/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "base/logging.h" #include "base/scoped_arena_containers.h" #include "dataflow_iterator-inl.h" #include "compiler_ir.h" #include "dex_flags.h" #include "dex_instruction-inl.h" #include "dex/mir_field_info.h" #include "dex/verified_method.h" #include "dex/quick/dex_file_method_inliner.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "utils.h" namespace art { enum InstructionAnalysisAttributeOps : uint8_t { kUninterestingOp = 0, kArithmeticOp, kFpOp, kSingleOp, kDoubleOp, kIntOp, kLongOp, kBranchOp, kInvokeOp, kArrayOp, kHeavyweightOp, kSimpleConstOp, kMoveOp, kSwitch }; enum InstructionAnalysisAttributeMasks : uint16_t { kAnNone = 1 << kUninterestingOp, kAnMath = 1 << kArithmeticOp, kAnFp = 1 << kFpOp, kAnLong = 1 << kLongOp, kAnInt = 1 << kIntOp, kAnSingle = 1 << kSingleOp, kAnDouble = 1 << kDoubleOp, kAnFloatMath = 1 << kFpOp, kAnBranch = 1 << kBranchOp, kAnInvoke = 1 << kInvokeOp, kAnArrayOp = 1 << kArrayOp, kAnHeavyWeight = 1 << kHeavyweightOp, kAnSimpleConst = 1 << kSimpleConstOp, kAnMove = 1 << kMoveOp, kAnSwitch = 1 << kSwitch, kAnComputational = kAnMath | kAnArrayOp | kAnMove | kAnSimpleConst, }; // Instruction characteristics used to statically identify computation-intensive methods. static const uint16_t kAnalysisAttributes[kMirOpLast] = { // 00 NOP kAnNone, // 01 MOVE vA, vB kAnMove, // 02 MOVE_FROM16 vAA, vBBBB kAnMove, // 03 MOVE_16 vAAAA, vBBBB kAnMove, // 04 MOVE_WIDE vA, vB kAnMove, // 05 MOVE_WIDE_FROM16 vAA, vBBBB kAnMove, // 06 MOVE_WIDE_16 vAAAA, vBBBB kAnMove, // 07 MOVE_OBJECT vA, vB kAnMove, // 08 MOVE_OBJECT_FROM16 vAA, vBBBB kAnMove, // 09 MOVE_OBJECT_16 vAAAA, vBBBB kAnMove, // 0A MOVE_RESULT vAA kAnMove, // 0B MOVE_RESULT_WIDE vAA kAnMove, // 0C MOVE_RESULT_OBJECT vAA kAnMove, // 0D MOVE_EXCEPTION vAA kAnMove, // 0E RETURN_VOID kAnBranch, // 0F RETURN vAA kAnBranch, // 10 RETURN_WIDE vAA kAnBranch, // 11 RETURN_OBJECT vAA kAnBranch, // 12 CONST_4 vA, #+B kAnSimpleConst, // 13 CONST_16 vAA, #+BBBB kAnSimpleConst, // 14 CONST vAA, #+BBBBBBBB kAnSimpleConst, // 15 CONST_HIGH16 VAA, #+BBBB0000 kAnSimpleConst, // 16 CONST_WIDE_16 vAA, #+BBBB kAnSimpleConst, // 17 CONST_WIDE_32 vAA, #+BBBBBBBB kAnSimpleConst, // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB kAnSimpleConst, // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 kAnSimpleConst, // 1A CONST_STRING vAA, string@BBBB kAnNone, // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB kAnNone, // 1C CONST_CLASS vAA, type@BBBB kAnNone, // 1D MONITOR_ENTER vAA kAnNone, // 1E MONITOR_EXIT vAA kAnNone, // 1F CHK_CAST vAA, type@BBBB kAnNone, // 20 INSTANCE_OF vA, vB, type@CCCC kAnNone, // 21 ARRAY_LENGTH vA, vB kAnArrayOp, // 22 NEW_INSTANCE vAA, type@BBBB kAnHeavyWeight, // 23 NEW_ARRAY vA, vB, type@CCCC kAnHeavyWeight, // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} kAnHeavyWeight, // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB kAnHeavyWeight, // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB kAnNone, // 27 THROW vAA kAnHeavyWeight | kAnBranch, // 28 GOTO kAnBranch, // 29 GOTO_16 kAnBranch, // 2A GOTO_32 kAnBranch, // 2B PACKED_SWITCH vAA, +BBBBBBBB kAnSwitch, // 2C SPARSE_SWITCH vAA, +BBBBBBBB kAnSwitch, // 2D CMPL_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // 2E CMPG_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // 2F CMPL_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // 30 CMPG_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // 31 CMP_LONG vAA, vBB, vCC kAnMath | kAnLong, // 32 IF_EQ vA, vB, +CCCC kAnMath | kAnBranch | kAnInt, // 33 IF_NE vA, vB, +CCCC kAnMath | kAnBranch | kAnInt, // 34 IF_LT vA, vB, +CCCC kAnMath | kAnBranch | kAnInt, // 35 IF_GE vA, vB, +CCCC kAnMath | kAnBranch | kAnInt, // 36 IF_GT vA, vB, +CCCC kAnMath | kAnBranch | kAnInt, // 37 IF_LE vA, vB, +CCCC kAnMath | kAnBranch | kAnInt, // 38 IF_EQZ vAA, +BBBB kAnMath | kAnBranch | kAnInt, // 39 IF_NEZ vAA, +BBBB kAnMath | kAnBranch | kAnInt, // 3A IF_LTZ vAA, +BBBB kAnMath | kAnBranch | kAnInt, // 3B IF_GEZ vAA, +BBBB kAnMath | kAnBranch | kAnInt, // 3C IF_GTZ vAA, +BBBB kAnMath | kAnBranch | kAnInt, // 3D IF_LEZ vAA, +BBBB kAnMath | kAnBranch | kAnInt, // 3E UNUSED_3E kAnNone, // 3F UNUSED_3F kAnNone, // 40 UNUSED_40 kAnNone, // 41 UNUSED_41 kAnNone, // 42 UNUSED_42 kAnNone, // 43 UNUSED_43 kAnNone, // 44 AGET vAA, vBB, vCC kAnArrayOp, // 45 AGET_WIDE vAA, vBB, vCC kAnArrayOp, // 46 AGET_OBJECT vAA, vBB, vCC kAnArrayOp, // 47 AGET_BOOLEAN vAA, vBB, vCC kAnArrayOp, // 48 AGET_BYTE vAA, vBB, vCC kAnArrayOp, // 49 AGET_CHAR vAA, vBB, vCC kAnArrayOp, // 4A AGET_SHORT vAA, vBB, vCC kAnArrayOp, // 4B APUT vAA, vBB, vCC kAnArrayOp, // 4C APUT_WIDE vAA, vBB, vCC kAnArrayOp, // 4D APUT_OBJECT vAA, vBB, vCC kAnArrayOp, // 4E APUT_BOOLEAN vAA, vBB, vCC kAnArrayOp, // 4F APUT_BYTE vAA, vBB, vCC kAnArrayOp, // 50 APUT_CHAR vAA, vBB, vCC kAnArrayOp, // 51 APUT_SHORT vAA, vBB, vCC kAnArrayOp, // 52 IGET vA, vB, field@CCCC kAnNone, // 53 IGET_WIDE vA, vB, field@CCCC kAnNone, // 54 IGET_OBJECT vA, vB, field@CCCC kAnNone, // 55 IGET_BOOLEAN vA, vB, field@CCCC kAnNone, // 56 IGET_BYTE vA, vB, field@CCCC kAnNone, // 57 IGET_CHAR vA, vB, field@CCCC kAnNone, // 58 IGET_SHORT vA, vB, field@CCCC kAnNone, // 59 IPUT vA, vB, field@CCCC kAnNone, // 5A IPUT_WIDE vA, vB, field@CCCC kAnNone, // 5B IPUT_OBJECT vA, vB, field@CCCC kAnNone, // 5C IPUT_BOOLEAN vA, vB, field@CCCC kAnNone, // 5D IPUT_BYTE vA, vB, field@CCCC kAnNone, // 5E IPUT_CHAR vA, vB, field@CCCC kAnNone, // 5F IPUT_SHORT vA, vB, field@CCCC kAnNone, // 60 SGET vAA, field@BBBB kAnNone, // 61 SGET_WIDE vAA, field@BBBB kAnNone, // 62 SGET_OBJECT vAA, field@BBBB kAnNone, // 63 SGET_BOOLEAN vAA, field@BBBB kAnNone, // 64 SGET_BYTE vAA, field@BBBB kAnNone, // 65 SGET_CHAR vAA, field@BBBB kAnNone, // 66 SGET_SHORT vAA, field@BBBB kAnNone, // 67 SPUT vAA, field@BBBB kAnNone, // 68 SPUT_WIDE vAA, field@BBBB kAnNone, // 69 SPUT_OBJECT vAA, field@BBBB kAnNone, // 6A SPUT_BOOLEAN vAA, field@BBBB kAnNone, // 6B SPUT_BYTE vAA, field@BBBB kAnNone, // 6C SPUT_CHAR vAA, field@BBBB kAnNone, // 6D SPUT_SHORT vAA, field@BBBB kAnNone, // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} kAnInvoke | kAnHeavyWeight, // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} kAnInvoke | kAnHeavyWeight, // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} kAnInvoke | kAnHeavyWeight, // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} kAnInvoke | kAnHeavyWeight, // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} kAnInvoke | kAnHeavyWeight, // 73 RETURN_VOID_NO_BARRIER kAnBranch, // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} kAnInvoke | kAnHeavyWeight, // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} kAnInvoke | kAnHeavyWeight, // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} kAnInvoke | kAnHeavyWeight, // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} kAnInvoke | kAnHeavyWeight, // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} kAnInvoke | kAnHeavyWeight, // 79 UNUSED_79 kAnNone, // 7A UNUSED_7A kAnNone, // 7B NEG_INT vA, vB kAnMath | kAnInt, // 7C NOT_INT vA, vB kAnMath | kAnInt, // 7D NEG_LONG vA, vB kAnMath | kAnLong, // 7E NOT_LONG vA, vB kAnMath | kAnLong, // 7F NEG_FLOAT vA, vB kAnMath | kAnFp | kAnSingle, // 80 NEG_DOUBLE vA, vB kAnMath | kAnFp | kAnDouble, // 81 INT_TO_LONG vA, vB kAnMath | kAnInt | kAnLong, // 82 INT_TO_FLOAT vA, vB kAnMath | kAnFp | kAnInt | kAnSingle, // 83 INT_TO_DOUBLE vA, vB kAnMath | kAnFp | kAnInt | kAnDouble, // 84 LONG_TO_INT vA, vB kAnMath | kAnInt | kAnLong, // 85 LONG_TO_FLOAT vA, vB kAnMath | kAnFp | kAnLong | kAnSingle, // 86 LONG_TO_DOUBLE vA, vB kAnMath | kAnFp | kAnLong | kAnDouble, // 87 FLOAT_TO_INT vA, vB kAnMath | kAnFp | kAnInt | kAnSingle, // 88 FLOAT_TO_LONG vA, vB kAnMath | kAnFp | kAnLong | kAnSingle, // 89 FLOAT_TO_DOUBLE vA, vB kAnMath | kAnFp | kAnSingle | kAnDouble, // 8A DOUBLE_TO_INT vA, vB kAnMath | kAnFp | kAnInt | kAnDouble, // 8B DOUBLE_TO_LONG vA, vB kAnMath | kAnFp | kAnLong | kAnDouble, // 8C DOUBLE_TO_FLOAT vA, vB kAnMath | kAnFp | kAnSingle | kAnDouble, // 8D INT_TO_BYTE vA, vB kAnMath | kAnInt, // 8E INT_TO_CHAR vA, vB kAnMath | kAnInt, // 8F INT_TO_SHORT vA, vB kAnMath | kAnInt, // 90 ADD_INT vAA, vBB, vCC kAnMath | kAnInt, // 91 SUB_INT vAA, vBB, vCC kAnMath | kAnInt, // 92 MUL_INT vAA, vBB, vCC kAnMath | kAnInt, // 93 DIV_INT vAA, vBB, vCC kAnMath | kAnInt, // 94 REM_INT vAA, vBB, vCC kAnMath | kAnInt, // 95 AND_INT vAA, vBB, vCC kAnMath | kAnInt, // 96 OR_INT vAA, vBB, vCC kAnMath | kAnInt, // 97 XOR_INT vAA, vBB, vCC kAnMath | kAnInt, // 98 SHL_INT vAA, vBB, vCC kAnMath | kAnInt, // 99 SHR_INT vAA, vBB, vCC kAnMath | kAnInt, // 9A USHR_INT vAA, vBB, vCC kAnMath | kAnInt, // 9B ADD_LONG vAA, vBB, vCC kAnMath | kAnLong, // 9C SUB_LONG vAA, vBB, vCC kAnMath | kAnLong, // 9D MUL_LONG vAA, vBB, vCC kAnMath | kAnLong, // 9E DIV_LONG vAA, vBB, vCC kAnMath | kAnLong, // 9F REM_LONG vAA, vBB, vCC kAnMath | kAnLong, // A0 AND_LONG vAA, vBB, vCC kAnMath | kAnLong, // A1 OR_LONG vAA, vBB, vCC kAnMath | kAnLong, // A2 XOR_LONG vAA, vBB, vCC kAnMath | kAnLong, // A3 SHL_LONG vAA, vBB, vCC kAnMath | kAnLong, // A4 SHR_LONG vAA, vBB, vCC kAnMath | kAnLong, // A5 USHR_LONG vAA, vBB, vCC kAnMath | kAnLong, // A6 ADD_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // A7 SUB_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // A8 MUL_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // A9 DIV_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // AA REM_FLOAT vAA, vBB, vCC kAnMath | kAnFp | kAnSingle, // AB ADD_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // AC SUB_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // AD MUL_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // AE DIV_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // AF REM_DOUBLE vAA, vBB, vCC kAnMath | kAnFp | kAnDouble, // B0 ADD_INT_2ADDR vA, vB kAnMath | kAnInt, // B1 SUB_INT_2ADDR vA, vB kAnMath | kAnInt, // B2 MUL_INT_2ADDR vA, vB kAnMath | kAnInt, // B3 DIV_INT_2ADDR vA, vB kAnMath | kAnInt, // B4 REM_INT_2ADDR vA, vB kAnMath | kAnInt, // B5 AND_INT_2ADDR vA, vB kAnMath | kAnInt, // B6 OR_INT_2ADDR vA, vB kAnMath | kAnInt, // B7 XOR_INT_2ADDR vA, vB kAnMath | kAnInt, // B8 SHL_INT_2ADDR vA, vB kAnMath | kAnInt, // B9 SHR_INT_2ADDR vA, vB kAnMath | kAnInt, // BA USHR_INT_2ADDR vA, vB kAnMath | kAnInt, // BB ADD_LONG_2ADDR vA, vB kAnMath | kAnLong, // BC SUB_LONG_2ADDR vA, vB kAnMath | kAnLong, // BD MUL_LONG_2ADDR vA, vB kAnMath | kAnLong, // BE DIV_LONG_2ADDR vA, vB kAnMath | kAnLong, // BF REM_LONG_2ADDR vA, vB kAnMath | kAnLong, // C0 AND_LONG_2ADDR vA, vB kAnMath | kAnLong, // C1 OR_LONG_2ADDR vA, vB kAnMath | kAnLong, // C2 XOR_LONG_2ADDR vA, vB kAnMath | kAnLong, // C3 SHL_LONG_2ADDR vA, vB kAnMath | kAnLong, // C4 SHR_LONG_2ADDR vA, vB kAnMath | kAnLong, // C5 USHR_LONG_2ADDR vA, vB kAnMath | kAnLong, // C6 ADD_FLOAT_2ADDR vA, vB kAnMath | kAnFp | kAnSingle, // C7 SUB_FLOAT_2ADDR vA, vB kAnMath | kAnFp | kAnSingle, // C8 MUL_FLOAT_2ADDR vA, vB kAnMath | kAnFp | kAnSingle, // C9 DIV_FLOAT_2ADDR vA, vB kAnMath | kAnFp | kAnSingle, // CA REM_FLOAT_2ADDR vA, vB kAnMath | kAnFp | kAnSingle, // CB ADD_DOUBLE_2ADDR vA, vB kAnMath | kAnFp | kAnDouble, // CC SUB_DOUBLE_2ADDR vA, vB kAnMath | kAnFp | kAnDouble, // CD MUL_DOUBLE_2ADDR vA, vB kAnMath | kAnFp | kAnDouble, // CE DIV_DOUBLE_2ADDR vA, vB kAnMath | kAnFp | kAnDouble, // CF REM_DOUBLE_2ADDR vA, vB kAnMath | kAnFp | kAnDouble, // D0 ADD_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D1 RSUB_INT vA, vB, #+CCCC kAnMath | kAnInt, // D2 MUL_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D3 DIV_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D4 REM_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D5 AND_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D6 OR_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D7 XOR_INT_LIT16 vA, vB, #+CCCC kAnMath | kAnInt, // D8 ADD_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // D9 RSUB_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // DA MUL_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // DB DIV_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // DC REM_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // DD AND_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // DE OR_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // DF XOR_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // E0 SHL_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // E1 SHR_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // E2 USHR_INT_LIT8 vAA, vBB, #+CC kAnMath | kAnInt, // E3 IGET_QUICK kAnNone, // E4 IGET_WIDE_QUICK kAnNone, // E5 IGET_OBJECT_QUICK kAnNone, // E6 IPUT_QUICK kAnNone, // E7 IPUT_WIDE_QUICK kAnNone, // E8 IPUT_OBJECT_QUICK kAnNone, // E9 INVOKE_VIRTUAL_QUICK kAnInvoke | kAnHeavyWeight, // EA INVOKE_VIRTUAL_RANGE_QUICK kAnInvoke | kAnHeavyWeight, // EB IPUT_BOOLEAN_QUICK kAnNone, // EC IPUT_BYTE_QUICK kAnNone, // ED IPUT_CHAR_QUICK kAnNone, // EE IPUT_SHORT_QUICK kAnNone, // EF IGET_BOOLEAN_QUICK kAnNone, // F0 IGET_BYTE_QUICK kAnNone, // F1 IGET_CHAR_QUICK kAnNone, // F2 IGET_SHORT_QUICK kAnNone, // F3 UNUSED_F3 kAnNone, // F4 UNUSED_F4 kAnNone, // F5 UNUSED_F5 kAnNone, // F6 UNUSED_F6 kAnNone, // F7 UNUSED_F7 kAnNone, // F8 UNUSED_F8 kAnNone, // F9 UNUSED_F9 kAnNone, // FA UNUSED_FA kAnNone, // FB UNUSED_FB kAnNone, // FC UNUSED_FC kAnNone, // FD UNUSED_FD kAnNone, // FE UNUSED_FE kAnNone, // FF UNUSED_FF kAnNone, // Beginning of extended MIR opcodes // 100 MIR_PHI kAnNone, // 101 MIR_COPY kAnNone, // 102 MIR_FUSED_CMPL_FLOAT kAnNone, // 103 MIR_FUSED_CMPG_FLOAT kAnNone, // 104 MIR_FUSED_CMPL_DOUBLE kAnNone, // 105 MIR_FUSED_CMPG_DOUBLE kAnNone, // 106 MIR_FUSED_CMP_LONG kAnNone, // 107 MIR_NOP kAnNone, // 108 MIR_NULL_CHECK kAnNone, // 109 MIR_RANGE_CHECK kAnNone, // 10A MIR_DIV_ZERO_CHECK kAnNone, // 10B MIR_CHECK kAnNone, // 10C MIR_CHECKPART2 kAnNone, // 10D MIR_SELECT kAnNone, // 10E MirOpConstVector kAnNone, // 10F MirOpMoveVector kAnNone, // 110 MirOpPackedMultiply kAnNone, // 111 MirOpPackedAddition kAnNone, // 112 MirOpPackedSubtract kAnNone, // 113 MirOpPackedShiftLeft kAnNone, // 114 MirOpPackedSignedShiftRight kAnNone, // 115 MirOpPackedUnsignedShiftRight kAnNone, // 116 MirOpPackedAnd kAnNone, // 117 MirOpPackedOr kAnNone, // 118 MirOpPackedXor kAnNone, // 119 MirOpPackedAddReduce kAnNone, // 11A MirOpPackedReduce kAnNone, // 11B MirOpPackedSet kAnNone, // 11C MirOpReserveVectorRegisters kAnNone, // 11D MirOpReturnVectorRegisters kAnNone, // 11E MirOpMemBarrier kAnNone, // 11F MirOpPackedArrayGet kAnArrayOp, // 120 MirOpPackedArrayPut kAnArrayOp, }; struct MethodStats { int dex_instructions; int math_ops; int fp_ops; int array_ops; int branch_ops; int heavyweight_ops; bool has_computational_loop; bool has_switch; float math_ratio; float fp_ratio; float array_ratio; float branch_ratio; float heavyweight_ratio; }; void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) { if (bb->visited || (bb->block_type != kDalvikByteCode)) { return; } bool computational_block = true; bool has_math = false; /* * For the purposes of this scan, we want to treat the set of basic blocks broken * by an exception edge as a single basic block. We'll scan forward along the fallthrough * edges until we reach an explicit branch or return. */ BasicBlock* ending_bb = bb; if (ending_bb->last_mir_insn != nullptr) { uint32_t ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode]; while ((ending_flags & kAnBranch) == 0) { ending_bb = GetBasicBlock(ending_bb->fall_through); ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode]; } } /* * Ideally, we'd weight the operations by loop nesting level, but to do so we'd * first need to do some expensive loop detection - and the point of this is to make * an informed guess before investing in computation. However, we can cheaply detect * many simple loop forms without having to do full dataflow analysis. */ int loop_scale_factor = 1; // Simple for and while loops if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->fall_through == NullBasicBlockId)) { if ((GetBasicBlock(ending_bb->taken)->taken == bb->id) || (GetBasicBlock(ending_bb->taken)->fall_through == bb->id)) { loop_scale_factor = 25; } } // Simple do-while loop if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->taken == bb->id)) { loop_scale_factor = 25; } BasicBlock* tbb = bb; bool done = false; while (!done) { tbb->visited = true; for (MIR* mir = tbb->first_mir_insn; mir != nullptr; mir = mir->next) { if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) { // Skip any MIR pseudo-op. continue; } uint16_t flags = kAnalysisAttributes[mir->dalvikInsn.opcode]; stats->dex_instructions += loop_scale_factor; if ((flags & kAnBranch) == 0) { computational_block &= ((flags & kAnComputational) != 0); } else { stats->branch_ops += loop_scale_factor; } if ((flags & kAnMath) != 0) { stats->math_ops += loop_scale_factor; has_math = true; } if ((flags & kAnFp) != 0) { stats->fp_ops += loop_scale_factor; } if ((flags & kAnArrayOp) != 0) { stats->array_ops += loop_scale_factor; } if ((flags & kAnHeavyWeight) != 0) { stats->heavyweight_ops += loop_scale_factor; } if ((flags & kAnSwitch) != 0) { stats->has_switch = true; } } if (tbb == ending_bb) { done = true; } else { tbb = GetBasicBlock(tbb->fall_through); } } if (has_math && computational_block && (loop_scale_factor > 1)) { stats->has_computational_loop = true; } } bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default, std::string* skip_message) { float count = stats->dex_instructions; stats->math_ratio = stats->math_ops / count; stats->fp_ratio = stats->fp_ops / count; stats->branch_ratio = stats->branch_ops / count; stats->array_ratio = stats->array_ops / count; stats->heavyweight_ratio = stats->heavyweight_ops / count; if (cu_->enable_debug & (1 << kDebugShowFilterStats)) { LOG(INFO) << "STATS " << stats->dex_instructions << ", math:" << stats->math_ratio << ", fp:" << stats->fp_ratio << ", br:" << stats->branch_ratio << ", hw:" << stats->heavyweight_ratio << ", arr:" << stats->array_ratio << ", hot:" << stats->has_computational_loop << ", " << PrettyMethod(cu_->method_idx, *cu_->dex_file); } // Computation intensive? if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) { return false; } // Complex, logic-intensive? if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) && stats->branch_ratio > 0.3) { return false; } // Significant floating point? if (stats->fp_ratio > 0.05) { return false; } // Significant generic math? if (stats->math_ratio > 0.3) { return false; } // If array-intensive, compiling is probably worthwhile. if (stats->array_ratio > 0.1) { return false; } // Switch operations benefit greatly from compilation, so go ahead and spend the cycles. if (stats->has_switch) { return false; } // If significant in size and high proportion of expensive operations, skip. if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) && (stats->heavyweight_ratio > 0.3)) { *skip_message = "Is a small method with heavyweight ratio " + std::to_string(stats->heavyweight_ratio); return true; } return skip_default; } /* * Will eventually want this to be a bit more sophisticated and happen at verification time. */ bool MIRGraph::SkipCompilation(std::string* skip_message) { const CompilerOptions& compiler_options = cu_->compiler_driver->GetCompilerOptions(); CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter(); if (compiler_filter == CompilerOptions::kEverything) { return false; } // Contains a pattern we don't want to compile? if (PuntToInterpreter()) { *skip_message = "Punt to interpreter set"; return true; } DCHECK(compiler_options.IsCompilationEnabled()); // Set up compilation cutoffs based on current filter mode. size_t small_cutoff; size_t default_cutoff; switch (compiler_filter) { case CompilerOptions::kBalanced: small_cutoff = compiler_options.GetSmallMethodThreshold(); default_cutoff = compiler_options.GetLargeMethodThreshold(); break; case CompilerOptions::kSpace: small_cutoff = compiler_options.GetTinyMethodThreshold(); default_cutoff = compiler_options.GetSmallMethodThreshold(); break; case CompilerOptions::kSpeed: case CompilerOptions::kTime: small_cutoff = compiler_options.GetHugeMethodThreshold(); default_cutoff = compiler_options.GetHugeMethodThreshold(); break; default: LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter; UNREACHABLE(); } // If size < cutoff, assume we'll compile - but allow removal. bool skip_compilation = (GetNumDalvikInsns() >= default_cutoff); if (skip_compilation) { *skip_message = "#Insns >= default_cutoff: " + std::to_string(GetNumDalvikInsns()); } /* * Filter 1: Huge methods are likely to be machine generated, but some aren't. * If huge, assume we won't compile, but allow futher analysis to turn it back on. */ if (compiler_options.IsHugeMethod(GetNumDalvikInsns())) { skip_compilation = true; *skip_message = "Huge method: " + std::to_string(GetNumDalvikInsns()); // If we're got a huge number of basic blocks, don't bother with further analysis. if (static_cast(GetNumBlocks()) > (compiler_options.GetHugeMethodThreshold() / 2)) { return true; } } else if (compiler_options.IsLargeMethod(GetNumDalvikInsns()) && /* If it's large and contains no branches, it's likely to be machine generated initialization */ (GetBranchCount() == 0)) { *skip_message = "Large method with no branches"; return true; } else if (compiler_filter == CompilerOptions::kSpeed) { // If not huge, compile. return false; } // Filter 2: Skip class initializers. if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) { *skip_message = "Class initializer"; return true; } // Filter 3: if this method is a special pattern, go ahead and emit the canned pattern. if (cu_->compiler_driver->GetMethodInlinerMap() != nullptr && cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) ->IsSpecial(cu_->method_idx)) { return false; } // Filter 4: if small, just compile. if (GetNumDalvikInsns() < small_cutoff) { return false; } // Analyze graph for: // o floating point computation // o basic blocks contained in loop with heavy arithmetic. // o proportion of conditional branches. MethodStats stats; memset(&stats, 0, sizeof(stats)); ClearAllVisitedFlags(); AllNodesIterator iter(this); for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { AnalyzeBlock(bb, &stats); } return ComputeSkipCompilation(&stats, skip_compilation, skip_message); } void MIRGraph::DoCacheFieldLoweringInfo() { static constexpr uint32_t kFieldIndexFlagQuickened = 0x80000000; // All IGET/IPUT/SGET/SPUT instructions take 2 code units and there must also be a RETURN. const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 2u; ScopedArenaAllocator allocator(&cu_->arena_stack); auto* field_idxs = allocator.AllocArray(max_refs, kArenaAllocMisc); DexMemAccessType* field_types = allocator.AllocArray( max_refs, kArenaAllocMisc); // Find IGET/IPUT/SGET/SPUT insns, store IGET/IPUT fields at the beginning, SGET/SPUT at the end. size_t ifield_pos = 0u; size_t sfield_pos = max_refs; AllNodesIterator iter(this); for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { if (bb->block_type != kDalvikByteCode) { continue; } for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { // Get field index and try to find it among existing indexes. If found, it's usually among // the last few added, so we'll start the search from ifield_pos/sfield_pos. Though this // is a linear search, it actually performs much better than map based approach. const bool is_iget_or_iput = IsInstructionIGetOrIPut(mir->dalvikInsn.opcode); const bool is_iget_or_iput_quick = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode); if (is_iget_or_iput || is_iget_or_iput_quick) { uint32_t field_idx; DexMemAccessType access_type; if (is_iget_or_iput) { field_idx = mir->dalvikInsn.vC; access_type = IGetOrIPutMemAccessType(mir->dalvikInsn.opcode); } else { DCHECK(is_iget_or_iput_quick); // Set kFieldIndexFlagQuickened so that we don't deduplicate against non quickened field // indexes. field_idx = mir->offset | kFieldIndexFlagQuickened; access_type = IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode); } size_t i = ifield_pos; while (i != 0u && field_idxs[i - 1] != field_idx) { --i; } if (i != 0u) { mir->meta.ifield_lowering_info = i - 1; DCHECK_EQ(field_types[i - 1], access_type); } else { mir->meta.ifield_lowering_info = ifield_pos; field_idxs[ifield_pos] = field_idx; field_types[ifield_pos] = access_type; ++ifield_pos; } } else if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) { auto field_idx = mir->dalvikInsn.vB; size_t i = sfield_pos; while (i != max_refs && field_idxs[i] != field_idx) { ++i; } if (i != max_refs) { mir->meta.sfield_lowering_info = max_refs - i - 1u; DCHECK_EQ(field_types[i], SGetOrSPutMemAccessType(mir->dalvikInsn.opcode)); } else { mir->meta.sfield_lowering_info = max_refs - sfield_pos; --sfield_pos; field_idxs[sfield_pos] = field_idx; field_types[sfield_pos] = SGetOrSPutMemAccessType(mir->dalvikInsn.opcode); } } DCHECK_LE(ifield_pos, sfield_pos); } } if (ifield_pos != 0u) { // Resolve instance field infos. DCHECK_EQ(ifield_lowering_infos_.size(), 0u); ifield_lowering_infos_.reserve(ifield_pos); for (size_t pos = 0u; pos != ifield_pos; ++pos) { const uint32_t field_idx = field_idxs[pos]; const bool is_quickened = (field_idx & kFieldIndexFlagQuickened) != 0; const uint32_t masked_field_idx = field_idx & ~kFieldIndexFlagQuickened; CHECK_LT(masked_field_idx, 1u << 16); ifield_lowering_infos_.push_back( MirIFieldLoweringInfo(masked_field_idx, field_types[pos], is_quickened)); } MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), ifield_lowering_infos_.data(), ifield_pos); } if (sfield_pos != max_refs) { // Resolve static field infos. DCHECK_EQ(sfield_lowering_infos_.size(), 0u); sfield_lowering_infos_.reserve(max_refs - sfield_pos); for (size_t pos = max_refs; pos != sfield_pos;) { --pos; sfield_lowering_infos_.push_back(MirSFieldLoweringInfo(field_idxs[pos], field_types[pos])); } MirSFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), sfield_lowering_infos_.data(), max_refs - sfield_pos); } } void MIRGraph::DoCacheMethodLoweringInfo() { static constexpr uint16_t invoke_types[] = { kVirtual, kSuper, kDirect, kStatic, kInterface }; static constexpr uint32_t kMethodIdxFlagQuickened = 0x80000000; // Embed the map value in the entry to avoid extra padding in 64-bit builds. struct MapEntry { // Map key: target_method_idx, invoke_type, devirt_target. Ordered to avoid padding. const MethodReference* devirt_target; uint32_t target_method_idx; uint32_t vtable_idx; uint16_t invoke_type; // Map value. uint32_t lowering_info_index; }; struct MapEntryComparator { bool operator()(const MapEntry& lhs, const MapEntry& rhs) const { if (lhs.target_method_idx != rhs.target_method_idx) { return lhs.target_method_idx < rhs.target_method_idx; } if (lhs.invoke_type != rhs.invoke_type) { return lhs.invoke_type < rhs.invoke_type; } if (lhs.vtable_idx != rhs.vtable_idx) { return lhs.vtable_idx < rhs.vtable_idx; } if (lhs.devirt_target != rhs.devirt_target) { if (lhs.devirt_target == nullptr) { return true; } if (rhs.devirt_target == nullptr) { return false; } return devirt_cmp(*lhs.devirt_target, *rhs.devirt_target); } return false; } MethodReferenceComparator devirt_cmp; }; ScopedArenaAllocator allocator(&cu_->arena_stack); // All INVOKE instructions take 3 code units and there must also be a RETURN. const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 3u; // Map invoke key (see MapEntry) to lowering info index and vice versa. // The invoke_map and sequential entries are essentially equivalent to Boost.MultiIndex's // multi_index_container with one ordered index and one sequential index. ScopedArenaSet invoke_map(MapEntryComparator(), allocator.Adapter()); const MapEntry** sequential_entries = allocator.AllocArray(max_refs, kArenaAllocMisc); // Find INVOKE insns and their devirtualization targets. const VerifiedMethod* verified_method = GetCurrentDexCompilationUnit()->GetVerifiedMethod(); AllNodesIterator iter(this); for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { if (bb->block_type != kDalvikByteCode) { continue; } for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { const bool is_quick_invoke = IsInstructionQuickInvoke(mir->dalvikInsn.opcode); const bool is_invoke = IsInstructionInvoke(mir->dalvikInsn.opcode); if (is_quick_invoke || is_invoke) { uint32_t vtable_index = 0; uint32_t target_method_idx = 0; uint32_t invoke_type_idx = 0; // Default to virtual (in case of quickened). DCHECK_EQ(invoke_types[invoke_type_idx], kVirtual); if (is_quick_invoke) { // We need to store the vtable index since we can't necessarily recreate it at resolve // phase if the dequickening resolved to an interface method. vtable_index = mir->dalvikInsn.vB; // Fake up the method index by storing the mir offset so that we can read the dequicken // info in resolve. target_method_idx = mir->offset | kMethodIdxFlagQuickened; } else { DCHECK(is_invoke); // Decode target method index and invoke type. invoke_type_idx = InvokeInstructionType(mir->dalvikInsn.opcode); target_method_idx = mir->dalvikInsn.vB; } // Find devirtualization target. // TODO: The devirt map is ordered by the dex pc here. Is there a way to get INVOKEs // ordered by dex pc as well? That would allow us to keep an iterator to devirt targets // and increment it as needed instead of making O(log n) lookups. const MethodReference* devirt_target = verified_method->GetDevirtTarget(mir->offset); // Try to insert a new entry. If the insertion fails, we will have found an old one. MapEntry entry = { devirt_target, target_method_idx, vtable_index, invoke_types[invoke_type_idx], static_cast(invoke_map.size()) }; auto it = invoke_map.insert(entry).first; // Iterator to either the old or the new entry. mir->meta.method_lowering_info = it->lowering_info_index; // If we didn't actually insert, this will just overwrite an existing value with the same. sequential_entries[it->lowering_info_index] = &*it; } } } if (invoke_map.empty()) { return; } // Prepare unique method infos, set method info indexes for their MIRs. const size_t count = invoke_map.size(); method_lowering_infos_.reserve(count); for (size_t pos = 0u; pos != count; ++pos) { const MapEntry* entry = sequential_entries[pos]; const bool is_quick = (entry->target_method_idx & kMethodIdxFlagQuickened) != 0; const uint32_t masked_method_idx = entry->target_method_idx & ~kMethodIdxFlagQuickened; MirMethodLoweringInfo method_info(masked_method_idx, static_cast(entry->invoke_type), is_quick); if (entry->devirt_target != nullptr) { method_info.SetDevirtualizationTarget(*entry->devirt_target); } if (is_quick) { method_info.SetVTableIndex(entry->vtable_idx); } method_lowering_infos_.push_back(method_info); } MirMethodLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), method_lowering_infos_.data(), count); } bool MIRGraph::SkipCompilationByName(const std::string& methodname) { return cu_->compiler_driver->SkipCompilation(methodname); } } // namespace art