/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "art_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "intrinsics.h" #include "intrinsics_arm.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "thread.h" #include "utils/arm/assembler_arm.h" #include "utils/arm/managed_register_arm.h" #include "utils/assembler.h" #include "utils/stack_checks.h" namespace art { namespace arm { static bool ExpectedPairLayout(Location location) { // We expected this for both core and fpu register pairs. return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); } static constexpr int kCurrentMethodStackOffset = 0; // We unconditionally allocate R5 to ensure we can do long operations // with baseline. static constexpr Register kCoreSavedRegisterForBaseline = R5; static constexpr Register kCoreCalleeSaves[] = { R5, R6, R7, R8, R10, R11, PC }; static constexpr SRegister kFpuCalleeSaves[] = { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 }; // D31 cannot be split into two S registers, and the register allocator only works on // S registers. Therefore there is no need to block it. static constexpr DRegister DTMP = D31; #define __ reinterpret_cast(codegen->GetAssembler())-> #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmWordSize, x).Int32Value() class NullCheckSlowPathARM : public SlowPathCodeARM { public: explicit NullCheckSlowPathARM(HNullCheck* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime( QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this); } private: HNullCheck* const instruction_; DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM); }; class DivZeroCheckSlowPathARM : public SlowPathCodeARM { public: explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime( QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this); } private: HDivZeroCheck* const instruction_; DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM); }; class SuspendCheckSlowPathARM : public SlowPathCodeARM { public: SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor) : instruction_(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, instruction_->GetLocations()); arm_codegen->InvokeRuntime( QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this); RestoreLiveRegisters(codegen, instruction_->GetLocations()); if (successor_ == nullptr) { __ b(GetReturnLabel()); } else { __ b(arm_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } private: HSuspendCheck* const instruction_; // If not null, the block to branch to after the suspend check. HBasicBlock* const successor_; // If `successor_` is null, the label to branch to after the suspend check. Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM); }; class BoundsCheckSlowPathARM : public SlowPathCodeARM { public: BoundsCheckSlowPathARM(HBoundsCheck* instruction, Location index_location, Location length_location) : instruction_(instruction), index_location_(index_location), length_location_(length_location) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( index_location_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, length_location_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); arm_codegen->InvokeRuntime( QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this); } private: HBoundsCheck* const instruction_; const Location index_location_; const Location length_location_; DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM); }; class LoadClassSlowPathARM : public SlowPathCodeARM { public: LoadClassSlowPathARM(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) : cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = at_->GetLocations(); CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex()); int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) : QUICK_ENTRY_POINT(pInitializeType); arm_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this); // Move the class to the desired location. Location out = locations->Out(); if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); } RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } private: // The class this slow path will load. HLoadClass* const cls_; // The instruction where this slow path is happening. // (Might be the load class or an initialization check). HInstruction* const at_; // The dex PC of `at_`. const uint32_t dex_pc_; // Whether to initialize the class. const bool do_clinit_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM); }; class LoadStringSlowPathARM : public SlowPathCodeARM { public: explicit LoadStringSlowPathARM(HLoadString* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction_->GetStringIndex()); arm_codegen->InvokeRuntime( QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } private: HLoadString* const instruction_; DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM); }; class TypeCheckSlowPathARM : public SlowPathCodeARM { public: TypeCheckSlowPathARM(HInstruction* instruction, Location class_to_check, Location object_class, uint32_t dex_pc) : instruction_(instruction), class_to_check_(class_to_check), object_class_(object_class), dex_pc_(dex_pc) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( class_to_check_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, object_class_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); if (instruction_->IsInstanceOf()) { arm_codegen->InvokeRuntime( QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc_, this); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); } else { DCHECK(instruction_->IsCheckCast()); arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc_, this); } RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } private: HInstruction* const instruction_; const Location class_to_check_; const Location object_class_; uint32_t dex_pc_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM); }; class DeoptimizationSlowPathARM : public SlowPathCodeARM { public: explicit DeoptimizationSlowPathARM(HInstruction* instruction) : instruction_(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, instruction_->GetLocations()); DCHECK(instruction_->IsDeoptimize()); HDeoptimize* deoptimize = instruction_->AsDeoptimize(); uint32_t dex_pc = deoptimize->GetDexPc(); CodeGeneratorARM* arm_codegen = down_cast(codegen); arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), instruction_, dex_pc, this); } private: HInstruction* const instruction_; DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM); }; #undef __ #undef __ #define __ reinterpret_cast(GetAssembler())-> inline Condition ARMCondition(IfCondition cond) { switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE; case kCondLT: return LT; case kCondLE: return LE; case kCondGT: return GT; case kCondGE: return GE; default: LOG(FATAL) << "Unknown if condition"; } return EQ; // Unreachable. } inline Condition ARMOppositeCondition(IfCondition cond) { switch (cond) { case kCondEQ: return NE; case kCondNE: return EQ; case kCondLT: return GE; case kCondLE: return GT; case kCondGT: return LE; case kCondGE: return LT; default: LOG(FATAL) << "Unknown if condition"; } return EQ; // Unreachable. } void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const { stream << ArmManagedRegister::FromCoreRegister(Register(reg)); } void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << ArmManagedRegister::FromSRegister(SRegister(reg)); } size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { __ StoreToOffset(kStoreWord, static_cast(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { __ LoadFromOffset(kLoadWord, static_cast(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ StoreSToOffset(static_cast(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ LoadSFromOffset(static_cast(reg_id), SP, stack_index); return kArmWordSize; } CodeGeneratorARM::CodeGeneratorARM(HGraph* graph, const ArmInstructionSetFeatures& isa_features, const CompilerOptions& compiler_options) : CodeGenerator(graph, kNumberOfCoreRegisters, kNumberOfSRegisters, kNumberOfRegisterPairs, ComputeRegisterMask(reinterpret_cast(kCoreCalleeSaves), arraysize(kCoreCalleeSaves)), ComputeRegisterMask(reinterpret_cast(kFpuCalleeSaves), arraysize(kFpuCalleeSaves)), compiler_options), block_labels_(graph->GetArena(), 0), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetArena(), this), assembler_(true), isa_features_(isa_features) { // Save the PC register to mimic Quick. AddAllocatedRegister(Location::RegisterLocation(PC)); } Location CodeGeneratorARM::AllocateFreeRegister(Primitive::Type type) const { switch (type) { case Primitive::kPrimLong: { size_t reg = FindFreeEntry(blocked_register_pairs_, kNumberOfRegisterPairs); ArmManagedRegister pair = ArmManagedRegister::FromRegisterPair(static_cast(reg)); DCHECK(!blocked_core_registers_[pair.AsRegisterPairLow()]); DCHECK(!blocked_core_registers_[pair.AsRegisterPairHigh()]); blocked_core_registers_[pair.AsRegisterPairLow()] = true; blocked_core_registers_[pair.AsRegisterPairHigh()] = true; UpdateBlockedPairRegisters(); return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); } case Primitive::kPrimByte: case Primitive::kPrimBoolean: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { int reg = FindFreeEntry(blocked_core_registers_, kNumberOfCoreRegisters); // Block all register pairs that contain `reg`. for (int i = 0; i < kNumberOfRegisterPairs; i++) { ArmManagedRegister current = ArmManagedRegister::FromRegisterPair(static_cast(i)); if (current.AsRegisterPairLow() == reg || current.AsRegisterPairHigh() == reg) { blocked_register_pairs_[i] = true; } } return Location::RegisterLocation(reg); } case Primitive::kPrimFloat: { int reg = FindFreeEntry(blocked_fpu_registers_, kNumberOfSRegisters); return Location::FpuRegisterLocation(reg); } case Primitive::kPrimDouble: { int reg = FindTwoFreeConsecutiveAlignedEntries(blocked_fpu_registers_, kNumberOfSRegisters); DCHECK_EQ(reg % 2, 0); return Location::FpuRegisterPairLocation(reg, reg + 1); } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << type; } return Location(); } void CodeGeneratorARM::SetupBlockedRegisters(bool is_baseline) const { // Don't allocate the dalvik style register pair passing. blocked_register_pairs_[R1_R2] = true; // Stack register, LR and PC are always reserved. blocked_core_registers_[SP] = true; blocked_core_registers_[LR] = true; blocked_core_registers_[PC] = true; // Reserve thread register. blocked_core_registers_[TR] = true; // Reserve temp register. blocked_core_registers_[IP] = true; if (is_baseline) { for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { blocked_core_registers_[kCoreCalleeSaves[i]] = true; } blocked_core_registers_[kCoreSavedRegisterForBaseline] = false; for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; } } UpdateBlockedPairRegisters(); } void CodeGeneratorARM::UpdateBlockedPairRegisters() const { for (int i = 0; i < kNumberOfRegisterPairs; i++) { ArmManagedRegister current = ArmManagedRegister::FromRegisterPair(static_cast(i)); if (blocked_core_registers_[current.AsRegisterPairLow()] || blocked_core_registers_[current.AsRegisterPairHigh()]) { blocked_register_pairs_[i] = true; } } } InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen) : HGraphVisitor(graph), assembler_(codegen->GetAssembler()), codegen_(codegen) {} void CodeGeneratorARM::ComputeSpillMask() { core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; // Save one extra register for baseline. Note that on thumb2, there is no easy // instruction to restore just the PC, so this actually helps both baseline // and non-baseline to save and restore at least two registers at entry and exit. core_spill_mask_ |= (1 << kCoreSavedRegisterForBaseline); DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; // We use vpush and vpop for saving and restoring floating point registers, which take // a SRegister and the number of registers to save/restore after that SRegister. We // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, // but in the range. if (fpu_spill_mask_ != 0) { uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { fpu_spill_mask_ |= (1 << i); } } } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::ArmCore(static_cast(reg)); } static dwarf::Reg DWARFReg(SRegister reg) { return dwarf::Reg::ArmFp(static_cast(reg)); } void CodeGeneratorARM::GenerateFrameEntry() { bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); __ Bind(&frame_entry_label_); if (HasEmptyFrame()) { return; } if (!skip_overflow_check) { __ AddConstant(IP, SP, -static_cast(GetStackOverflowReservedBytes(kArm))); __ LoadFromOffset(kLoadWord, IP, IP, 0); RecordPcInfo(nullptr, 0); } // PC is in the list of callee-save to mimic Quick, but we need to push // LR at entry instead. uint32_t push_mask = (core_spill_mask_ & (~(1 << PC))) | 1 << LR; __ PushList(push_mask); __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(push_mask)); __ cfi().RelOffsetForMany(DWARFReg(R0), 0, push_mask, kArmWordSize); if (fpu_spill_mask_ != 0) { SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); __ vpushs(start_register, POPCOUNT(fpu_spill_mask_)); __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize); } int adjust = GetFrameSize() - FrameEntrySpillSize(); __ AddConstant(SP, -adjust); __ cfi().AdjustCFAOffset(adjust); __ StoreToOffset(kStoreWord, R0, SP, 0); } void CodeGeneratorARM::GenerateFrameExit() { if (HasEmptyFrame()) { __ bx(LR); return; } __ cfi().RememberState(); int adjust = GetFrameSize() - FrameEntrySpillSize(); __ AddConstant(SP, adjust); __ cfi().AdjustCFAOffset(-adjust); if (fpu_spill_mask_ != 0) { SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); __ vpops(start_register, POPCOUNT(fpu_spill_mask_)); __ cfi().AdjustCFAOffset(-kArmPointerSize * POPCOUNT(fpu_spill_mask_)); __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_); } __ PopList(core_spill_mask_); __ cfi().RestoreState(); __ cfi().DefCFAOffset(GetFrameSize()); } void CodeGeneratorARM::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } Location CodeGeneratorARM::GetStackLocation(HLoadLocal* load) const { switch (load->GetType()) { case Primitive::kPrimLong: case Primitive::kPrimDouble: return Location::DoubleStackSlot(GetStackSlot(load->GetLocal())); case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimFloat: return Location::StackSlot(GetStackSlot(load->GetLocal())); case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected type " << load->GetType(); UNREACHABLE(); } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { uint32_t index = gp_index_++; uint32_t stack_index = stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimLong: { uint32_t index = gp_index_; uint32_t stack_index = stack_index_; gp_index_ += 2; stack_index_ += 2; if (index + 1 < calling_convention.GetNumberOfRegisters()) { if (calling_convention.GetRegisterAt(index) == R1) { // Skip R1, and use R2_R3 instead. gp_index_++; index++; } } if (index + 1 < calling_convention.GetNumberOfRegisters()) { DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1, calling_convention.GetRegisterAt(index + 1)); return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index), calling_convention.GetRegisterAt(index + 1)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimFloat: { uint32_t stack_index = stack_index_++; if (float_index_ % 2 == 0) { float_index_ = std::max(double_index_, float_index_); } if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimDouble: { double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); uint32_t stack_index = stack_index_; stack_index_ += 2; if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { uint32_t index = double_index_; double_index_ += 2; Location result = Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(index), calling_convention.GetFpuRegisterAt(index + 1)); DCHECK(ExpectedPairLayout(result)); return result; } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected parameter type " << type; break; } return Location(); } Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { return Location::RegisterLocation(R0); } case Primitive::kPrimFloat: { return Location::FpuRegisterLocation(S0); } case Primitive::kPrimLong: { return Location::RegisterPairLocation(R0, R1); } case Primitive::kPrimDouble: { return Location::FpuRegisterPairLocation(S0, S1); } case Primitive::kPrimVoid: return Location(); } UNREACHABLE(); } void CodeGeneratorARM::Move32(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { if (source.IsRegister()) { __ Mov(destination.AsRegister(), source.AsRegister()); } else if (source.IsFpuRegister()) { __ vmovrs(destination.AsRegister(), source.AsFpuRegister()); } else { __ LoadFromOffset(kLoadWord, destination.AsRegister(), SP, source.GetStackIndex()); } } else if (destination.IsFpuRegister()) { if (source.IsRegister()) { __ vmovsr(destination.AsFpuRegister(), source.AsRegister()); } else if (source.IsFpuRegister()) { __ vmovs(destination.AsFpuRegister(), source.AsFpuRegister()); } else { __ LoadSFromOffset(destination.AsFpuRegister(), SP, source.GetStackIndex()); } } else { DCHECK(destination.IsStackSlot()) << destination; if (source.IsRegister()) { __ StoreToOffset(kStoreWord, source.AsRegister(), SP, destination.GetStackIndex()); } else if (source.IsFpuRegister()) { __ StoreSToOffset(source.AsFpuRegister(), SP, destination.GetStackIndex()); } else { DCHECK(source.IsStackSlot()) << source; __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } } void CodeGeneratorARM::Move64(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegisterPair()) { if (source.IsRegisterPair()) { EmitParallelMoves( Location::RegisterLocation(source.AsRegisterPairHigh()), Location::RegisterLocation(destination.AsRegisterPairHigh()), Primitive::kPrimInt, Location::RegisterLocation(source.AsRegisterPairLow()), Location::RegisterLocation(destination.AsRegisterPairLow()), Primitive::kPrimInt); } else if (source.IsFpuRegister()) { UNIMPLEMENTED(FATAL); } else { DCHECK(source.IsDoubleStackSlot()); DCHECK(ExpectedPairLayout(destination)); __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow(), SP, source.GetStackIndex()); } } else if (destination.IsFpuRegisterPair()) { if (source.IsDoubleStackSlot()) { __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow()), SP, source.GetStackIndex()); } else { UNIMPLEMENTED(FATAL); } } else { DCHECK(destination.IsDoubleStackSlot()); if (source.IsRegisterPair()) { // No conflict possible, so just do the moves. if (source.AsRegisterPairLow() == R1) { DCHECK_EQ(source.AsRegisterPairHigh(), R2); __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex()); __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize)); } else { __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow(), SP, destination.GetStackIndex()); } } else if (source.IsFpuRegisterPair()) { __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow()), SP, destination.GetStackIndex()); } else { DCHECK(source.IsDoubleStackSlot()); EmitParallelMoves( Location::StackSlot(source.GetStackIndex()), Location::StackSlot(destination.GetStackIndex()), Primitive::kPrimInt, Location::StackSlot(source.GetHighStackIndex(kArmWordSize)), Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)), Primitive::kPrimInt); } } } void CodeGeneratorARM::Move(HInstruction* instruction, Location location, HInstruction* move_for) { LocationSummary* locations = instruction->GetLocations(); if (locations != nullptr && locations->Out().Equals(location)) { return; } if (locations != nullptr && locations->Out().IsConstant()) { HConstant* const_to_move = locations->Out().GetConstant(); if (const_to_move->IsIntConstant() || const_to_move->IsNullConstant()) { int32_t value = GetInt32ValueOf(const_to_move); if (location.IsRegister()) { __ LoadImmediate(location.AsRegister(), value); } else { DCHECK(location.IsStackSlot()); __ LoadImmediate(IP, value); __ StoreToOffset(kStoreWord, IP, SP, location.GetStackIndex()); } } else { DCHECK(const_to_move->IsLongConstant()) << const_to_move->DebugName(); int64_t value = const_to_move->AsLongConstant()->GetValue(); if (location.IsRegisterPair()) { __ LoadImmediate(location.AsRegisterPairLow(), Low32Bits(value)); __ LoadImmediate(location.AsRegisterPairHigh(), High32Bits(value)); } else { DCHECK(location.IsDoubleStackSlot()); __ LoadImmediate(IP, Low32Bits(value)); __ StoreToOffset(kStoreWord, IP, SP, location.GetStackIndex()); __ LoadImmediate(IP, High32Bits(value)); __ StoreToOffset(kStoreWord, IP, SP, location.GetHighStackIndex(kArmWordSize)); } } } else if (instruction->IsLoadLocal()) { uint32_t stack_slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal()); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimFloat: Move32(location, Location::StackSlot(stack_slot)); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: Move64(location, Location::DoubleStackSlot(stack_slot)); break; default: LOG(FATAL) << "Unexpected type " << instruction->GetType(); } } else if (instruction->IsTemporary()) { Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); if (temp_location.IsStackSlot()) { Move32(location, temp_location); } else { DCHECK(temp_location.IsDoubleStackSlot()); Move64(location, temp_location); } } else { DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary()); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimNot: case Primitive::kPrimInt: case Primitive::kPrimFloat: Move32(location, locations->Out()); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: Move64(location, locations->Out()); break; default: LOG(FATAL) << "Unexpected type " << instruction->GetType(); } } } void CodeGeneratorARM::InvokeRuntime(int32_t entry_point_offset, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset); __ blx(LR); RecordPcInfo(instruction, dex_pc, slow_path); DCHECK(instruction->IsSuspendCheck() || instruction->IsBoundsCheck() || instruction->IsNullCheck() || instruction->IsDivZeroCheck() || instruction->GetLocations()->CanCall() || !IsLeafMethod()); } void LocationsBuilderARM::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) { HBasicBlock* successor = got->GetSuccessor(); DCHECK(!successor->IsExitBlock()); HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); } if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { __ b(codegen_->GetLabelOf(successor)); } } void LocationsBuilderARM::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitExit(HExit* exit) { UNUSED(exit); } void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction, Label* true_target, Label* false_target, Label* always_true_target) { HInstruction* cond = instruction->InputAt(0); if (cond->IsIntConstant()) { // Constant condition, statically compared against 1. int32_t cond_value = cond->AsIntConstant()->GetValue(); if (cond_value == 1) { if (always_true_target != nullptr) { __ b(always_true_target); } return; } else { DCHECK_EQ(cond_value, 0); } } else { if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) { // Condition has been materialized, compare the output to 0 DCHECK(instruction->GetLocations()->InAt(0).IsRegister()); __ cmp(instruction->GetLocations()->InAt(0).AsRegister(), ShifterOperand(0)); __ b(true_target, NE); } else { // Condition has not been materialized, use its inputs as the // comparison and its condition as the branch condition. LocationSummary* locations = cond->GetLocations(); DCHECK(locations->InAt(0).IsRegister()) << locations->InAt(0); Register left = locations->InAt(0).AsRegister(); if (locations->InAt(1).IsRegister()) { __ cmp(left, ShifterOperand(locations->InAt(1).AsRegister())); } else { DCHECK(locations->InAt(1).IsConstant()); HConstant* constant = locations->InAt(1).GetConstant(); int32_t value = CodeGenerator::GetInt32ValueOf(constant); ShifterOperand operand; if (GetAssembler()->ShifterOperandCanHold(R0, left, CMP, value, &operand)) { __ cmp(left, operand); } else { Register temp = IP; __ LoadImmediate(temp, value); __ cmp(left, ShifterOperand(temp)); } } __ b(true_target, ARMCondition(cond->AsCondition()->GetCondition())); } } if (false_target != nullptr) { __ b(false_target); } } void LocationsBuilderARM::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr, LocationSummary::kNoCall); HInstruction* cond = if_instr->InputAt(0); if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) { Label* true_target = codegen_->GetLabelOf(if_instr->IfTrueSuccessor()); Label* false_target = codegen_->GetLabelOf(if_instr->IfFalseSuccessor()); Label* always_true_target = true_target; if (codegen_->GoesToNextBlock(if_instr->GetBlock(), if_instr->IfTrueSuccessor())) { always_true_target = nullptr; } if (codegen_->GoesToNextBlock(if_instr->GetBlock(), if_instr->IfFalseSuccessor())) { false_target = nullptr; } GenerateTestAndBranch(if_instr, true_target, false_target, always_true_target); } void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); HInstruction* cond = deoptimize->InputAt(0); DCHECK(cond->IsCondition()); if (cond->AsCondition()->NeedsMaterialization()) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DeoptimizationSlowPathARM(deoptimize); codegen_->AddSlowPath(slow_path); Label* slow_path_entry = slow_path->GetEntryLabel(); GenerateTestAndBranch(deoptimize, slow_path_entry, nullptr, slow_path_entry); } void LocationsBuilderARM::VisitCondition(HCondition* comp) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(comp, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(comp->InputAt(1))); if (comp->NeedsMaterialization()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARM::VisitCondition(HCondition* comp) { if (!comp->NeedsMaterialization()) return; LocationSummary* locations = comp->GetLocations(); Register left = locations->InAt(0).AsRegister(); if (locations->InAt(1).IsRegister()) { __ cmp(left, ShifterOperand(locations->InAt(1).AsRegister())); } else { DCHECK(locations->InAt(1).IsConstant()); int32_t value = CodeGenerator::GetInt32ValueOf(locations->InAt(1).GetConstant()); ShifterOperand operand; if (GetAssembler()->ShifterOperandCanHold(R0, left, CMP, value, &operand)) { __ cmp(left, operand); } else { Register temp = IP; __ LoadImmediate(temp, value); __ cmp(left, ShifterOperand(temp)); } } __ it(ARMCondition(comp->GetCondition()), kItElse); __ mov(locations->Out().AsRegister(), ShifterOperand(1), ARMCondition(comp->GetCondition())); __ mov(locations->Out().AsRegister(), ShifterOperand(0), ARMOppositeCondition(comp->GetCondition())); } void LocationsBuilderARM::VisitEqual(HEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) { VisitCondition(comp); } void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) { VisitCondition(comp); } void LocationsBuilderARM::VisitLessThan(HLessThan* comp) { VisitCondition(comp); } void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) { VisitCondition(comp); } void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { VisitCondition(comp); } void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) { VisitCondition(comp); } void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) { VisitCondition(comp); } void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { VisitCondition(comp); } void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { VisitCondition(comp); } void LocationsBuilderARM::VisitLocal(HLocal* local) { local->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitLocal(HLocal* local) { DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock()); } void LocationsBuilderARM::VisitLoadLocal(HLoadLocal* load) { load->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitLoadLocal(HLoadLocal* load) { // Nothing to do, this is driven by the code generator. UNUSED(load); } void LocationsBuilderARM::VisitStoreLocal(HStoreLocal* store) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall); switch (store->InputAt(1)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: case Primitive::kPrimFloat: locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal()))); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal()))); break; default: LOG(FATAL) << "Unexpected local type " << store->InputAt(1)->GetType(); } } void InstructionCodeGeneratorARM::VisitStoreLocal(HStoreLocal* store) { UNUSED(store); } void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant) { // Will be generated at use site. UNUSED(constant); } void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret) { UNUSED(ret); codegen_->GenerateFrameExit(); } void LocationsBuilderARM::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); } void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret) { UNUSED(ret); codegen_->GenerateFrameExit(); } void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // When we do not run baseline, explicit clinit checks triggered by static // invokes must have been pruned by art::PrepareForRegisterAllocation. DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(), codegen_->GetInstructionSetFeatures()); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void CodeGeneratorARM::LoadCurrentMethod(Register reg) { DCHECK(RequiresCurrentMethod()); __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset); } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorARM intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // When we do not run baseline, explicit clinit checks triggered by static // invokes must have been pruned by art::PrepareForRegisterAllocation. DCHECK(codegen_->IsBaseline() || !invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } Register temp = invoke->GetLocations()->GetTemp(0).AsRegister(); codegen_->GenerateStaticOrDirectCall(invoke, temp); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(invoke, LocationSummary::kCall); locations->AddTemp(Location::RegisterLocation(R0)); InvokeDexCallingConventionVisitorARM calling_convention_visitor; for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { HInstruction* input = invoke->InputAt(i); locations->SetInAt(i, calling_convention_visitor.GetNextLocation(input->GetType())); } locations->SetOut(calling_convention_visitor.GetReturnLocation(invoke->GetType())); } void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(), codegen_->GetInstructionSetFeatures()); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } Register temp = invoke->GetLocations()->GetTemp(0).AsRegister(); uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kArmPointerSize).Uint32Value(); LocationSummary* locations = invoke->GetLocations(); Location receiver = locations->InAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // temp = object->GetClass(); if (receiver.IsStackSlot()) { __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); __ LoadFromOffset(kLoadWord, temp, temp, class_offset); } else { __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister(), class_offset); } codegen_->MaybeRecordImplicitNullCheck(invoke); // temp = temp->GetMethodAt(method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArmWordSize).Int32Value(); __ LoadFromOffset(kLoadWord, temp, temp, method_offset); // LR = temp->GetEntryPoint(); __ LoadFromOffset(kLoadWord, LR, temp, entry_point); // LR(); __ blx(LR); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); // Add the hidden argument. invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12)); } void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. Register temp = invoke->GetLocations()->GetTemp(0).AsRegister(); uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset( invoke->GetImtIndex() % mirror::Class::kImtSize, kArmPointerSize).Uint32Value(); LocationSummary* locations = invoke->GetLocations(); Location receiver = locations->InAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // Set the hidden argument. __ LoadImmediate(invoke->GetLocations()->GetTemp(1).AsRegister(), invoke->GetDexMethodIndex()); // temp = object->GetClass(); if (receiver.IsStackSlot()) { __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); __ LoadFromOffset(kLoadWord, temp, temp, class_offset); } else { __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister(), class_offset); } codegen_->MaybeRecordImplicitNullCheck(invoke); // temp = temp->GetImtEntryAt(method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArmWordSize).Int32Value(); __ LoadFromOffset(kLoadWord, temp, temp, method_offset); // LR = temp->GetEntryPoint(); __ LoadFromOffset(kLoadWord, LR, temp, entry_point); // LR(); __ blx(LR); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case Primitive::kPrimInt: DCHECK(in.IsRegister()); __ rsb(out.AsRegister(), in.AsRegister(), ShifterOperand(0)); break; case Primitive::kPrimLong: DCHECK(in.IsRegisterPair()); // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) __ rsbs(out.AsRegisterPairLow(), in.AsRegisterPairLow(), ShifterOperand(0)); // We cannot emit an RSC (Reverse Subtract with Carry) // instruction here, as it does not exist in the Thumb-2 // instruction set. We use the following approach // using SBC and SUB instead. // // out.hi = -C __ sbc(out.AsRegisterPairHigh(), out.AsRegisterPairHigh(), ShifterOperand(out.AsRegisterPairHigh())); // out.hi = out.hi - in.hi __ sub(out.AsRegisterPairHigh(), out.AsRegisterPairHigh(), ShifterOperand(in.AsRegisterPairHigh())); break; case Primitive::kPrimFloat: DCHECK(in.IsFpuRegister()); __ vnegs(out.AsFpuRegister(), in.AsFpuRegister()); break; case Primitive::kPrimDouble: DCHECK(in.IsFpuRegisterPair()); __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(in.AsFpuRegisterPairLow())); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) { Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); // The float-to-long and double-to-long type conversions rely on a // call to the runtime. LocationSummary::CallKind call_kind = ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) && result_type == Primitive::kPrimLong) ? LocationSummary::kCall : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); // The Java language does not allow treating boolean as an integral type but // our bit representation makes it safe. switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation( calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. __ sbfx(out.AsRegister(), in.AsRegister(), 0, 8); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. __ sbfx(out.AsRegister(), in.AsRegister(), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. DCHECK(out.IsRegister()); if (in.IsRegisterPair()) { __ Mov(out.AsRegister(), in.AsRegisterPairLow()); } else if (in.IsDoubleStackSlot()) { __ LoadFromOffset(kLoadWord, out.AsRegister(), SP, in.GetStackIndex()); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ LoadImmediate(out.AsRegister(), static_cast(value)); } break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-int' instruction. SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow(); __ vmovs(temp, in.AsFpuRegister()); __ vcvtis(temp, temp); __ vmovrs(out.AsRegister(), temp); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-int' instruction. SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow(); DRegister temp_d = FromLowSToD(temp_s); __ vmovd(temp_d, FromLowSToD(in.AsFpuRegisterPairLow())); __ vcvtid(temp_s, temp_d); __ vmovrs(out.AsRegister(), temp_s); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. DCHECK(out.IsRegisterPair()); DCHECK(in.IsRegister()); __ Mov(out.AsRegisterPairLow(), in.AsRegister()); // Sign extension. __ Asr(out.AsRegisterPairHigh(), out.AsRegisterPairLow(), 31); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-long' instruction. codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l), conversion, conversion->GetDexPc(), nullptr); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-long' instruction. codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l), conversion, conversion->GetDexPc(), nullptr); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. __ ubfx(out.AsRegister(), in.AsRegister(), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: { // Processing a Dex `int-to-float' instruction. __ vmovsr(out.AsFpuRegister(), in.AsRegister()); __ vcvtsi(out.AsFpuRegister(), out.AsFpuRegister()); break; } case Primitive::kPrimLong: { // Processing a Dex `long-to-float' instruction. Register low = in.AsRegisterPairLow(); Register high = in.AsRegisterPairHigh(); SRegister output = out.AsFpuRegister(); Register constant_low = locations->GetTemp(0).AsRegister(); Register constant_high = locations->GetTemp(1).AsRegister(); SRegister temp1_s = locations->GetTemp(2).AsFpuRegisterPairLow(); DRegister temp1_d = FromLowSToD(temp1_s); SRegister temp2_s = locations->GetTemp(3).AsFpuRegisterPairLow(); DRegister temp2_d = FromLowSToD(temp2_s); // Operations use doubles for precision reasons (each 32-bit // half of a long fits in the 53-bit mantissa of a double, // but not in the 24-bit mantissa of a float). This is // especially important for the low bits. The result is // eventually converted to float. // temp1_d = int-to-double(high) __ vmovsr(temp1_s, high); __ vcvtdi(temp1_d, temp1_s); // Using vmovd to load the `k2Pow32EncodingForDouble` constant // as an immediate value into `temp2_d` does not work, as // this instruction only transfers 8 significant bits of its // immediate operand. Instead, use two 32-bit core // registers to load `k2Pow32EncodingForDouble` into // `temp2_d`. __ LoadImmediate(constant_low, Low32Bits(k2Pow32EncodingForDouble)); __ LoadImmediate(constant_high, High32Bits(k2Pow32EncodingForDouble)); __ vmovdrr(temp2_d, constant_low, constant_high); // temp1_d = temp1_d * 2^32 __ vmuld(temp1_d, temp1_d, temp2_d); // temp2_d = unsigned-to-double(low) __ vmovsr(temp2_s, low); __ vcvtdu(temp2_d, temp2_s); // temp1_d = temp1_d + temp2_d __ vaddd(temp1_d, temp1_d, temp2_d); // output = double-to-float(temp1_d); __ vcvtsd(output, temp1_d); break; } case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. __ vcvtsd(out.AsFpuRegister(), FromLowSToD(in.AsFpuRegisterPairLow())); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: { // Processing a Dex `int-to-double' instruction. __ vmovsr(out.AsFpuRegisterPairLow(), in.AsRegister()); __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow()), out.AsFpuRegisterPairLow()); break; } case Primitive::kPrimLong: { // Processing a Dex `long-to-double' instruction. Register low = in.AsRegisterPairLow(); Register high = in.AsRegisterPairHigh(); SRegister out_s = out.AsFpuRegisterPairLow(); DRegister out_d = FromLowSToD(out_s); Register constant_low = locations->GetTemp(0).AsRegister(); Register constant_high = locations->GetTemp(1).AsRegister(); SRegister temp_s = locations->GetTemp(2).AsFpuRegisterPairLow(); DRegister temp_d = FromLowSToD(temp_s); // out_d = int-to-double(high) __ vmovsr(out_s, high); __ vcvtdi(out_d, out_s); // Using vmovd to load the `k2Pow32EncodingForDouble` constant // as an immediate value into `temp_d` does not work, as // this instruction only transfers 8 significant bits of its // immediate operand. Instead, use two 32-bit core // registers to load `k2Pow32EncodingForDouble` into `temp_d`. __ LoadImmediate(constant_low, Low32Bits(k2Pow32EncodingForDouble)); __ LoadImmediate(constant_high, High32Bits(k2Pow32EncodingForDouble)); __ vmovdrr(temp_d, constant_low, constant_high); // out_d = out_d * 2^32 __ vmuld(out_d, out_d, temp_d); // temp_d = unsigned-to-double(low) __ vmovsr(temp_s, low); __ vcvtdu(temp_d, temp_s); // out_d = out_d + temp_d __ vaddd(out_d, out_d, temp_d); break; } case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow()), in.AsFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderARM::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (add->GetResultType()) { case Primitive::kPrimInt: if (second.IsRegister()) { __ add(out.AsRegister(), first.AsRegister(), ShifterOperand(second.AsRegister())); } else { __ AddConstant(out.AsRegister(), first.AsRegister(), second.GetConstant()->AsIntConstant()->GetValue()); } break; case Primitive::kPrimLong: { DCHECK(second.IsRegisterPair()); __ adds(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ adc(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); break; } case Primitive::kPrimFloat: __ vadds(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; case Primitive::kPrimDouble: __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderARM::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorARM::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (sub->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { __ sub(out.AsRegister(), first.AsRegister(), ShifterOperand(second.AsRegister())); } else { __ AddConstant(out.AsRegister(), first.AsRegister(), -second.GetConstant()->AsIntConstant()->GetValue()); } break; } case Primitive::kPrimLong: { DCHECK(second.IsRegisterPair()); __ subs(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ sbc(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); break; } case Primitive::kPrimFloat: { __ vsubs(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; } case Primitive::kPrimDouble: { __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void LocationsBuilderARM::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorARM::VisitMul(HMul* mul) { LocationSummary* locations = mul->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (mul->GetResultType()) { case Primitive::kPrimInt: { __ mul(out.AsRegister(), first.AsRegister(), second.AsRegister()); break; } case Primitive::kPrimLong: { Register out_hi = out.AsRegisterPairHigh(); Register out_lo = out.AsRegisterPairLow(); Register in1_hi = first.AsRegisterPairHigh(); Register in1_lo = first.AsRegisterPairLow(); Register in2_hi = second.AsRegisterPairHigh(); Register in2_lo = second.AsRegisterPairLow(); // Extra checks to protect caused by the existence of R1_R2. // The algorithm is wrong if out.hi is either in1.lo or in2.lo: // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2); DCHECK_NE(out_hi, in1_lo); DCHECK_NE(out_hi, in2_lo); // input: in1 - 64 bits, in2 - 64 bits // output: out // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] // parts: out.lo = (in1.lo * in2.lo)[31:0] // IP <- in1.lo * in2.hi __ mul(IP, in1_lo, in2_hi); // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo __ mla(out_hi, in1_hi, in2_lo, IP); // out.lo <- (in1.lo * in2.lo)[31:0]; __ umull(out_lo, IP, in1_lo, in2_lo); // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] __ add(out_hi, out_hi, ShifterOperand(IP)); break; } case Primitive::kPrimFloat: { __ vmuls(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; } case Primitive::kPrimDouble: { __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void LocationsBuilderARM::VisitDiv(HDiv* div) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; if (div->GetResultType() == Primitive::kPrimLong) { // pLdiv runtime call. call_kind = LocationSummary::kCall; } else if (div->GetResultType() == Primitive::kPrimInt && !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { // pIdivmod runtime call. call_kind = LocationSummary::kCall; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); switch (div->GetResultType()) { case Primitive::kPrimInt: { if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but // we only need the former. locations->SetOut(Location::RegisterLocation(R0)); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterPairLocation( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) { LocationSummary* locations = div->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (div->GetResultType()) { case Primitive::kPrimInt: { if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { __ sdiv(out.AsRegister(), first.AsRegister(), second.AsRegister()); } else { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister()); DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister()); DCHECK_EQ(R0, out.AsRegister()); codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), div, div->GetDexPc(), nullptr); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow()); DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh()); DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow()); DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh()); DCHECK_EQ(R0, out.AsRegisterPairLow()); DCHECK_EQ(R1, out.AsRegisterPairHigh()); codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), div, div->GetDexPc(), nullptr); break; } case Primitive::kPrimFloat: { __ vdivs(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; } case Primitive::kPrimDouble: { __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void LocationsBuilderARM::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); // Most remainders are implemented in the runtime. LocationSummary::CallKind call_kind = LocationSummary::kCall; if (rem->GetResultType() == Primitive::kPrimInt && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { // Have hardware divide instruction for int, do it with three instructions. call_kind = LocationSummary::kNoCall; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); switch (type) { case Primitive::kPrimInt: { if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } else { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but // we only need the latter. locations->SetOut(Location::RegisterLocation(R1)); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterPairLocation( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); // The runtime helper puts the output in R2,R3. locations->SetOut(Location::RegisterPairLocation(R2, R3)); break; } case Primitive::kPrimFloat: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(S0)); break; } case Primitive::kPrimDouble: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetInAt(1, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3))); locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorARM::VisitRem(HRem* rem) { LocationSummary* locations = rem->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); Primitive::Type type = rem->GetResultType(); switch (type) { case Primitive::kPrimInt: { if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { Register reg1 = first.AsRegister(); Register reg2 = second.AsRegister(); Register temp = locations->GetTemp(0).AsRegister(); // temp = reg1 / reg2 (integer division) // temp = temp * reg2 // dest = reg1 - temp __ sdiv(temp, reg1, reg2); __ mul(temp, temp, reg2); __ sub(out.AsRegister(), reg1, ShifterOperand(temp)); } else { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister()); DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister()); DCHECK_EQ(R1, out.AsRegister()); codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), rem, rem->GetDexPc(), nullptr); } break; } case Primitive::kPrimLong: { codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), rem, rem->GetDexPc(), nullptr); break; } case Primitive::kPrimFloat: { codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf), rem, rem->GetDexPc(), nullptr); break; } case Primitive::kPrimDouble: { codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod), rem, rem->GetDexPc(), nullptr); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location value = locations->InAt(0); switch (instruction->GetType()) { case Primitive::kPrimInt: { if (value.IsRegister()) { __ cmp(value.AsRegister(), ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), EQ); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { __ b(slow_path->GetEntryLabel()); } } break; } case Primitive::kPrimLong: { if (value.IsRegisterPair()) { __ orrs(IP, value.AsRegisterPairLow(), ShifterOperand(value.AsRegisterPairHigh())); __ b(slow_path->GetEntryLabel(), EQ); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { __ b(slow_path->GetEntryLabel()); } } break; default: LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); } } } void LocationsBuilderARM::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); switch (op->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(op->InputAt(1))); // Make the output overlap, as it will be used to hold the masked // second input. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); } } void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = op->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); Primitive::Type type = op->GetResultType(); switch (type) { case Primitive::kPrimInt: { Register out_reg = out.AsRegister(); Register first_reg = first.AsRegister(); // Arm doesn't mask the shift count so we need to do it ourselves. if (second.IsRegister()) { Register second_reg = second.AsRegister(); __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftValue)); if (op->IsShl()) { __ Lsl(out_reg, first_reg, out_reg); } else if (op->IsShr()) { __ Asr(out_reg, first_reg, out_reg); } else { __ Lsr(out_reg, first_reg, out_reg); } } else { int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); uint32_t shift_value = static_cast(cst & kMaxIntShiftValue); if (shift_value == 0) { // arm does not support shifting with 0 immediate. __ Mov(out_reg, first_reg); } else if (op->IsShl()) { __ Lsl(out_reg, first_reg, shift_value); } else if (op->IsShr()) { __ Asr(out_reg, first_reg, shift_value); } else { __ Lsr(out_reg, first_reg, shift_value); } } break; } case Primitive::kPrimLong: { Register o_h = out.AsRegisterPairHigh(); Register o_l = out.AsRegisterPairLow(); Register temp = locations->GetTemp(0).AsRegister(); Register high = first.AsRegisterPairHigh(); Register low = first.AsRegisterPairLow(); Register second_reg = second.AsRegister(); if (op->IsShl()) { __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftValue)); // Shift the high part __ Lsl(o_h, high, o_l); // Shift the low part and `or` what overflew on the high part __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord)); __ Lsr(temp, low, temp); __ orr(o_h, o_h, ShifterOperand(temp)); // If the shift is > 32 bits, override the high part __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord)); __ it(PL); __ Lsl(o_h, low, temp, false, PL); // Shift the low part __ Lsl(o_l, low, o_l); } else if (op->IsShr()) { __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftValue)); // Shift the low part __ Lsr(o_l, low, o_h); // Shift the high part and `or` what underflew on the low part __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ Lsl(temp, high, temp); __ orr(o_l, o_l, ShifterOperand(temp)); // If the shift is > 32 bits, override the low part __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ it(PL); __ Asr(o_l, high, temp, false, PL); // Shift the high part __ Asr(o_h, high, o_h); } else { __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftValue)); // same as Shr except we use `Lsr`s and not `Asr`s __ Lsr(o_l, low, o_h); __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ Lsl(temp, high, temp); __ orr(o_l, o_l, ShifterOperand(temp)); __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ it(PL); __ Lsr(o_l, high, temp, false, PL); __ Lsr(o_h, high, o_h); } break; } default: LOG(FATAL) << "Unexpected operation type " << type; } } void LocationsBuilderARM::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorARM::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderARM::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorARM::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderARM::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(R0)); } void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) { InvokeRuntimeCallingConvention calling_convention; codegen_->LoadCurrentMethod(calling_convention.GetRegisterAt(1)); __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex()); codegen_->InvokeRuntime(GetThreadOffset(instruction->GetEntrypoint()).Int32Value(), instruction, instruction->GetDexPc(), nullptr); } void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(R0)); locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) { InvokeRuntimeCallingConvention calling_convention; codegen_->LoadCurrentMethod(calling_convention.GetRegisterAt(2)); __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex()); codegen_->InvokeRuntime(GetThreadOffset(instruction->GetEntrypoint()).Int32Value(), instruction, instruction->GetDexPc(), nullptr); } void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorARM::VisitParameterValue(HParameterValue* instruction) { // Nothing to do, the parameter is already at its location. UNUSED(instruction); } void LocationsBuilderARM::VisitNot(HNot* not_) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitNot(HNot* not_) { LocationSummary* locations = not_->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (not_->GetResultType()) { case Primitive::kPrimInt: __ mvn(out.AsRegister(), ShifterOperand(in.AsRegister())); break; case Primitive::kPrimLong: __ mvn(out.AsRegisterPairLow(), ShifterOperand(in.AsRegisterPairLow())); __ mvn(out.AsRegisterPairHigh(), ShifterOperand(in.AsRegisterPairHigh())); break; default: LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); } } void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = bool_not->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); __ eor(out.AsRegister(), in.AsRegister(), ShifterOperand(1)); } void LocationsBuilderARM::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); switch (compare->InputAt(0)->GetType()) { case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Output overlaps because it is written before doing the low comparison. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } } void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) { LocationSummary* locations = compare->GetLocations(); Register out = locations->Out().AsRegister(); Location left = locations->InAt(0); Location right = locations->InAt(1); Label less, greater, done; Primitive::Type type = compare->InputAt(0)->GetType(); switch (type) { case Primitive::kPrimLong: { __ cmp(left.AsRegisterPairHigh(), ShifterOperand(right.AsRegisterPairHigh())); // Signed compare. __ b(&less, LT); __ b(&greater, GT); // Do LoadImmediate before any `cmp`, as LoadImmediate might affect the status flags. __ LoadImmediate(out, 0); __ cmp(left.AsRegisterPairLow(), ShifterOperand(right.AsRegisterPairLow())); // Unsigned compare. break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { __ LoadImmediate(out, 0); if (type == Primitive::kPrimFloat) { __ vcmps(left.AsFpuRegister(), right.AsFpuRegister()); } else { __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow()), FromLowSToD(right.AsFpuRegisterPairLow())); } __ vmstat(); // transfer FP status register to ARM APSR. __ b(compare->IsGtBias() ? &greater : &less, VS); // VS for unordered. break; } default: LOG(FATAL) << "Unexpected compare type " << type; } __ b(&done, EQ); __ b(&less, CC); // CC is for both: unsigned compare for longs and 'less than' for floats. __ Bind(&greater); __ LoadImmediate(out, 1); __ b(&done); __ Bind(&less); __ LoadImmediate(out, -1); __ Bind(&done); } void LocationsBuilderARM::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction) { UNUSED(instruction); LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) { // TODO (ported from quick): revisit Arm barrier kinds DmbOptions flavour = DmbOptions::ISH; // quiet c++ warnings switch (kind) { case MemBarrierKind::kAnyStore: case MemBarrierKind::kLoadAny: case MemBarrierKind::kAnyAny: { flavour = DmbOptions::ISH; break; } case MemBarrierKind::kStoreStore: { flavour = DmbOptions::ISHST; break; } default: LOG(FATAL) << "Unexpected memory barrier " << kind; } __ dmb(flavour); } void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr, uint32_t offset, Register out_lo, Register out_hi) { if (offset != 0) { __ LoadImmediate(out_lo, offset); __ add(IP, addr, ShifterOperand(out_lo)); addr = IP; } __ ldrexd(out_lo, out_hi, addr); } void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr, uint32_t offset, Register value_lo, Register value_hi, Register temp1, Register temp2, HInstruction* instruction) { Label fail; if (offset != 0) { __ LoadImmediate(temp1, offset); __ add(IP, addr, ShifterOperand(temp1)); addr = IP; } __ Bind(&fail); // We need a load followed by store. (The address used in a STREX instruction must // be the same as the address in the most recently executed LDREX instruction.) __ ldrexd(temp1, temp2, addr); codegen_->MaybeRecordImplicitNullCheck(instruction); __ strexd(temp1, value_lo, value_hi, addr); __ cmp(temp1, ShifterOperand(0)); __ b(&fail, NE); } void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); Primitive::Type field_type = field_info.GetFieldType(); if (Primitive::IsFloatingPointType(field_type)) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::RequiresRegister()); } bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble; bool generate_volatile = field_info.IsVolatile() && is_wide && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); // Temporary registers for the write barrier. // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark. if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } else if (generate_volatile) { // Arm encoding have some additional constraints for ldrexd/strexd: // - registers need to be consecutive // - the first register should be even but not R14. // We don't test for Arm yet, and the assertion makes sure that we revisit this if we ever // enable Arm encoding. DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); if (field_type == Primitive::kPrimDouble) { // For doubles we need two more registers to copy the value. locations->AddTemp(Location::RegisterLocation(R2)); locations->AddTemp(Location::RegisterLocation(R3)); } } } void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = instruction->GetLocations(); Register base = locations->InAt(0).AsRegister(); Location value = locations->InAt(1); bool is_volatile = field_info.IsVolatile(); bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); if (is_volatile) { GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } switch (field_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { __ StoreToOffset(kStoreByte, value.AsRegister(), base, offset); break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { __ StoreToOffset(kStoreHalfword, value.AsRegister(), base, offset); break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { __ StoreToOffset(kStoreWord, value.AsRegister(), base, offset); break; } case Primitive::kPrimLong: { if (is_volatile && !atomic_ldrd_strd) { GenerateWideAtomicStore(base, offset, value.AsRegisterPairLow(), value.AsRegisterPairHigh(), locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), instruction); } else { __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow(), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case Primitive::kPrimFloat: { __ StoreSToOffset(value.AsFpuRegister(), base, offset); break; } case Primitive::kPrimDouble: { DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow()); if (is_volatile && !atomic_ldrd_strd) { Register value_reg_lo = locations->GetTemp(0).AsRegister(); Register value_reg_hi = locations->GetTemp(1).AsRegister(); __ vmovrrd(value_reg_lo, value_reg_hi, value_reg); GenerateWideAtomicStore(base, offset, value_reg_lo, value_reg_hi, locations->GetTemp(2).AsRegister(), locations->GetTemp(3).AsRegister(), instruction); } else { __ StoreDToOffset(value_reg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } // Longs and doubles are handled in the switch. if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { Register temp = locations->GetTemp(0).AsRegister(); Register card = locations->GetTemp(1).AsRegister(); codegen_->MarkGCCard(temp, card, base, value.AsRegister()); } if (is_volatile) { GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } } void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); bool volatile_for_double = field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimDouble) && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); bool overlap = field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetOut(Location::RequiresRegister(), (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap)); } if (volatile_for_double) { // Arm encoding have some additional constraints for ldrexd/strexd: // - registers need to be consecutive // - the first register should be even but not R14. // We don't test for Arm yet, and the assertion makes sure that we revisit this if we ever // enable Arm encoding. DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = instruction->GetLocations(); Register base = locations->InAt(0).AsRegister(); Location out = locations->Out(); bool is_volatile = field_info.IsVolatile(); bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); switch (field_type) { case Primitive::kPrimBoolean: { __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister(), base, offset); break; } case Primitive::kPrimByte: { __ LoadFromOffset(kLoadSignedByte, out.AsRegister(), base, offset); break; } case Primitive::kPrimShort: { __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister(), base, offset); break; } case Primitive::kPrimChar: { __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister(), base, offset); break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { __ LoadFromOffset(kLoadWord, out.AsRegister(), base, offset); break; } case Primitive::kPrimLong: { if (is_volatile && !atomic_ldrd_strd) { GenerateWideAtomicLoad(base, offset, out.AsRegisterPairLow(), out.AsRegisterPairHigh()); } else { __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow(), base, offset); } break; } case Primitive::kPrimFloat: { __ LoadSFromOffset(out.AsFpuRegister(), base, offset); break; } case Primitive::kPrimDouble: { DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow()); if (is_volatile && !atomic_ldrd_strd) { Register lo = locations->GetTemp(0).AsRegister(); Register hi = locations->GetTemp(1).AsRegister(); GenerateWideAtomicLoad(base, offset, lo, hi); codegen_->MaybeRecordImplicitNullCheck(instruction); __ vmovdrr(out_reg, lo, hi); } else { __ LoadDFromOffset(out_reg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } // Doubles are handled in the switch. if (field_type != Primitive::kPrimDouble) { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (is_volatile) { GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) { if (codegen_->CanMoveNullCheckToUser(instruction)) { return; } Location obj = instruction->GetLocations()->InAt(0); __ LoadFromOffset(kLoadWord, IP, obj.AsRegister(), 0); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } void InstructionCodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) { SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); __ cmp(obj.AsRegister(), ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), EQ); } void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) { if (codegen_->GetCompilerOptions().GetImplicitNullChecks()) { GenerateImplicitNullCheck(instruction); } else { GenerateExplicitNullCheck(instruction); } } void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = instruction->GetLocations(); Register obj = locations->InAt(0).AsRegister(); Location index = locations->InAt(1); switch (instruction->GetType()) { case Primitive::kPrimBoolean: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); Register out = locations->Out().AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister())); __ LoadFromOffset(kLoadUnsignedByte, out, IP, data_offset); } break; } case Primitive::kPrimByte: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value(); Register out = locations->Out().AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; __ LoadFromOffset(kLoadSignedByte, out, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister())); __ LoadFromOffset(kLoadSignedByte, out, IP, data_offset); } break; } case Primitive::kPrimShort: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value(); Register out = locations->Out().AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_2)); __ LoadFromOffset(kLoadSignedHalfword, out, IP, data_offset); } break; } case Primitive::kPrimChar: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); Register out = locations->Out().AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; __ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_2)); __ LoadFromOffset(kLoadUnsignedHalfword, out, IP, data_offset); } break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { DCHECK_EQ(sizeof(mirror::HeapReference), sizeof(int32_t)); uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); Register out = locations->Out().AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ LoadFromOffset(kLoadWord, out, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_4)); __ LoadFromOffset(kLoadWord, out, IP, data_offset); } break; } case Primitive::kPrimLong: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); Location out = locations->Out(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow(), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow(), IP, data_offset); } break; } case Primitive::kPrimFloat: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); Location out = locations->Out(); DCHECK(out.IsFpuRegister()); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ LoadSFromOffset(out.AsFpuRegister(), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_4)); __ LoadSFromOffset(out.AsFpuRegister(), IP, data_offset); } break; } case Primitive::kPrimDouble: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); Location out = locations->Out(); DCHECK(out.IsFpuRegisterPair()); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ LoadDFromOffset(FromLowSToD(out.AsFpuRegisterPairLow()), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ LoadDFromOffset(FromLowSToD(out.AsFpuRegisterPairLow()), IP, data_offset); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << instruction->GetType(); UNREACHABLE(); } codegen_->MaybeRecordImplicitNullCheck(instruction); } void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) { Primitive::Type value_type = instruction->GetComponentType(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); bool needs_runtime_call = instruction->NeedsTypeCheck(); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall); if (needs_runtime_call) { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } else { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(value_type)) { locations->SetInAt(2, Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RequiresRegister()); } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } } void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) { LocationSummary* locations = instruction->GetLocations(); Register obj = locations->InAt(0).AsRegister(); Location index = locations->InAt(1); Primitive::Type value_type = instruction->GetComponentType(); bool needs_runtime_call = locations->WillCall(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); switch (value_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); Register value = locations->InAt(2).AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; __ StoreToOffset(kStoreByte, value, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister())); __ StoreToOffset(kStoreByte, value, IP, data_offset); } break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); Register value = locations->InAt(2).AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; __ StoreToOffset(kStoreHalfword, value, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_2)); __ StoreToOffset(kStoreHalfword, value, IP, data_offset); } break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { if (!needs_runtime_call) { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); Register value = locations->InAt(2).AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ StoreToOffset(kStoreWord, value, obj, offset); } else { DCHECK(index.IsRegister()) << index; __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_4)); __ StoreToOffset(kStoreWord, value, IP, data_offset); } codegen_->MaybeRecordImplicitNullCheck(instruction); if (needs_write_barrier) { DCHECK_EQ(value_type, Primitive::kPrimNot); Register temp = locations->GetTemp(0).AsRegister(); Register card = locations->GetTemp(1).AsRegister(); codegen_->MarkGCCard(temp, card, obj, value); } } else { DCHECK_EQ(value_type, Primitive::kPrimNot); codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), instruction, instruction->GetDexPc(), nullptr); } break; } case Primitive::kPrimLong: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); Location value = locations->InAt(2); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow(), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow(), IP, data_offset); } break; } case Primitive::kPrimFloat: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); Location value = locations->InAt(2); DCHECK(value.IsFpuRegister()); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ StoreSToOffset(value.AsFpuRegister(), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_4)); __ StoreSToOffset(value.AsFpuRegister(), IP, data_offset); } break; } case Primitive::kPrimDouble: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); Location value = locations->InAt(2); DCHECK(value.IsFpuRegisterPair()); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow()), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow()), IP, data_offset); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << value_type; UNREACHABLE(); } // Ints and objects are handled in the switch. if (value_type != Primitive::kPrimInt && value_type != Primitive::kPrimNot) { codegen_->MaybeRecordImplicitNullCheck(instruction); } } void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = instruction->GetLocations(); uint32_t offset = mirror::Array::LengthOffset().Uint32Value(); Register obj = locations->InAt(0).AsRegister(); Register out = locations->Out().AsRegister(); __ LoadFromOffset(kLoadWord, out, obj, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); if (instruction->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = instruction->GetLocations(); SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM( instruction, locations->InAt(0), locations->InAt(1)); codegen_->AddSlowPath(slow_path); Register index = locations->InAt(0).AsRegister(); Register length = locations->InAt(1).AsRegister(); __ cmp(index, ShifterOperand(length)); __ b(slow_path->GetEntryLabel(), CS); } void CodeGeneratorARM::MarkGCCard(Register temp, Register card, Register object, Register value) { Label is_null; __ CompareAndBranchIfZero(value, &is_null); __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset().Int32Value()); __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); __ strb(card, Address(card, temp)); __ Bind(&is_null); } void LocationsBuilderARM::VisitTemporary(HTemporary* temp) { temp->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitTemporary(HTemporary* temp) { // Nothing to do, this is driven by the code generator. UNUSED(temp); } void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction) { UNUSED(instruction); LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) { codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) { new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); } void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); } void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathARM* slow_path = down_cast(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } __ LoadFromOffset( kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset().Int32Value()); __ cmp(IP, ShifterOperand(0)); // TODO: Figure out the branch offsets and use cbz/cbnz. if (successor == nullptr) { __ b(slow_path->GetEntryLabel(), NE); __ Bind(slow_path->GetReturnLabel()); } else { __ b(codegen_->GetLabelOf(successor), EQ); __ b(slow_path->GetEntryLabel()); } } ArmAssembler* ParallelMoveResolverARM::GetAssembler() const { return codegen_->GetAssembler(); } void ParallelMoveResolverARM::EmitMove(size_t index) { MoveOperands* move = moves_.Get(index); Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister()) { if (destination.IsRegister()) { __ Mov(destination.AsRegister(), source.AsRegister()); } else { DCHECK(destination.IsStackSlot()); __ StoreToOffset(kStoreWord, source.AsRegister(), SP, destination.GetStackIndex()); } } else if (source.IsStackSlot()) { if (destination.IsRegister()) { __ LoadFromOffset(kLoadWord, destination.AsRegister(), SP, source.GetStackIndex()); } else if (destination.IsFpuRegister()) { __ LoadSFromOffset(destination.AsFpuRegister(), SP, source.GetStackIndex()); } else { DCHECK(destination.IsStackSlot()); __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } else if (source.IsFpuRegister()) { if (destination.IsFpuRegister()) { __ vmovs(destination.AsFpuRegister(), source.AsFpuRegister()); } else { DCHECK(destination.IsStackSlot()); __ StoreSToOffset(source.AsFpuRegister(), SP, destination.GetStackIndex()); } } else if (source.IsDoubleStackSlot()) { if (destination.IsDoubleStackSlot()) { __ LoadDFromOffset(DTMP, SP, source.GetStackIndex()); __ StoreDToOffset(DTMP, SP, destination.GetStackIndex()); } else if (destination.IsRegisterPair()) { DCHECK(ExpectedPairLayout(destination)); __ LoadFromOffset( kLoadWordPair, destination.AsRegisterPairLow(), SP, source.GetStackIndex()); } else { DCHECK(destination.IsFpuRegisterPair()) << destination; __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow()), SP, source.GetStackIndex()); } } else if (source.IsRegisterPair()) { if (destination.IsRegisterPair()) { __ Mov(destination.AsRegisterPairLow(), source.AsRegisterPairLow()); __ Mov(destination.AsRegisterPairHigh(), source.AsRegisterPairHigh()); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; DCHECK(ExpectedPairLayout(source)); __ StoreToOffset( kStoreWordPair, source.AsRegisterPairLow(), SP, destination.GetStackIndex()); } } else if (source.IsFpuRegisterPair()) { if (destination.IsFpuRegisterPair()) { __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow()), FromLowSToD(source.AsFpuRegisterPairLow())); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow()), SP, destination.GetStackIndex()); } } else { DCHECK(source.IsConstant()) << source; HConstant* constant = source.GetConstant(); if (constant->IsIntConstant() || constant->IsNullConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(constant); if (destination.IsRegister()) { __ LoadImmediate(destination.AsRegister(), value); } else { DCHECK(destination.IsStackSlot()); __ LoadImmediate(IP, value); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } else if (constant->IsLongConstant()) { int64_t value = constant->AsLongConstant()->GetValue(); if (destination.IsRegisterPair()) { __ LoadImmediate(destination.AsRegisterPairLow(), Low32Bits(value)); __ LoadImmediate(destination.AsRegisterPairHigh(), High32Bits(value)); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ LoadImmediate(IP, Low32Bits(value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); __ LoadImmediate(IP, High32Bits(value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); } } else if (constant->IsDoubleConstant()) { double value = constant->AsDoubleConstant()->GetValue(); if (destination.IsFpuRegisterPair()) { __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow()), value); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; uint64_t int_value = bit_cast(value); __ LoadImmediate(IP, Low32Bits(int_value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); __ LoadImmediate(IP, High32Bits(int_value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); } } else { DCHECK(constant->IsFloatConstant()) << constant->DebugName(); float value = constant->AsFloatConstant()->GetValue(); if (destination.IsFpuRegister()) { __ LoadSImmediate(destination.AsFpuRegister(), value); } else { DCHECK(destination.IsStackSlot()); __ LoadImmediate(IP, bit_cast(value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } } } void ParallelMoveResolverARM::Exchange(Register reg, int mem) { __ Mov(IP, reg); __ LoadFromOffset(kLoadWord, reg, SP, mem); __ StoreToOffset(kStoreWord, IP, SP, mem); } void ParallelMoveResolverARM::Exchange(int mem1, int mem2) { ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0; __ LoadFromOffset(kLoadWord, static_cast(ensure_scratch.GetRegister()), SP, mem1 + stack_offset); __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset); __ StoreToOffset(kStoreWord, static_cast(ensure_scratch.GetRegister()), SP, mem2 + stack_offset); __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset); } void ParallelMoveResolverARM::EmitSwap(size_t index) { MoveOperands* move = moves_.Get(index); Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister() && destination.IsRegister()) { DCHECK_NE(source.AsRegister(), IP); DCHECK_NE(destination.AsRegister(), IP); __ Mov(IP, source.AsRegister()); __ Mov(source.AsRegister(), destination.AsRegister()); __ Mov(destination.AsRegister(), IP); } else if (source.IsRegister() && destination.IsStackSlot()) { Exchange(source.AsRegister(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsRegister()) { Exchange(destination.AsRegister(), source.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsStackSlot()) { Exchange(source.GetStackIndex(), destination.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { __ vmovrs(IP, source.AsFpuRegister()); __ vmovs(source.AsFpuRegister(), destination.AsFpuRegister()); __ vmovsr(destination.AsFpuRegister(), IP); } else if (source.IsRegisterPair() && destination.IsRegisterPair()) { __ vmovdrr(DTMP, source.AsRegisterPairLow(), source.AsRegisterPairHigh()); __ Mov(source.AsRegisterPairLow(), destination.AsRegisterPairLow()); __ Mov(source.AsRegisterPairHigh(), destination.AsRegisterPairHigh()); __ vmovrrd(destination.AsRegisterPairLow(), destination.AsRegisterPairHigh(), DTMP); } else if (source.IsRegisterPair() || destination.IsRegisterPair()) { Register low_reg = source.IsRegisterPair() ? source.AsRegisterPairLow() : destination.AsRegisterPairLow(); int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination)); __ vmovdrr(DTMP, low_reg, static_cast(low_reg + 1)); __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem); __ StoreDToOffset(DTMP, SP, mem); } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) { DRegister first = FromLowSToD(source.AsFpuRegisterPairLow()); DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow()); __ vmovd(DTMP, first); __ vmovd(first, second); __ vmovd(second, DTMP); } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) { DRegister reg = source.IsFpuRegisterPair() ? FromLowSToD(source.AsFpuRegisterPairLow()) : FromLowSToD(destination.AsFpuRegisterPairLow()); int mem = source.IsFpuRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); __ vmovd(DTMP, reg); __ LoadDFromOffset(reg, SP, mem); __ StoreDToOffset(DTMP, SP, mem); } else if (source.IsFpuRegister() || destination.IsFpuRegister()) { SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister() : destination.AsFpuRegister(); int mem = source.IsFpuRegister() ? destination.GetStackIndex() : source.GetStackIndex(); __ vmovrs(IP, reg); __ LoadSFromOffset(reg, SP, mem); __ StoreToOffset(kStoreWord, IP, SP, mem); } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { Exchange(source.GetStackIndex(), destination.GetStackIndex()); Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize)); } else { LOG(FATAL) << "Unimplemented" << source << " <-> " << destination; } } void ParallelMoveResolverARM::SpillScratch(int reg) { __ Push(static_cast(reg)); } void ParallelMoveResolverARM::RestoreScratch(int reg) { __ Pop(static_cast(reg)); } void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) { LocationSummary::CallKind call_kind = cls->CanCallRuntime() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) { Register out = cls->GetLocations()->Out().AsRegister(); if (cls->IsReferrersClass()) { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); codegen_->LoadCurrentMethod(out); __ LoadFromOffset(kLoadWord, out, out, ArtMethod::DeclaringClassOffset().Int32Value()); } else { DCHECK(cls->CanCallRuntime()); codegen_->LoadCurrentMethod(out); __ LoadFromOffset( kLoadWord, out, out, ArtMethod::DexCacheResolvedTypesOffset().Int32Value()); __ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())); SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); codegen_->AddSlowPath(slow_path); __ cmp(out, ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), EQ); if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } } } void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) { // We assume the class is not null. SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( check->GetLoadClass(), check, check->GetDexPc(), true); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, check->GetLocations()->InAt(0).AsRegister()); } void InstructionCodeGeneratorARM::GenerateClassInitializationCheck( SlowPathCodeARM* slow_path, Register class_reg) { __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value()); __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized)); __ b(slow_path->GetEntryLabel(), LT); // Even if the initialized flag is set, we may be in a situation where caches are not synced // properly. Therefore, we do a memory fence. __ dmb(ISH); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderARM::VisitLoadString(HLoadString* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) { SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load); codegen_->AddSlowPath(slow_path); Register out = load->GetLocations()->Out().AsRegister(); codegen_->LoadCurrentMethod(out); __ LoadFromOffset(kLoadWord, out, out, ArtMethod::DeclaringClassOffset().Int32Value()); __ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value()); __ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(load->GetStringIndex())); __ cmp(out, ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), EQ); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderARM::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) { Register out = load->GetLocations()->Out().AsRegister(); int32_t offset = Thread::ExceptionOffset().Int32Value(); __ LoadFromOffset(kLoadWord, out, TR, offset); __ LoadImmediate(IP, 0); __ StoreToOffset(kStoreWord, IP, TR, offset); } void LocationsBuilderARM::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) { codegen_->InvokeRuntime( QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr); } void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = instruction->IsClassFinal() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // The out register is used as a temporary, so it overlaps with the inputs. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary* locations = instruction->GetLocations(); Register obj = locations->InAt(0).AsRegister(); Register cls = locations->InAt(1).AsRegister(); Register out = locations->Out().AsRegister(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); Label done, zero; SlowPathCodeARM* slow_path = nullptr; // Return 0 if `obj` is null. // avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ cmp(obj, ShifterOperand(0)); __ b(&zero, EQ); } // Compare the class of `obj` with `cls`. __ LoadFromOffset(kLoadWord, out, obj, class_offset); __ cmp(out, ShifterOperand(cls)); if (instruction->IsClassFinal()) { // Classes must be equal for the instanceof to succeed. __ b(&zero, NE); __ LoadImmediate(out, 1); __ b(&done); } else { // If the classes are not equal, we go into a slow path. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM( instruction, locations->InAt(1), locations->Out(), instruction->GetDexPc()); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), NE); __ LoadImmediate(out, 1); __ b(&done); } if (instruction->MustDoNullCheck() || instruction->IsClassFinal()) { __ Bind(&zero); __ LoadImmediate(out, 0); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } __ Bind(&done); } void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) { LocationSummary* locations = instruction->GetLocations(); Register obj = locations->InAt(0).AsRegister(); Register cls = locations->InAt(1).AsRegister(); Register temp = locations->GetTemp(0).AsRegister(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM( instruction, locations->InAt(1), locations->GetTemp(0), instruction->GetDexPc()); codegen_->AddSlowPath(slow_path); // avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ cmp(obj, ShifterOperand(0)); __ b(slow_path->GetExitLabel(), EQ); } // Compare the class of `obj` with `cls`. __ LoadFromOffset(kLoadWord, temp, obj, class_offset); __ cmp(temp, ShifterOperand(cls)); __ b(slow_path->GetEntryLabel(), NE); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) { codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject), instruction, instruction->GetDexPc(), nullptr); } void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == Primitive::kPrimInt || instruction->GetResultType() == Primitive::kPrimLong); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = instruction->GetLocations(); if (instruction->GetResultType() == Primitive::kPrimInt) { Register first = locations->InAt(0).AsRegister(); Register second = locations->InAt(1).AsRegister(); Register out = locations->Out().AsRegister(); if (instruction->IsAnd()) { __ and_(out, first, ShifterOperand(second)); } else if (instruction->IsOr()) { __ orr(out, first, ShifterOperand(second)); } else { DCHECK(instruction->IsXor()); __ eor(out, first, ShifterOperand(second)); } } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); if (instruction->IsAnd()) { __ and_(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ and_(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); } else if (instruction->IsOr()) { __ orr(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ orr(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); } else { DCHECK(instruction->IsXor()); __ eor(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ eor(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); } } } void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Register temp) { DCHECK_EQ(temp, kArtMethodRegister); // TODO: Implement all kinds of calls: // 1) boot -> boot // 2) app -> boot // 3) app -> app // // Currently we implement the app -> app logic, which looks up in the resolve cache. if (invoke->IsStringInit()) { // temp = thread->string_init_entrypoint __ LoadFromOffset(kLoadWord, temp, TR, invoke->GetStringInitOffset()); // LR = temp[offset_of_quick_compiled_code] __ LoadFromOffset(kLoadWord, LR, temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArmWordSize).Int32Value()); // LR() __ blx(LR); } else { // temp = method; LoadCurrentMethod(temp); if (!invoke->IsRecursive()) { // temp = temp->dex_cache_resolved_methods_; __ LoadFromOffset( kLoadWord, temp, temp, ArtMethod::DexCacheResolvedMethodsOffset().Int32Value()); // temp = temp[index_in_cache] __ LoadFromOffset( kLoadWord, temp, temp, CodeGenerator::GetCacheOffset(invoke->GetDexMethodIndex())); // LR = temp[offset_of_quick_compiled_code] __ LoadFromOffset(kLoadWord, LR, temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArmWordSize).Int32Value()); // LR() __ blx(LR); } else { __ bl(GetFrameEntryLabel()); } } DCHECK(!IsLeafMethod()); } void LocationsBuilderARM::VisitBoundType(HBoundType* instruction) { // Nothing to do, this should be removed during prepare for register allocator. UNUSED(instruction); LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction) { // Nothing to do, this should be removed during prepare for register allocator. UNUSED(instruction); LOG(FATAL) << "Unreachable"; } } // namespace arm } // namespace art