'. Node* CloneBucket(size_t index, Node* iterator = nullptr) { DCHECK(!buckets_owned_.IsBitSet(index)); Node* clone_current = nullptr; Node* clone_previous = nullptr; Node* clone_iterator = nullptr; for (Node* node = buckets_[index]; node != nullptr; node = node->GetNext()) { clone_current = node->Dup(allocator_, nullptr); if (node == iterator) { clone_iterator = clone_current; } if (clone_previous == nullptr) { buckets_[index] = clone_current; } else { clone_previous->SetNext(clone_current); } clone_previous = clone_current; } buckets_owned_.SetBit(index); return clone_iterator; } void Clear() { num_entries_ = 0; for (size_t i = 0; i < num_buckets_; ++i) { buckets_[i] = nullptr; } buckets_owned_.SetInitialBits(num_buckets_); } // Iterates over buckets with impure instructions (even indices) and deletes // the ones on which 'cond' returns true. template void DeleteAllImpureWhich(Functor cond) { for (size_t i = 0; i < num_buckets_; i += 2) { Node* node = buckets_[i]; Node* previous = nullptr; if (node == nullptr) { continue; } if (!buckets_owned_.IsBitSet(i)) { // Bucket is not owned but maybe we won't need to change it at all. // Iterate as long as the entries don't satisfy 'cond'. while (node != nullptr) { if (cond(node)) { // We do need to delete an entry but we do not own the bucket. // Clone the bucket, make sure 'previous' and 'node' point to // the cloned entries and break. previous = CloneBucket(i, previous); node = (previous == nullptr) ? buckets_[i] : previous->GetNext(); break; } previous = node; node = node->GetNext(); } } // By this point we either own the bucket and can start deleting entries, // or we do not own it but no entries matched 'cond'. DCHECK(buckets_owned_.IsBitSet(i) || node == nullptr); // We iterate over the remainder of entries and delete those that match // the given condition. while (node != nullptr) { Node* next = node->GetNext(); if (cond(node)) { if (previous == nullptr) { buckets_[i] = next; } else { previous->SetNext(next); } } else { previous = node; } node = next; } } } // Computes a bucket count such that the load factor is reasonable. // This is estimated as (num_entries_ * 1.5) and rounded up to nearest pow2. size_t IdealBucketCount() const { size_t bucket_count = RoundUpToPowerOfTwo(num_entries_ + (num_entries_ >> 1)); if (bucket_count > kMinimumNumberOfBuckets) { return bucket_count; } else { return kMinimumNumberOfBuckets; } } // Generates a hash code for an instruction. Pure instructions are put into // odd buckets to speed up deletion. size_t HashCode(HInstruction* instruction) const { size_t hash_code = instruction->ComputeHashCode(); if (instruction->GetSideEffects().HasDependencies()) { return (hash_code << 1) | 0; } else { return (hash_code << 1) | 1; } } // Converts a hash code to a bucket index. size_t BucketIndex(size_t hash_code) const { return hash_code & (num_buckets_ - 1); } ArenaAllocator* const allocator_; // The internal bucket implementation of the set. size_t const num_buckets_; Node** const buckets_; // Flags specifying which buckets were copied into the set from its parent. // If a flag is not set, the corresponding bucket points to entries in the // parent and must be cloned prior to making changes. ArenaBitVector buckets_owned_; // The number of entries in the set. size_t num_entries_; static constexpr size_t kMinimumNumberOfBuckets = 8; DISALLOW_COPY_AND_ASSIGN(ValueSet); }; /** * Optimization phase that removes redundant instruction. */ class GlobalValueNumberer : public ValueObject { public: GlobalValueNumberer(ArenaAllocator* allocator, HGraph* graph, const SideEffectsAnalysis& side_effects) : graph_(graph), allocator_(allocator), side_effects_(side_effects), sets_(allocator, graph->GetBlocks().Size(), nullptr) {} void Run(); private: // Per-block GVN. Will also update the ValueSet of the dominated and // successor blocks. void VisitBasicBlock(HBasicBlock* block); HGraph* graph_; ArenaAllocator* const allocator_; const SideEffectsAnalysis& side_effects_; // ValueSet for blocks. Initially null, but for an individual block they // are allocated and populated by the dominator, and updated by all blocks // in the path from the dominator to the block. GrowableArray sets_; DISALLOW_COPY_AND_ASSIGN(GlobalValueNumberer); }; void GlobalValueNumberer::Run() { DCHECK(side_effects_.HasRun()); sets_.Put(graph_->GetEntryBlock()->GetBlockId(), new (allocator_) ValueSet(allocator_)); // Use the reverse post order to ensure the non back-edge predecessors of a block are // visited before the block itself. for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { VisitBasicBlock(it.Current()); } } void GlobalValueNumberer::VisitBasicBlock(HBasicBlock* block) { ValueSet* set = nullptr; const GrowableArray& predecessors = block->GetPredecessors(); if (predecessors.Size() == 0 || predecessors.Get(0)->IsEntryBlock()) { // The entry block should only accumulate constant instructions, and // the builder puts constants only in the entry block. // Therefore, there is no need to propagate the value set to the next block. set = new (allocator_) ValueSet(allocator_); } else { HBasicBlock* dominator = block->GetDominator(); ValueSet* dominator_set = sets_.Get(dominator->GetBlockId()); if (dominator->GetSuccessors().Size() == 1) { DCHECK_EQ(dominator->GetSuccessors().Get(0), block); set = dominator_set; } else { // We have to copy if the dominator has other successors, or `block` is not a successor // of the dominator. set = new (allocator_) ValueSet(allocator_, *dominator_set); } if (!set->IsEmpty()) { if (block->IsLoopHeader()) { DCHECK_EQ(block->GetDominator(), block->GetLoopInformation()->GetPreHeader()); set->Kill(side_effects_.GetLoopEffects(block)); } else if (predecessors.Size() > 1) { for (size_t i = 0, e = predecessors.Size(); i < e; ++i) { set->IntersectWith(sets_.Get(predecessors.Get(i)->GetBlockId())); if (set->IsEmpty()) { break; } } } } } sets_.Put(block->GetBlockId(), set); HInstruction* current = block->GetFirstInstruction(); while (current != nullptr) { set->Kill(current->GetSideEffects()); // Save the next instruction in case `current` is removed from the graph. HInstruction* next = current->GetNext(); if (current->CanBeMoved()) { if (current->IsBinaryOperation() && current->AsBinaryOperation()->IsCommutative()) { // For commutative ops, (x op y) will be treated the same as (y op x) // after fixed ordering. current->AsBinaryOperation()->OrderInputs(); } HInstruction* existing = set->Lookup(current); if (existing != nullptr) { // This replacement doesn't make more OrderInputs() necessary since // current is either used by an instruction that it dominates, // which hasn't been visited yet due to the order we visit instructions. // Or current is used by a phi, and we don't do OrderInputs() on a phi anyway. current->ReplaceWith(existing); current->GetBlock()->RemoveInstruction(current); } else { set->Add(current); } } current = next; } } void GVNOptimization::Run() { GlobalValueNumberer gvn(graph_->GetArena(), graph_, side_effects_); gvn.Run(); } } // namespace art