summaryrefslogtreecommitdiffstats
path: root/runtime/thread.cc
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/thread.cc')
-rw-r--r--runtime/thread.cc2241
1 files changed, 2241 insertions, 0 deletions
diff --git a/runtime/thread.cc b/runtime/thread.cc
new file mode 100644
index 000000000..d6bd8a45a
--- /dev/null
+++ b/runtime/thread.cc
@@ -0,0 +1,2241 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define ATRACE_TAG ATRACE_TAG_DALVIK
+
+#include "thread.h"
+
+#include <cutils/trace.h>
+#include <pthread.h>
+#include <signal.h>
+#include <sys/resource.h>
+#include <sys/time.h>
+
+#include <algorithm>
+#include <bitset>
+#include <cerrno>
+#include <iostream>
+#include <list>
+
+#include "base/mutex.h"
+#include "class_linker.h"
+#include "class_linker-inl.h"
+#include "cutils/atomic.h"
+#include "cutils/atomic-inline.h"
+#include "debugger.h"
+#include "dex_file-inl.h"
+#include "gc_map.h"
+#include "gc/accounting/card_table-inl.h"
+#include "gc/heap.h"
+#include "gc/space/space.h"
+#include "invoke_arg_array_builder.h"
+#include "jni_internal.h"
+#include "mirror/abstract_method-inl.h"
+#include "mirror/class-inl.h"
+#include "mirror/class_loader.h"
+#include "mirror/field-inl.h"
+#include "mirror/object_array-inl.h"
+#include "mirror/stack_trace_element.h"
+#include "monitor.h"
+#include "oat/runtime/context.h"
+#include "object_utils.h"
+#include "reflection.h"
+#include "runtime.h"
+#include "runtime_support.h"
+#include "scoped_thread_state_change.h"
+#include "ScopedLocalRef.h"
+#include "ScopedUtfChars.h"
+#include "sirt_ref.h"
+#include "stack.h"
+#include "stack_indirect_reference_table.h"
+#include "thread-inl.h"
+#include "thread_list.h"
+#include "utils.h"
+#include "verifier/dex_gc_map.h"
+#include "verifier/method_verifier.h"
+#include "well_known_classes.h"
+
+namespace art {
+
+bool Thread::is_started_ = false;
+pthread_key_t Thread::pthread_key_self_;
+ConditionVariable* Thread::resume_cond_ = NULL;
+
+static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
+
+void Thread::InitCardTable() {
+ card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
+}
+
+#if !defined(__APPLE__)
+static void UnimplementedEntryPoint() {
+ UNIMPLEMENTED(FATAL);
+}
+#endif
+
+void Thread::InitFunctionPointers() {
+#if !defined(__APPLE__) // The Mac GCC is too old to accept this code.
+ // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
+ uintptr_t* begin = reinterpret_cast<uintptr_t*>(&entrypoints_);
+ uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(entrypoints_));
+ for (uintptr_t* it = begin; it != end; ++it) {
+ *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
+ }
+#endif
+ InitEntryPoints(&entrypoints_);
+}
+
+void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
+ deoptimization_shadow_frame_ = sf;
+}
+
+void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
+ deoptimization_return_value_.SetJ(ret_val.GetJ());
+}
+
+ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
+ ShadowFrame* sf = deoptimization_shadow_frame_;
+ deoptimization_shadow_frame_ = NULL;
+ ret_val->SetJ(deoptimization_return_value_.GetJ());
+ return sf;
+}
+
+void Thread::InitTid() {
+ tid_ = ::art::GetTid();
+}
+
+void Thread::InitAfterFork() {
+ // One thread (us) survived the fork, but we have a new tid so we need to
+ // update the value stashed in this Thread*.
+ InitTid();
+}
+
+void* Thread::CreateCallback(void* arg) {
+ Thread* self = reinterpret_cast<Thread*>(arg);
+ Runtime* runtime = Runtime::Current();
+ if (runtime == NULL) {
+ LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
+ return NULL;
+ }
+ {
+ // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
+ // after self->Init().
+ MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
+ // Check that if we got here we cannot be shutting down (as shutdown should never have started
+ // while threads are being born).
+ CHECK(!runtime->IsShuttingDown());
+ self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
+ Runtime::Current()->EndThreadBirth();
+ }
+ {
+ ScopedObjectAccess soa(self);
+
+ // Copy peer into self, deleting global reference when done.
+ CHECK(self->jpeer_ != NULL);
+ self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
+ self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
+ self->jpeer_ = NULL;
+
+ {
+ SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
+ self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
+ }
+ Dbg::PostThreadStart(self);
+
+ // Invoke the 'run' method of our java.lang.Thread.
+ mirror::Object* receiver = self->opeer_;
+ jmethodID mid = WellKnownClasses::java_lang_Thread_run;
+ mirror::AbstractMethod* m =
+ receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
+ JValue result;
+ ArgArray arg_array(NULL, 0);
+ arg_array.Append(reinterpret_cast<uint32_t>(receiver));
+ m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
+ }
+ // Detach and delete self.
+ Runtime::Current()->GetThreadList()->Unregister(self);
+
+ return NULL;
+}
+
+Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
+ mirror::Object* thread_peer) {
+ mirror::Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
+ Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
+ // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
+ // to stop it from going away.
+ if (kIsDebugBuild) {
+ MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
+ if (result != NULL && !result->IsSuspended()) {
+ Locks::thread_list_lock_->AssertHeld(soa.Self());
+ }
+ }
+ return result;
+}
+
+Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
+ return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
+}
+
+static size_t FixStackSize(size_t stack_size) {
+ // A stack size of zero means "use the default".
+ if (stack_size == 0) {
+ stack_size = Runtime::Current()->GetDefaultStackSize();
+ }
+
+ // Dalvik used the bionic pthread default stack size for native threads,
+ // so include that here to support apps that expect large native stacks.
+ stack_size += 1 * MB;
+
+ // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
+ if (stack_size < PTHREAD_STACK_MIN) {
+ stack_size = PTHREAD_STACK_MIN;
+ }
+
+ // It's likely that callers are trying to ensure they have at least a certain amount of
+ // stack space, so we should add our reserved space on top of what they requested, rather
+ // than implicitly take it away from them.
+ stack_size += Thread::kStackOverflowReservedBytes;
+
+ // Some systems require the stack size to be a multiple of the system page size, so round up.
+ stack_size = RoundUp(stack_size, kPageSize);
+
+ return stack_size;
+}
+
+static void SigAltStack(stack_t* new_stack, stack_t* old_stack) {
+ if (sigaltstack(new_stack, old_stack) == -1) {
+ PLOG(FATAL) << "sigaltstack failed";
+ }
+}
+
+static void SetUpAlternateSignalStack() {
+ // Create and set an alternate signal stack.
+ stack_t ss;
+ ss.ss_sp = new uint8_t[SIGSTKSZ];
+ ss.ss_size = SIGSTKSZ;
+ ss.ss_flags = 0;
+ CHECK(ss.ss_sp != NULL);
+ SigAltStack(&ss, NULL);
+
+ // Double-check that it worked.
+ ss.ss_sp = NULL;
+ SigAltStack(NULL, &ss);
+ VLOG(threads) << "Alternate signal stack is " << PrettySize(ss.ss_size) << " at " << ss.ss_sp;
+}
+
+static void TearDownAlternateSignalStack() {
+ // Get the pointer so we can free the memory.
+ stack_t ss;
+ SigAltStack(NULL, &ss);
+ uint8_t* allocated_signal_stack = reinterpret_cast<uint8_t*>(ss.ss_sp);
+
+ // Tell the kernel to stop using it.
+ ss.ss_sp = NULL;
+ ss.ss_flags = SS_DISABLE;
+ ss.ss_size = SIGSTKSZ; // Avoid ENOMEM failure with Mac OS' buggy libc.
+ SigAltStack(&ss, NULL);
+
+ // Free it.
+ delete[] allocated_signal_stack;
+}
+
+void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
+ CHECK(java_peer != NULL);
+ Thread* self = static_cast<JNIEnvExt*>(env)->self;
+ Runtime* runtime = Runtime::Current();
+
+ // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
+ bool thread_start_during_shutdown = false;
+ {
+ MutexLock mu(self, *Locks::runtime_shutdown_lock_);
+ if (runtime->IsShuttingDown()) {
+ thread_start_during_shutdown = true;
+ } else {
+ runtime->StartThreadBirth();
+ }
+ }
+ if (thread_start_during_shutdown) {
+ ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
+ env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
+ return;
+ }
+
+ Thread* child_thread = new Thread(is_daemon);
+ // Use global JNI ref to hold peer live while child thread starts.
+ child_thread->jpeer_ = env->NewGlobalRef(java_peer);
+ stack_size = FixStackSize(stack_size);
+
+ // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
+ // assign it.
+ env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
+ reinterpret_cast<jint>(child_thread));
+
+ pthread_t new_pthread;
+ pthread_attr_t attr;
+ CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
+ CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
+ CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
+ int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
+ CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
+
+ if (pthread_create_result != 0) {
+ // pthread_create(3) failed, so clean up.
+ {
+ MutexLock mu(self, *Locks::runtime_shutdown_lock_);
+ runtime->EndThreadBirth();
+ }
+ // Manually delete the global reference since Thread::Init will not have been run.
+ env->DeleteGlobalRef(child_thread->jpeer_);
+ child_thread->jpeer_ = NULL;
+ delete child_thread;
+ child_thread = NULL;
+ // TODO: remove from thread group?
+ env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
+ {
+ std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
+ PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
+ ScopedObjectAccess soa(env);
+ soa.Self()->ThrowOutOfMemoryError(msg.c_str());
+ }
+ }
+}
+
+void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
+ // This function does all the initialization that must be run by the native thread it applies to.
+ // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
+ // we can handshake with the corresponding native thread when it's ready.) Check this native
+ // thread hasn't been through here already...
+ CHECK(Thread::Current() == NULL);
+ SetUpAlternateSignalStack();
+ InitCpu();
+ InitFunctionPointers();
+ InitCardTable();
+ InitTid();
+ // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
+ // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
+ pthread_self_ = pthread_self();
+ CHECK(is_started_);
+ CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
+ DCHECK_EQ(Thread::Current(), this);
+
+ thin_lock_id_ = thread_list->AllocThreadId(this);
+ InitStackHwm();
+
+ jni_env_ = new JNIEnvExt(this, java_vm);
+ thread_list->Register(this);
+}
+
+Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
+ bool create_peer) {
+ Thread* self;
+ Runtime* runtime = Runtime::Current();
+ if (runtime == NULL) {
+ LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
+ return NULL;
+ }
+ {
+ MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
+ if (runtime->IsShuttingDown()) {
+ LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
+ return NULL;
+ } else {
+ Runtime::Current()->StartThreadBirth();
+ self = new Thread(as_daemon);
+ self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
+ Runtime::Current()->EndThreadBirth();
+ }
+ }
+
+ CHECK_NE(self->GetState(), kRunnable);
+ self->SetState(kNative);
+
+ // If we're the main thread, ClassLinker won't be created until after we're attached,
+ // so that thread needs a two-stage attach. Regular threads don't need this hack.
+ // In the compiler, all threads need this hack, because no-one's going to be getting
+ // a native peer!
+ if (create_peer) {
+ self->CreatePeer(thread_name, as_daemon, thread_group);
+ } else {
+ // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
+ if (thread_name != NULL) {
+ self->name_->assign(thread_name);
+ ::art::SetThreadName(thread_name);
+ }
+ }
+
+ return self;
+}
+
+void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
+ Runtime* runtime = Runtime::Current();
+ CHECK(runtime->IsStarted());
+ JNIEnv* env = jni_env_;
+
+ if (thread_group == NULL) {
+ thread_group = runtime->GetMainThreadGroup();
+ }
+ ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
+ jint thread_priority = GetNativePriority();
+ jboolean thread_is_daemon = as_daemon;
+
+ ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
+ if (peer.get() == NULL) {
+ CHECK(IsExceptionPending());
+ return;
+ }
+ {
+ ScopedObjectAccess soa(this);
+ opeer_ = soa.Decode<mirror::Object*>(peer.get());
+ }
+ env->CallNonvirtualVoidMethod(peer.get(),
+ WellKnownClasses::java_lang_Thread,
+ WellKnownClasses::java_lang_Thread_init,
+ thread_group, thread_name.get(), thread_priority, thread_is_daemon);
+ AssertNoPendingException();
+
+ Thread* self = this;
+ DCHECK_EQ(self, Thread::Current());
+ jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
+ reinterpret_cast<jint>(self));
+
+ ScopedObjectAccess soa(self);
+ SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
+ if (peer_thread_name.get() == NULL) {
+ // The Thread constructor should have set the Thread.name to a
+ // non-null value. However, because we can run without code
+ // available (in the compiler, in tests), we manually assign the
+ // fields the constructor should have set.
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
+ SetBoolean(opeer_, thread_is_daemon);
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
+ SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
+ SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
+ SetInt(opeer_, thread_priority);
+ peer_thread_name.reset(GetThreadName(soa));
+ }
+ // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
+ if (peer_thread_name.get() != NULL) {
+ SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
+ }
+}
+
+void Thread::SetThreadName(const char* name) {
+ name_->assign(name);
+ ::art::SetThreadName(name);
+ Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
+}
+
+void Thread::InitStackHwm() {
+ void* stack_base;
+ size_t stack_size;
+ GetThreadStack(pthread_self_, stack_base, stack_size);
+
+ // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
+ VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
+
+ stack_begin_ = reinterpret_cast<byte*>(stack_base);
+ stack_size_ = stack_size;
+
+ if (stack_size_ <= kStackOverflowReservedBytes) {
+ LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
+ }
+
+ // TODO: move this into the Linux GetThreadStack implementation.
+#if !defined(__APPLE__)
+ // If we're the main thread, check whether we were run with an unlimited stack. In that case,
+ // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
+ // will be broken because we'll die long before we get close to 2GB.
+ bool is_main_thread = (::art::GetTid() == getpid());
+ if (is_main_thread) {
+ rlimit stack_limit;
+ if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
+ PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
+ }
+ if (stack_limit.rlim_cur == RLIM_INFINITY) {
+ // Find the default stack size for new threads...
+ pthread_attr_t default_attributes;
+ size_t default_stack_size;
+ CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
+ CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
+ "default stack size query");
+ CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
+
+ // ...and use that as our limit.
+ size_t old_stack_size = stack_size_;
+ stack_size_ = default_stack_size;
+ stack_begin_ += (old_stack_size - stack_size_);
+ VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
+ << " to " << PrettySize(stack_size_)
+ << " with base " << reinterpret_cast<void*>(stack_begin_);
+ }
+ }
+#endif
+
+ // Set stack_end_ to the bottom of the stack saving space of stack overflows
+ ResetDefaultStackEnd();
+
+ // Sanity check.
+ int stack_variable;
+ CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
+}
+
+void Thread::ShortDump(std::ostream& os) const {
+ os << "Thread[";
+ if (GetThinLockId() != 0) {
+ // If we're in kStarting, we won't have a thin lock id or tid yet.
+ os << GetThinLockId()
+ << ",tid=" << GetTid() << ',';
+ }
+ os << GetState()
+ << ",Thread*=" << this
+ << ",peer=" << opeer_
+ << ",\"" << *name_ << "\""
+ << "]";
+}
+
+void Thread::Dump(std::ostream& os) const {
+ DumpState(os);
+ DumpStack(os);
+}
+
+mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
+ mirror::Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
+ return (opeer_ != NULL) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : NULL;
+}
+
+void Thread::GetThreadName(std::string& name) const {
+ name.assign(*name_);
+}
+
+void Thread::AtomicSetFlag(ThreadFlag flag) {
+ android_atomic_or(flag, &state_and_flags_.as_int);
+}
+
+void Thread::AtomicClearFlag(ThreadFlag flag) {
+ android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
+}
+
+// Attempt to rectify locks so that we dump thread list with required locks before exiting.
+static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
+ LOG(ERROR) << *thread << " suspend count already zero.";
+ Locks::thread_suspend_count_lock_->Unlock(self);
+ if (!Locks::mutator_lock_->IsSharedHeld(self)) {
+ Locks::mutator_lock_->SharedTryLock(self);
+ if (!Locks::mutator_lock_->IsSharedHeld(self)) {
+ LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
+ }
+ }
+ if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
+ Locks::thread_list_lock_->TryLock(self);
+ if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
+ LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
+ }
+ }
+ std::ostringstream ss;
+ Runtime::Current()->GetThreadList()->DumpLocked(ss);
+ LOG(FATAL) << ss.str();
+}
+
+void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
+ DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
+ << delta << " " << debug_suspend_count_ << " " << this;
+ DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
+ Locks::thread_suspend_count_lock_->AssertHeld(self);
+ if (this != self && !IsSuspended()) {
+ Locks::thread_list_lock_->AssertHeld(self);
+ }
+ if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
+ UnsafeLogFatalForSuspendCount(self, this);
+ return;
+ }
+
+ suspend_count_ += delta;
+ if (for_debugger) {
+ debug_suspend_count_ += delta;
+ }
+
+ if (suspend_count_ == 0) {
+ AtomicClearFlag(kSuspendRequest);
+ } else {
+ AtomicSetFlag(kSuspendRequest);
+ }
+}
+
+void Thread::RunCheckpointFunction() {
+ CHECK(checkpoint_function_ != NULL);
+ ATRACE_BEGIN("Checkpoint function");
+ checkpoint_function_->Run(this);
+ ATRACE_END();
+}
+
+bool Thread::RequestCheckpoint(Closure* function) {
+ CHECK(!ReadFlag(kCheckpointRequest)) << "Already have a pending checkpoint request";
+ checkpoint_function_ = function;
+ union StateAndFlags old_state_and_flags = state_and_flags_;
+ // We must be runnable to request a checkpoint.
+ old_state_and_flags.as_struct.state = kRunnable;
+ union StateAndFlags new_state_and_flags = old_state_and_flags;
+ new_state_and_flags.as_struct.flags |= kCheckpointRequest;
+ int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int,
+ &state_and_flags_.as_int);
+ return succeeded == 0;
+}
+
+void Thread::FullSuspendCheck() {
+ VLOG(threads) << this << " self-suspending";
+ ATRACE_BEGIN("Full suspend check");
+ // Make thread appear suspended to other threads, release mutator_lock_.
+ TransitionFromRunnableToSuspended(kSuspended);
+ // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
+ TransitionFromSuspendedToRunnable();
+ ATRACE_END();
+ VLOG(threads) << this << " self-reviving";
+}
+
+Thread* Thread::SuspendForDebugger(jobject peer, bool request_suspension, bool* timed_out) {
+ static const useconds_t kTimeoutUs = 30 * 1000000; // 30s.
+ useconds_t total_delay_us = 0;
+ useconds_t delay_us = 0;
+ bool did_suspend_request = false;
+ *timed_out = false;
+ while (true) {
+ Thread* thread;
+ {
+ ScopedObjectAccess soa(Thread::Current());
+ Thread* self = soa.Self();
+ MutexLock mu(self, *Locks::thread_list_lock_);
+ thread = Thread::FromManagedThread(soa, peer);
+ if (thread == NULL) {
+ JNIEnv* env = self->GetJniEnv();
+ ScopedLocalRef<jstring> scoped_name_string(env,
+ (jstring)env->GetObjectField(peer,
+ WellKnownClasses::java_lang_Thread_name));
+ ScopedUtfChars scoped_name_chars(env,scoped_name_string.get());
+ if (scoped_name_chars.c_str() == NULL) {
+ LOG(WARNING) << "No such thread for suspend: " << peer;
+ env->ExceptionClear();
+ } else {
+ LOG(WARNING) << "No such thread for suspend: " << peer << ":" << scoped_name_chars.c_str();
+ }
+
+ return NULL;
+ }
+ {
+ MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
+ if (request_suspension) {
+ thread->ModifySuspendCount(soa.Self(), +1, true /* for_debugger */);
+ request_suspension = false;
+ did_suspend_request = true;
+ }
+ // IsSuspended on the current thread will fail as the current thread is changed into
+ // Runnable above. As the suspend count is now raised if this is the current thread
+ // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
+ // to just explicitly handle the current thread in the callers to this code.
+ CHECK_NE(thread, soa.Self()) << "Attempt to suspend the current thread for the debugger";
+ // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
+ // count, or else we've waited and it has self suspended) or is the current thread, we're
+ // done.
+ if (thread->IsSuspended()) {
+ return thread;
+ }
+ if (total_delay_us >= kTimeoutUs) {
+ LOG(ERROR) << "Thread suspension timed out: " << peer;
+ if (did_suspend_request) {
+ thread->ModifySuspendCount(soa.Self(), -1, true /* for_debugger */);
+ }
+ *timed_out = true;
+ return NULL;
+ }
+ }
+ // Release locks and come out of runnable state.
+ }
+ for (int i = kLockLevelCount - 1; i >= 0; --i) {
+ BaseMutex* held_mutex = Thread::Current()->GetHeldMutex(static_cast<LockLevel>(i));
+ if (held_mutex != NULL) {
+ LOG(FATAL) << "Holding " << held_mutex->GetName()
+ << " while sleeping for thread suspension";
+ }
+ }
+ {
+ useconds_t new_delay_us = delay_us * 2;
+ CHECK_GE(new_delay_us, delay_us);
+ if (new_delay_us < 500000) { // Don't allow sleeping to be more than 0.5s.
+ delay_us = new_delay_us;
+ }
+ }
+ if (delay_us == 0) {
+ sched_yield();
+ // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep).
+ delay_us = 500;
+ } else {
+ usleep(delay_us);
+ total_delay_us += delay_us;
+ }
+ }
+}
+
+void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
+ std::string group_name;
+ int priority;
+ bool is_daemon = false;
+ Thread* self = Thread::Current();
+
+ if (self != NULL && thread != NULL && thread->opeer_ != NULL) {
+ ScopedObjectAccessUnchecked soa(self);
+ priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
+ is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
+
+ mirror::Object* thread_group =
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
+
+ if (thread_group != NULL) {
+ mirror::Field* group_name_field =
+ soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
+ mirror::String* group_name_string =
+ reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
+ group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
+ }
+ } else {
+ priority = GetNativePriority();
+ }
+
+ std::string scheduler_group_name(GetSchedulerGroupName(tid));
+ if (scheduler_group_name.empty()) {
+ scheduler_group_name = "default";
+ }
+
+ if (thread != NULL) {
+ os << '"' << *thread->name_ << '"';
+ if (is_daemon) {
+ os << " daemon";
+ }
+ os << " prio=" << priority
+ << " tid=" << thread->GetThinLockId()
+ << " " << thread->GetState();
+ if (thread->IsStillStarting()) {
+ os << " (still starting up)";
+ }
+ os << "\n";
+ } else {
+ os << '"' << ::art::GetThreadName(tid) << '"'
+ << " prio=" << priority
+ << " (not attached)\n";
+ }
+
+ if (thread != NULL) {
+ MutexLock mu(self, *Locks::thread_suspend_count_lock_);
+ os << " | group=\"" << group_name << "\""
+ << " sCount=" << thread->suspend_count_
+ << " dsCount=" << thread->debug_suspend_count_
+ << " obj=" << reinterpret_cast<void*>(thread->opeer_)
+ << " self=" << reinterpret_cast<const void*>(thread) << "\n";
+ }
+
+ os << " | sysTid=" << tid
+ << " nice=" << getpriority(PRIO_PROCESS, tid)
+ << " cgrp=" << scheduler_group_name;
+ if (thread != NULL) {
+ int policy;
+ sched_param sp;
+ CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
+ os << " sched=" << policy << "/" << sp.sched_priority
+ << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
+ }
+ os << "\n";
+
+ // Grab the scheduler stats for this thread.
+ std::string scheduler_stats;
+ if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
+ scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
+ } else {
+ scheduler_stats = "0 0 0";
+ }
+
+ char native_thread_state = '?';
+ int utime = 0;
+ int stime = 0;
+ int task_cpu = 0;
+ GetTaskStats(tid, native_thread_state, utime, stime, task_cpu);
+
+ os << " | state=" << native_thread_state
+ << " schedstat=( " << scheduler_stats << " )"
+ << " utm=" << utime
+ << " stm=" << stime
+ << " core=" << task_cpu
+ << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
+ if (thread != NULL) {
+ os << " | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
+ << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
+ }
+}
+
+void Thread::DumpState(std::ostream& os) const {
+ Thread::DumpState(os, this, GetTid());
+}
+
+struct StackDumpVisitor : public StackVisitor {
+ StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+ : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
+ last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) {
+ }
+
+ virtual ~StackDumpVisitor() {
+ if (frame_count == 0) {
+ os << " (no managed stack frames)\n";
+ }
+ }
+
+ bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ mirror::AbstractMethod* m = GetMethod();
+ if (m->IsRuntimeMethod()) {
+ return true;
+ }
+ const int kMaxRepetition = 3;
+ mirror::Class* c = m->GetDeclaringClass();
+ const mirror::DexCache* dex_cache = c->GetDexCache();
+ int line_number = -1;
+ if (dex_cache != NULL) { // be tolerant of bad input
+ const DexFile& dex_file = *dex_cache->GetDexFile();
+ line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
+ }
+ if (line_number == last_line_number && last_method == m) {
+ repetition_count++;
+ } else {
+ if (repetition_count >= kMaxRepetition) {
+ os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
+ }
+ repetition_count = 0;
+ last_line_number = line_number;
+ last_method = m;
+ }
+ if (repetition_count < kMaxRepetition) {
+ os << " at " << PrettyMethod(m, false);
+ if (m->IsNative()) {
+ os << "(Native method)";
+ } else {
+ mh.ChangeMethod(m);
+ const char* source_file(mh.GetDeclaringClassSourceFile());
+ os << "(" << (source_file != NULL ? source_file : "unavailable")
+ << ":" << line_number << ")";
+ }
+ os << "\n";
+ if (frame_count == 0) {
+ Monitor::DescribeWait(os, thread);
+ }
+ if (can_allocate) {
+ Monitor::VisitLocks(this, DumpLockedObject, &os);
+ }
+ }
+
+ ++frame_count;
+ return true;
+ }
+
+ static void DumpLockedObject(mirror::Object* o, void* context)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ std::ostream& os = *reinterpret_cast<std::ostream*>(context);
+ os << " - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
+ }
+
+ std::ostream& os;
+ const Thread* thread;
+ const bool can_allocate;
+ MethodHelper mh;
+ mirror::AbstractMethod* last_method;
+ int last_line_number;
+ int repetition_count;
+ int frame_count;
+};
+
+static bool ShouldShowNativeStack(const Thread* thread)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ ThreadState state = thread->GetState();
+
+ // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
+ if (state > kWaiting && state < kStarting) {
+ return true;
+ }
+
+ // In an Object.wait variant or Thread.sleep? That's not interesting.
+ if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
+ return false;
+ }
+
+ // In some other native method? That's interesting.
+ // We don't just check kNative because native methods will be in state kSuspended if they're
+ // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
+ // thread-startup states if it's early enough in their life cycle (http://b/7432159).
+ mirror::AbstractMethod* current_method = thread->GetCurrentMethod(NULL);
+ return current_method != NULL && current_method->IsNative();
+}
+
+void Thread::DumpStack(std::ostream& os) const {
+ // TODO: we call this code when dying but may not have suspended the thread ourself. The
+ // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
+ // the race with the thread_suspend_count_lock_).
+ bool dump_for_abort = (gAborting > 0);
+ if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
+ // If we're currently in native code, dump that stack before dumping the managed stack.
+ if (dump_for_abort || ShouldShowNativeStack(this)) {
+ DumpKernelStack(os, GetTid(), " kernel: ", false);
+ DumpNativeStack(os, GetTid(), " native: ", false);
+ }
+ UniquePtr<Context> context(Context::Create());
+ StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
+ dumper.WalkStack();
+ } else {
+ os << "Not able to dump stack of thread that isn't suspended";
+ }
+}
+
+void Thread::ThreadExitCallback(void* arg) {
+ Thread* self = reinterpret_cast<Thread*>(arg);
+ if (self->thread_exit_check_count_ == 0) {
+ LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
+ CHECK(is_started_);
+ CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
+ self->thread_exit_check_count_ = 1;
+ } else {
+ LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
+ }
+}
+
+void Thread::Startup() {
+ CHECK(!is_started_);
+ is_started_ = true;
+ {
+ MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); // Keep GCC happy.
+ resume_cond_ = new ConditionVariable("Thread resumption condition variable",
+ *Locks::thread_suspend_count_lock_);
+ }
+
+ // Allocate a TLS slot.
+ CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
+
+ // Double-check the TLS slot allocation.
+ if (pthread_getspecific(pthread_key_self_) != NULL) {
+ LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
+ }
+}
+
+void Thread::FinishStartup() {
+ Runtime* runtime = Runtime::Current();
+ CHECK(runtime->IsStarted());
+
+ // Finish attaching the main thread.
+ ScopedObjectAccess soa(Thread::Current());
+ Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
+
+ Runtime::Current()->GetClassLinker()->RunRootClinits();
+}
+
+void Thread::Shutdown() {
+ CHECK(is_started_);
+ is_started_ = false;
+ CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
+ MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
+ if (resume_cond_ != NULL) {
+ delete resume_cond_;
+ resume_cond_ = NULL;
+ }
+}
+
+Thread::Thread(bool daemon)
+ : suspend_count_(0),
+ card_table_(NULL),
+ exception_(NULL),
+ stack_end_(NULL),
+ managed_stack_(),
+ jni_env_(NULL),
+ self_(NULL),
+ opeer_(NULL),
+ jpeer_(NULL),
+ stack_begin_(NULL),
+ stack_size_(0),
+ thin_lock_id_(0),
+ tid_(0),
+ wait_mutex_(new Mutex("a thread wait mutex")),
+ wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
+ wait_monitor_(NULL),
+ interrupted_(false),
+ wait_next_(NULL),
+ monitor_enter_object_(NULL),
+ top_sirt_(NULL),
+ runtime_(NULL),
+ class_loader_override_(NULL),
+ long_jump_context_(NULL),
+ throwing_OutOfMemoryError_(false),
+ debug_suspend_count_(0),
+ debug_invoke_req_(new DebugInvokeReq),
+ deoptimization_shadow_frame_(NULL),
+ instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
+ name_(new std::string(kThreadNameDuringStartup)),
+ daemon_(daemon),
+ pthread_self_(0),
+ no_thread_suspension_(0),
+ last_no_thread_suspension_cause_(NULL),
+ checkpoint_function_(0),
+ thread_exit_check_count_(0) {
+ CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
+ state_and_flags_.as_struct.flags = 0;
+ state_and_flags_.as_struct.state = kNative;
+ memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
+}
+
+bool Thread::IsStillStarting() const {
+ // You might think you can check whether the state is kStarting, but for much of thread startup,
+ // the thread is in kNative; it might also be in kVmWait.
+ // You might think you can check whether the peer is NULL, but the peer is actually created and
+ // assigned fairly early on, and needs to be.
+ // It turns out that the last thing to change is the thread name; that's a good proxy for "has
+ // this thread _ever_ entered kRunnable".
+ return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup);
+}
+
+void Thread::AssertNoPendingException() const {
+ if (UNLIKELY(IsExceptionPending())) {
+ ScopedObjectAccess soa(Thread::Current());
+ mirror::Throwable* exception = GetException(NULL);
+ LOG(FATAL) << "No pending exception expected: " << exception->Dump();
+ }
+}
+
+static void MonitorExitVisitor(const mirror::Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS {
+ Thread* self = reinterpret_cast<Thread*>(arg);
+ mirror::Object* entered_monitor = const_cast<mirror::Object*>(object);
+ if (self->HoldsLock(entered_monitor)) {
+ LOG(WARNING) << "Calling MonitorExit on object "
+ << object << " (" << PrettyTypeOf(object) << ")"
+ << " left locked by native thread "
+ << *Thread::Current() << " which is detaching";
+ entered_monitor->MonitorExit(self);
+ }
+}
+
+void Thread::Destroy() {
+ Thread* self = this;
+ DCHECK_EQ(self, Thread::Current());
+
+ if (opeer_ != NULL) {
+ ScopedObjectAccess soa(self);
+ // We may need to call user-supplied managed code, do this before final clean-up.
+ HandleUncaughtExceptions(soa);
+ RemoveFromThreadGroup(soa);
+
+ // this.nativePeer = 0;
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0);
+ Dbg::PostThreadDeath(self);
+
+ // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
+ // who is waiting.
+ mirror::Object* lock =
+ soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
+ // (This conditional is only needed for tests, where Thread.lock won't have been set.)
+ if (lock != NULL) {
+ ObjectLock locker(self, lock);
+ locker.Notify();
+ }
+ }
+
+ // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
+ if (jni_env_ != NULL) {
+ jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
+ }
+}
+
+Thread::~Thread() {
+ if (jni_env_ != NULL && jpeer_ != NULL) {
+ // If pthread_create fails we don't have a jni env here.
+ jni_env_->DeleteGlobalRef(jpeer_);
+ jpeer_ = NULL;
+ }
+ opeer_ = NULL;
+
+ delete jni_env_;
+ jni_env_ = NULL;
+
+ CHECK_NE(GetState(), kRunnable);
+ // We may be deleting a still born thread.
+ SetStateUnsafe(kTerminated);
+
+ delete wait_cond_;
+ delete wait_mutex_;
+
+ if (long_jump_context_ != NULL) {
+ delete long_jump_context_;
+ }
+
+ delete debug_invoke_req_;
+ delete instrumentation_stack_;
+ delete name_;
+
+ TearDownAlternateSignalStack();
+}
+
+void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
+ if (!IsExceptionPending()) {
+ return;
+ }
+ ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
+ ScopedThreadStateChange tsc(this, kNative);
+
+ // Get and clear the exception.
+ ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
+ jni_env_->ExceptionClear();
+
+ // If the thread has its own handler, use that.
+ ScopedLocalRef<jobject> handler(jni_env_,
+ jni_env_->GetObjectField(peer.get(),
+ WellKnownClasses::java_lang_Thread_uncaughtHandler));
+ if (handler.get() == NULL) {
+ // Otherwise use the thread group's default handler.
+ handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
+ }
+
+ // Call the handler.
+ jni_env_->CallVoidMethod(handler.get(),
+ WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
+ peer.get(), exception.get());
+
+ // If the handler threw, clear that exception too.
+ jni_env_->ExceptionClear();
+}
+
+void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
+ // this.group.removeThread(this);
+ // group can be null if we're in the compiler or a test.
+ mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
+ if (ogroup != NULL) {
+ ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
+ ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
+ ScopedThreadStateChange tsc(soa.Self(), kNative);
+ jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
+ peer.get());
+ }
+}
+
+size_t Thread::NumSirtReferences() {
+ size_t count = 0;
+ for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
+ count += cur->NumberOfReferences();
+ }
+ return count;
+}
+
+bool Thread::SirtContains(jobject obj) const {
+ mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj);
+ for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
+ if (cur->Contains(sirt_entry)) {
+ return true;
+ }
+ }
+ // JNI code invoked from portable code uses shadow frames rather than the SIRT.
+ return managed_stack_.ShadowFramesContain(sirt_entry);
+}
+
+void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
+ for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
+ size_t num_refs = cur->NumberOfReferences();
+ for (size_t j = 0; j < num_refs; j++) {
+ mirror::Object* object = cur->GetReference(j);
+ if (object != NULL) {
+ visitor(object, arg);
+ }
+ }
+ }
+}
+
+mirror::Object* Thread::DecodeJObject(jobject obj) const {
+ Locks::mutator_lock_->AssertSharedHeld(this);
+ if (obj == NULL) {
+ return NULL;
+ }
+ IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
+ IndirectRefKind kind = GetIndirectRefKind(ref);
+ mirror::Object* result;
+ // The "kinds" below are sorted by the frequency we expect to encounter them.
+ if (kind == kLocal) {
+ IndirectReferenceTable& locals = jni_env_->locals;
+ result = const_cast<mirror::Object*>(locals.Get(ref));
+ } else if (kind == kSirtOrInvalid) {
+ // TODO: make stack indirect reference table lookup more efficient
+ // Check if this is a local reference in the SIRT
+ if (LIKELY(SirtContains(obj))) {
+ result = *reinterpret_cast<mirror::Object**>(obj); // Read from SIRT
+ } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
+ // Assume an invalid local reference is actually a direct pointer.
+ result = reinterpret_cast<mirror::Object*>(obj);
+ } else {
+ result = kInvalidIndirectRefObject;
+ }
+ } else if (kind == kGlobal) {
+ JavaVMExt* vm = Runtime::Current()->GetJavaVM();
+ IndirectReferenceTable& globals = vm->globals;
+ MutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
+ result = const_cast<mirror::Object*>(globals.Get(ref));
+ } else {
+ DCHECK_EQ(kind, kWeakGlobal);
+ JavaVMExt* vm = Runtime::Current()->GetJavaVM();
+ IndirectReferenceTable& weak_globals = vm->weak_globals;
+ MutexLock mu(const_cast<Thread*>(this), vm->weak_globals_lock);
+ result = const_cast<mirror::Object*>(weak_globals.Get(ref));
+ if (result == kClearedJniWeakGlobal) {
+ // This is a special case where it's okay to return NULL.
+ return NULL;
+ }
+ }
+
+ if (UNLIKELY(result == NULL)) {
+ JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
+ } else {
+ if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
+ Runtime::Current()->GetHeap()->VerifyObject(result);
+ }
+ }
+ return result;
+}
+
+// Implements java.lang.Thread.interrupted.
+bool Thread::Interrupted() {
+ MutexLock mu(Thread::Current(), *wait_mutex_);
+ bool interrupted = interrupted_;
+ interrupted_ = false;
+ return interrupted;
+}
+
+// Implements java.lang.Thread.isInterrupted.
+bool Thread::IsInterrupted() {
+ MutexLock mu(Thread::Current(), *wait_mutex_);
+ return interrupted_;
+}
+
+void Thread::Interrupt() {
+ Thread* self = Thread::Current();
+ MutexLock mu(self, *wait_mutex_);
+ if (interrupted_) {
+ return;
+ }
+ interrupted_ = true;
+ NotifyLocked(self);
+}
+
+void Thread::Notify() {
+ Thread* self = Thread::Current();
+ MutexLock mu(self, *wait_mutex_);
+ NotifyLocked(self);
+}
+
+void Thread::NotifyLocked(Thread* self) {
+ if (wait_monitor_ != NULL) {
+ wait_cond_->Signal(self);
+ }
+}
+
+class CountStackDepthVisitor : public StackVisitor {
+ public:
+ CountStackDepthVisitor(Thread* thread)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+ : StackVisitor(thread, NULL),
+ depth_(0), skip_depth_(0), skipping_(true) {}
+
+ bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ // We want to skip frames up to and including the exception's constructor.
+ // Note we also skip the frame if it doesn't have a method (namely the callee
+ // save frame)
+ mirror::AbstractMethod* m = GetMethod();
+ if (skipping_ && !m->IsRuntimeMethod() &&
+ !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
+ skipping_ = false;
+ }
+ if (!skipping_) {
+ if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
+ ++depth_;
+ }
+ } else {
+ ++skip_depth_;
+ }
+ return true;
+ }
+
+ int GetDepth() const {
+ return depth_;
+ }
+
+ int GetSkipDepth() const {
+ return skip_depth_;
+ }
+
+ private:
+ uint32_t depth_;
+ uint32_t skip_depth_;
+ bool skipping_;
+};
+
+class BuildInternalStackTraceVisitor : public StackVisitor {
+ public:
+ explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
+ : StackVisitor(thread, NULL), self_(self),
+ skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {}
+
+ bool Init(int depth)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ // Allocate method trace with an extra slot that will hold the PC trace
+ SirtRef<mirror::ObjectArray<mirror::Object> >
+ method_trace(self_,
+ Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
+ depth + 1));
+ if (method_trace.get() == NULL) {
+ return false;
+ }
+ mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
+ if (dex_pc_trace == NULL) {
+ return false;
+ }
+ // Save PC trace in last element of method trace, also places it into the
+ // object graph.
+ method_trace->Set(depth, dex_pc_trace);
+ // Set the Object*s and assert that no thread suspension is now possible.
+ const char* last_no_suspend_cause =
+ self_->StartAssertNoThreadSuspension("Building internal stack trace");
+ CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause;
+ method_trace_ = method_trace.get();
+ dex_pc_trace_ = dex_pc_trace;
+ return true;
+ }
+
+ virtual ~BuildInternalStackTraceVisitor() {
+ if (method_trace_ != NULL) {
+ self_->EndAssertNoThreadSuspension(NULL);
+ }
+ }
+
+ bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ if (method_trace_ == NULL || dex_pc_trace_ == NULL) {
+ return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
+ }
+ if (skip_depth_ > 0) {
+ skip_depth_--;
+ return true;
+ }
+ mirror::AbstractMethod* m = GetMethod();
+ if (m->IsRuntimeMethod()) {
+ return true; // Ignore runtime frames (in particular callee save).
+ }
+ method_trace_->Set(count_, m);
+ dex_pc_trace_->Set(count_, GetDexPc());
+ ++count_;
+ return true;
+ }
+
+ mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
+ return method_trace_;
+ }
+
+ private:
+ Thread* const self_;
+ // How many more frames to skip.
+ int32_t skip_depth_;
+ // Current position down stack trace.
+ uint32_t count_;
+ // Array of dex PC values.
+ mirror::IntArray* dex_pc_trace_;
+ // An array of the methods on the stack, the last entry is a reference to the PC trace.
+ mirror::ObjectArray<mirror::Object>* method_trace_;
+};
+
+jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
+ // Compute depth of stack
+ CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
+ count_visitor.WalkStack();
+ int32_t depth = count_visitor.GetDepth();
+ int32_t skip_depth = count_visitor.GetSkipDepth();
+
+ // Build internal stack trace.
+ BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
+ skip_depth);
+ if (!build_trace_visitor.Init(depth)) {
+ return NULL; // Allocation failed.
+ }
+ build_trace_visitor.WalkStack();
+ mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
+ if (kIsDebugBuild) {
+ for (int32_t i = 0; i < trace->GetLength(); ++i) {
+ CHECK(trace->Get(i) != NULL);
+ }
+ }
+ return soa.AddLocalReference<jobjectArray>(trace);
+}
+
+jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
+ jobjectArray output_array, int* stack_depth) {
+ // Transition into runnable state to work on Object*/Array*
+ ScopedObjectAccess soa(env);
+ // Decode the internal stack trace into the depth, method trace and PC trace
+ mirror::ObjectArray<mirror::Object>* method_trace =
+ soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
+ int32_t depth = method_trace->GetLength() - 1;
+ mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
+
+ ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
+
+ jobjectArray result;
+ mirror::ObjectArray<mirror::StackTraceElement>* java_traces;
+ if (output_array != NULL) {
+ // Reuse the array we were given.
+ result = output_array;
+ java_traces = soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(output_array);
+ // ...adjusting the number of frames we'll write to not exceed the array length.
+ depth = std::min(depth, java_traces->GetLength());
+ } else {
+ // Create java_trace array and place in local reference table
+ java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth);
+ if (java_traces == NULL) {
+ return NULL;
+ }
+ result = soa.AddLocalReference<jobjectArray>(java_traces);
+ }
+
+ if (stack_depth != NULL) {
+ *stack_depth = depth;
+ }
+
+ MethodHelper mh;
+ for (int32_t i = 0; i < depth; ++i) {
+ // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
+ mirror::AbstractMethod* method = down_cast<mirror::AbstractMethod*>(method_trace->Get(i));
+ mh.ChangeMethod(method);
+ uint32_t dex_pc = pc_trace->Get(i);
+ int32_t line_number = mh.GetLineNumFromDexPC(dex_pc);
+ // Allocate element, potentially triggering GC
+ // TODO: reuse class_name_object via Class::name_?
+ const char* descriptor = mh.GetDeclaringClassDescriptor();
+ CHECK(descriptor != NULL);
+ std::string class_name(PrettyDescriptor(descriptor));
+ SirtRef<mirror::String> class_name_object(soa.Self(),
+ mirror::String::AllocFromModifiedUtf8(soa.Self(),
+ class_name.c_str()));
+ if (class_name_object.get() == NULL) {
+ return NULL;
+ }
+ const char* method_name = mh.GetName();
+ CHECK(method_name != NULL);
+ SirtRef<mirror::String> method_name_object(soa.Self(),
+ mirror::String::AllocFromModifiedUtf8(soa.Self(),
+ method_name));
+ if (method_name_object.get() == NULL) {
+ return NULL;
+ }
+ const char* source_file = mh.GetDeclaringClassSourceFile();
+ SirtRef<mirror::String> source_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(),
+ source_file));
+ mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(soa.Self(),
+ class_name_object.get(),
+ method_name_object.get(),
+ source_name_object.get(),
+ line_number);
+ if (obj == NULL) {
+ return NULL;
+ }
+#ifdef MOVING_GARBAGE_COLLECTOR
+ // Re-read after potential GC
+ java_traces = Decode<ObjectArray<Object>*>(soa.Env(), result);
+ method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(soa.Env(), internal));
+ pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
+#endif
+ java_traces->Set(i, obj);
+ }
+ return result;
+}
+
+void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
+ const char* exception_class_descriptor, const char* fmt, ...) {
+ va_list args;
+ va_start(args, fmt);
+ ThrowNewExceptionV(throw_location, exception_class_descriptor,
+ fmt, args);
+ va_end(args);
+}
+
+void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
+ const char* exception_class_descriptor,
+ const char* fmt, va_list ap) {
+ std::string msg;
+ StringAppendV(&msg, fmt, ap);
+ ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
+}
+
+void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
+ const char* msg) {
+ AssertNoPendingException(); // Callers should either clear or call ThrowNewWrappedException.
+ ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
+}
+
+void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
+ const char* exception_class_descriptor,
+ const char* msg) {
+ DCHECK_EQ(this, Thread::Current());
+ // Ensure we don't forget arguments over object allocation.
+ SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
+ SirtRef<mirror::AbstractMethod> saved_throw_method(this, throw_location.GetMethod());
+ // Ignore the cause throw location. TODO: should we report this as a re-throw?
+ SirtRef<mirror::Throwable> cause(this, GetException(NULL));
+ ClearException();
+ Runtime* runtime = Runtime::Current();
+
+ mirror::ClassLoader* cl = NULL;
+ if (throw_location.GetMethod() != NULL) {
+ cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader();
+ }
+ SirtRef<mirror::Class>
+ exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor, cl));
+ if (UNLIKELY(exception_class.get() == NULL)) {
+ CHECK(IsExceptionPending());
+ LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
+ return;
+ }
+
+ if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) {
+ DCHECK(IsExceptionPending());
+ return;
+ }
+ DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
+ SirtRef<mirror::Throwable> exception(this,
+ down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
+
+ // Choose an appropriate constructor and set up the arguments.
+ const char* signature;
+ SirtRef<mirror::String> msg_string(this, NULL);
+ if (msg != NULL) {
+ // Ensure we remember this and the method over the String allocation.
+ msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
+ if (UNLIKELY(msg_string.get() == NULL)) {
+ CHECK(IsExceptionPending()); // OOME.
+ return;
+ }
+ if (cause.get() == NULL) {
+ signature = "(Ljava/lang/String;)V";
+ } else {
+ signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
+ }
+ } else {
+ if (cause.get() == NULL) {
+ signature = "()V";
+ } else {
+ signature = "(Ljava/lang/Throwable;)V";
+ }
+ }
+ mirror::AbstractMethod* exception_init_method =
+ exception_class->FindDeclaredDirectMethod("<init>", signature);
+
+ CHECK(exception_init_method != NULL) << "No <init>" << signature << " in "
+ << PrettyDescriptor(exception_class_descriptor);
+
+ if (UNLIKELY(!runtime->IsStarted())) {
+ // Something is trying to throw an exception without a started runtime, which is the common
+ // case in the compiler. We won't be able to invoke the constructor of the exception, so set
+ // the exception fields directly.
+ if (msg != NULL) {
+ exception->SetDetailMessage(msg_string.get());
+ }
+ if (cause.get() != NULL) {
+ exception->SetCause(cause.get());
+ }
+ ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
+ throw_location.GetDexPc());
+ SetException(gc_safe_throw_location, exception.get());
+ } else {
+ ArgArray args("VLL", 3);
+ args.Append(reinterpret_cast<uint32_t>(exception.get()));
+ if (msg != NULL) {
+ args.Append(reinterpret_cast<uint32_t>(msg_string.get()));
+ }
+ if (cause.get() != NULL) {
+ args.Append(reinterpret_cast<uint32_t>(cause.get()));
+ }
+ JValue result;
+ exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
+ if (LIKELY(!IsExceptionPending())) {
+ ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
+ throw_location.GetDexPc());
+ SetException(gc_safe_throw_location, exception.get());
+ }
+ }
+}
+
+void Thread::ThrowOutOfMemoryError(const char* msg) {
+ LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
+ msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
+ ThrowLocation throw_location = GetCurrentLocationForThrow();
+ if (!throwing_OutOfMemoryError_) {
+ throwing_OutOfMemoryError_ = true;
+ ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
+ throwing_OutOfMemoryError_ = false;
+ } else {
+ Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one.
+ SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
+ }
+}
+
+Thread* Thread::CurrentFromGdb() {
+ return Thread::Current();
+}
+
+void Thread::DumpFromGdb() const {
+ std::ostringstream ss;
+ Dump(ss);
+ std::string str(ss.str());
+ // log to stderr for debugging command line processes
+ std::cerr << str;
+#ifdef HAVE_ANDROID_OS
+ // log to logcat for debugging frameworks processes
+ LOG(INFO) << str;
+#endif
+}
+
+struct EntryPointInfo {
+ uint32_t offset;
+ const char* name;
+};
+#define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x }
+static const EntryPointInfo gThreadEntryPointInfo[] = {
+ ENTRY_POINT_INFO(pAllocArrayFromCode),
+ ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck),
+ ENTRY_POINT_INFO(pAllocObjectFromCode),
+ ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck),
+ ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode),
+ ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck),
+ ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode),
+ ENTRY_POINT_INFO(pCanPutArrayElementFromCode),
+ ENTRY_POINT_INFO(pCheckCastFromCode),
+ ENTRY_POINT_INFO(pInitializeStaticStorage),
+ ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode),
+ ENTRY_POINT_INFO(pInitializeTypeFromCode),
+ ENTRY_POINT_INFO(pResolveStringFromCode),
+ ENTRY_POINT_INFO(pSet32Instance),
+ ENTRY_POINT_INFO(pSet32Static),
+ ENTRY_POINT_INFO(pSet64Instance),
+ ENTRY_POINT_INFO(pSet64Static),
+ ENTRY_POINT_INFO(pSetObjInstance),
+ ENTRY_POINT_INFO(pSetObjStatic),
+ ENTRY_POINT_INFO(pGet32Instance),
+ ENTRY_POINT_INFO(pGet32Static),
+ ENTRY_POINT_INFO(pGet64Instance),
+ ENTRY_POINT_INFO(pGet64Static),
+ ENTRY_POINT_INFO(pGetObjInstance),
+ ENTRY_POINT_INFO(pGetObjStatic),
+ ENTRY_POINT_INFO(pHandleFillArrayDataFromCode),
+ ENTRY_POINT_INFO(pJniMethodStart),
+ ENTRY_POINT_INFO(pJniMethodStartSynchronized),
+ ENTRY_POINT_INFO(pJniMethodEnd),
+ ENTRY_POINT_INFO(pJniMethodEndSynchronized),
+ ENTRY_POINT_INFO(pJniMethodEndWithReference),
+ ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
+ ENTRY_POINT_INFO(pLockObjectFromCode),
+ ENTRY_POINT_INFO(pUnlockObjectFromCode),
+ ENTRY_POINT_INFO(pCmpgDouble),
+ ENTRY_POINT_INFO(pCmpgFloat),
+ ENTRY_POINT_INFO(pCmplDouble),
+ ENTRY_POINT_INFO(pCmplFloat),
+ ENTRY_POINT_INFO(pFmod),
+ ENTRY_POINT_INFO(pSqrt),
+ ENTRY_POINT_INFO(pL2d),
+ ENTRY_POINT_INFO(pFmodf),
+ ENTRY_POINT_INFO(pL2f),
+ ENTRY_POINT_INFO(pD2iz),
+ ENTRY_POINT_INFO(pF2iz),
+ ENTRY_POINT_INFO(pIdivmod),
+ ENTRY_POINT_INFO(pD2l),
+ ENTRY_POINT_INFO(pF2l),
+ ENTRY_POINT_INFO(pLdiv),
+ ENTRY_POINT_INFO(pLdivmod),
+ ENTRY_POINT_INFO(pLmul),
+ ENTRY_POINT_INFO(pShlLong),
+ ENTRY_POINT_INFO(pShrLong),
+ ENTRY_POINT_INFO(pUshrLong),
+ ENTRY_POINT_INFO(pInterpreterToInterpreterEntry),
+ ENTRY_POINT_INFO(pInterpreterToQuickEntry),
+ ENTRY_POINT_INFO(pIndexOf),
+ ENTRY_POINT_INFO(pMemcmp16),
+ ENTRY_POINT_INFO(pStringCompareTo),
+ ENTRY_POINT_INFO(pMemcpy),
+ ENTRY_POINT_INFO(pPortableResolutionTrampolineFromCode),
+ ENTRY_POINT_INFO(pQuickResolutionTrampolineFromCode),
+ ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
+ ENTRY_POINT_INFO(pInvokeInterfaceTrampoline),
+ ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
+ ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
+ ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
+ ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
+ ENTRY_POINT_INFO(pCheckSuspendFromCode),
+ ENTRY_POINT_INFO(pTestSuspendFromCode),
+ ENTRY_POINT_INFO(pDeliverException),
+ ENTRY_POINT_INFO(pThrowArrayBoundsFromCode),
+ ENTRY_POINT_INFO(pThrowDivZeroFromCode),
+ ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode),
+ ENTRY_POINT_INFO(pThrowNullPointerFromCode),
+ ENTRY_POINT_INFO(pThrowStackOverflowFromCode),
+};
+#undef ENTRY_POINT_INFO
+
+void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
+ CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets.
+
+#define DO_THREAD_OFFSET(x) if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { os << # x; return; }
+ DO_THREAD_OFFSET(state_and_flags_);
+ DO_THREAD_OFFSET(card_table_);
+ DO_THREAD_OFFSET(exception_);
+ DO_THREAD_OFFSET(opeer_);
+ DO_THREAD_OFFSET(jni_env_);
+ DO_THREAD_OFFSET(self_);
+ DO_THREAD_OFFSET(stack_end_);
+ DO_THREAD_OFFSET(suspend_count_);
+ DO_THREAD_OFFSET(thin_lock_id_);
+ //DO_THREAD_OFFSET(top_of_managed_stack_);
+ //DO_THREAD_OFFSET(top_of_managed_stack_pc_);
+ DO_THREAD_OFFSET(top_sirt_);
+#undef DO_THREAD_OFFSET
+
+ size_t entry_point_count = arraysize(gThreadEntryPointInfo);
+ CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints));
+ uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_);
+ for (size_t i = 0; i < entry_point_count; ++i) {
+ CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
+ expected_offset += size_of_pointers;
+ if (gThreadEntryPointInfo[i].offset == offset) {
+ os << gThreadEntryPointInfo[i].name;
+ return;
+ }
+ }
+ os << offset;
+}
+
+static const bool kDebugExceptionDelivery = false;
+class CatchBlockStackVisitor : public StackVisitor {
+ public:
+ CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location,
+ mirror::Throwable* exception, bool is_deoptimization)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+ : StackVisitor(self, self->GetLongJumpContext()),
+ self_(self), exception_(exception), is_deoptimization_(is_deoptimization),
+ to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location),
+ handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0),
+ native_method_count_(0),
+ method_tracing_active_(is_deoptimization ||
+ Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()),
+ instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) {
+ // Exception not in root sets, can't allow GC.
+ last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block");
+ }
+
+ ~CatchBlockStackVisitor() {
+ LOG(FATAL) << "UNREACHABLE"; // Expected to take long jump.
+ }
+
+ bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ mirror::AbstractMethod* method = GetMethod();
+ if (method == NULL) {
+ // This is the upcall, we remember the frame and last pc so that we may long jump to them.
+ handler_quick_frame_pc_ = GetCurrentQuickFramePc();
+ handler_quick_frame_ = GetCurrentQuickFrame();
+ return false; // End stack walk.
+ } else {
+ if (UNLIKELY(method_tracing_active_ &&
+ GetInstrumentationExitPc() == GetReturnPc())) {
+ // Keep count of the number of unwinds during instrumentation.
+ instrumentation_frames_to_pop_++;
+ }
+ if (method->IsRuntimeMethod()) {
+ // Ignore callee save method.
+ DCHECK(method->IsCalleeSaveMethod());
+ return true;
+ } else if (is_deoptimization_) {
+ return HandleDeoptimization(method);
+ } else {
+ return HandleTryItems(method);
+ }
+ }
+ }
+
+ bool HandleTryItems(mirror::AbstractMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ uint32_t dex_pc = DexFile::kDexNoIndex;
+ if (method->IsNative()) {
+ native_method_count_++;
+ } else {
+ dex_pc = GetDexPc();
+ }
+ if (dex_pc != DexFile::kDexNoIndex) {
+ uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc);
+ if (found_dex_pc != DexFile::kDexNoIndex) {
+ handler_dex_pc_ = found_dex_pc;
+ handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc);
+ handler_quick_frame_ = GetCurrentQuickFrame();
+ return false; // End stack walk.
+ }
+ }
+ return true; // Continue stack walk.
+ }
+
+ bool HandleDeoptimization(mirror::AbstractMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ MethodHelper mh(m);
+ const DexFile::CodeItem* code_item = mh.GetCodeItem();
+ CHECK(code_item != NULL);
+ uint16_t num_regs = code_item->registers_size_;
+ uint32_t dex_pc = GetDexPc();
+ const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc);
+ uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits();
+ ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc);
+ verifier::MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
+ mh.GetClassDefIndex(), code_item,
+ m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true);
+ verifier.Verify();
+ std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc);
+ for(uint16_t reg = 0; reg < num_regs; reg++) {
+ VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
+ switch (kind) {
+ case kUndefined:
+ new_frame->SetVReg(reg, 0xEBADDE09);
+ break;
+ case kConstant:
+ new_frame->SetVReg(reg, kinds.at((reg * 2) + 1));
+ break;
+ case kReferenceVReg:
+ new_frame->SetVRegReference(reg,
+ reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind)));
+ break;
+ default:
+ new_frame->SetVReg(reg, GetVReg(m, reg, kind));
+ break;
+ }
+ }
+ if (prev_shadow_frame_ != NULL) {
+ prev_shadow_frame_->SetLink(new_frame);
+ } else {
+ top_shadow_frame_ = new_frame;
+ }
+ prev_shadow_frame_ = new_frame;
+ return true;
+ }
+
+ void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ mirror::AbstractMethod* catch_method = *handler_quick_frame_;
+ if (catch_method == NULL) {
+ if (kDebugExceptionDelivery) {
+ LOG(INFO) << "Handler is upcall";
+ }
+ } else {
+ CHECK(!is_deoptimization_);
+ if (instrumentation_frames_to_pop_ > 0) {
+ // Don't pop the instrumentation frame of the catch handler.
+ instrumentation_frames_to_pop_--;
+ }
+ if (kDebugExceptionDelivery) {
+ const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
+ int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_);
+ LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
+ }
+ }
+ // Put exception back in root set and clear throw location.
+ self_->SetException(ThrowLocation(), exception_);
+ self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_);
+ // Do instrumentation events after allowing thread suspension again.
+ instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
+ for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) {
+ // We pop the instrumentation stack here so as not to corrupt it during the stack walk.
+ instrumentation->PopMethodForUnwind(self_, is_deoptimization_);
+ }
+ if (!is_deoptimization_) {
+ instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_,
+ exception_);
+ } else {
+ // TODO: proper return value.
+ self_->SetDeoptimizationShadowFrame(top_shadow_frame_);
+ }
+ // Place context back on thread so it will be available when we continue.
+ self_->ReleaseLongJumpContext(context_);
+ context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_));
+ CHECK_NE(handler_quick_frame_pc_, 0u);
+ context_->SetPC(handler_quick_frame_pc_);
+ context_->SmashCallerSaves();
+ context_->DoLongJump();
+ }
+
+ private:
+ Thread* const self_;
+ mirror::Throwable* const exception_;
+ const bool is_deoptimization_;
+ // The type of the exception catch block to find.
+ mirror::Class* const to_find_;
+ // Location of the throw.
+ const ThrowLocation& throw_location_;
+ // Quick frame with found handler or last frame if no handler found.
+ mirror::AbstractMethod** handler_quick_frame_;
+ // PC to branch to for the handler.
+ uintptr_t handler_quick_frame_pc_;
+ // Associated dex PC.
+ uint32_t handler_dex_pc_;
+ // Number of native methods passed in crawl (equates to number of SIRTs to pop)
+ uint32_t native_method_count_;
+ // Is method tracing active?
+ const bool method_tracing_active_;
+ // Support for nesting no thread suspension checks.
+ const char* last_no_assert_suspension_cause_;
+ // Number of frames to pop in long jump.
+ size_t instrumentation_frames_to_pop_;
+ ShadowFrame* top_shadow_frame_;
+ ShadowFrame* prev_shadow_frame_;
+};
+
+void Thread::QuickDeliverException() {
+ // Get exception from thread.
+ ThrowLocation throw_location;
+ mirror::Throwable* exception = GetException(&throw_location);
+ CHECK(exception != NULL);
+ // Don't leave exception visible while we try to find the handler, which may cause class
+ // resolution.
+ ClearException();
+ bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
+ if (kDebugExceptionDelivery) {
+ if (!is_deoptimization) {
+ mirror::String* msg = exception->GetDetailMessage();
+ std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
+ DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
+ << ": " << str_msg << "\n");
+ } else {
+ DumpStack(LOG(INFO) << "Deoptimizing: ");
+ }
+ }
+ CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization);
+ catch_finder.WalkStack(true);
+ catch_finder.DoLongJump();
+ LOG(FATAL) << "UNREACHABLE";
+}
+
+Context* Thread::GetLongJumpContext() {
+ Context* result = long_jump_context_;
+ if (result == NULL) {
+ result = Context::Create();
+ } else {
+ long_jump_context_ = NULL; // Avoid context being shared.
+ result->Reset();
+ }
+ return result;
+}
+
+struct CurrentMethodVisitor : public StackVisitor {
+ CurrentMethodVisitor(Thread* thread, Context* context)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+ : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {}
+ virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ mirror::AbstractMethod* m = GetMethod();
+ if (m->IsRuntimeMethod()) {
+ // Continue if this is a runtime method.
+ return true;
+ }
+ if (context_ != NULL) {
+ this_object_ = GetThisObject();
+ }
+ method_ = m;
+ dex_pc_ = GetDexPc();
+ return false;
+ }
+ mirror::Object* this_object_;
+ mirror::AbstractMethod* method_;
+ uint32_t dex_pc_;
+};
+
+mirror::AbstractMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
+ CurrentMethodVisitor visitor(const_cast<Thread*>(this), NULL);
+ visitor.WalkStack(false);
+ if (dex_pc != NULL) {
+ *dex_pc = visitor.dex_pc_;
+ }
+ return visitor.method_;
+}
+
+ThrowLocation Thread::GetCurrentLocationForThrow() {
+ Context* context = GetLongJumpContext();
+ CurrentMethodVisitor visitor(this, context);
+ visitor.WalkStack(false);
+ ReleaseLongJumpContext(context);
+ return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
+}
+
+bool Thread::HoldsLock(mirror::Object* object) {
+ if (object == NULL) {
+ return false;
+ }
+ return object->GetThinLockId() == thin_lock_id_;
+}
+
+// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
+template <typename RootVisitor>
+class ReferenceMapVisitor : public StackVisitor {
+ public:
+ ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
+ : StackVisitor(thread, context), visitor_(visitor) {}
+
+ bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ if (false) {
+ LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
+ << StringPrintf("@ PC:%04x", GetDexPc());
+ }
+ ShadowFrame* shadow_frame = GetCurrentShadowFrame();
+ if (shadow_frame != NULL) {
+ mirror::AbstractMethod* m = shadow_frame->GetMethod();
+ size_t num_regs = shadow_frame->NumberOfVRegs();
+ if (m->IsNative() || shadow_frame->HasReferenceArray()) {
+ // SIRT for JNI or References for interpreter.
+ for (size_t reg = 0; reg < num_regs; ++reg) {
+ mirror::Object* ref = shadow_frame->GetVRegReference(reg);
+ if (ref != NULL) {
+ visitor_(ref, reg, this);
+ }
+ }
+ } else {
+ // Java method.
+ // Portable path use DexGcMap and store in Method.native_gc_map_.
+ const uint8_t* gc_map = m->GetNativeGcMap();
+ CHECK(gc_map != NULL) << PrettyMethod(m);
+ uint32_t gc_map_length = static_cast<uint32_t>((gc_map[0] << 24) |
+ (gc_map[1] << 16) |
+ (gc_map[2] << 8) |
+ (gc_map[3] << 0));
+ verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length);
+ uint32_t dex_pc = GetDexPc();
+ const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
+ DCHECK(reg_bitmap != NULL);
+ num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
+ for (size_t reg = 0; reg < num_regs; ++reg) {
+ if (TestBitmap(reg, reg_bitmap)) {
+ mirror::Object* ref = shadow_frame->GetVRegReference(reg);
+ if (ref != NULL) {
+ visitor_(ref, reg, this);
+ }
+ }
+ }
+ }
+ } else {
+ mirror::AbstractMethod* m = GetMethod();
+ // Process register map (which native and runtime methods don't have)
+ if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
+ const uint8_t* native_gc_map = m->GetNativeGcMap();
+ CHECK(native_gc_map != NULL) << PrettyMethod(m);
+ mh_.ChangeMethod(m);
+ const DexFile::CodeItem* code_item = mh_.GetCodeItem();
+ DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions?
+ NativePcOffsetToReferenceMap map(native_gc_map);
+ size_t num_regs = std::min(map.RegWidth() * 8,
+ static_cast<size_t>(code_item->registers_size_));
+ if (num_regs > 0) {
+ const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
+ DCHECK(reg_bitmap != NULL);
+ const VmapTable vmap_table(m->GetVmapTableRaw());
+ uint32_t core_spills = m->GetCoreSpillMask();
+ uint32_t fp_spills = m->GetFpSpillMask();
+ size_t frame_size = m->GetFrameSizeInBytes();
+ // For all dex registers in the bitmap
+ mirror::AbstractMethod** cur_quick_frame = GetCurrentQuickFrame();
+ DCHECK(cur_quick_frame != NULL);
+ for (size_t reg = 0; reg < num_regs; ++reg) {
+ // Does this register hold a reference?
+ if (TestBitmap(reg, reg_bitmap)) {
+ uint32_t vmap_offset;
+ mirror::Object* ref;
+ if (vmap_table.IsInContext(reg, vmap_offset, kReferenceVReg)) {
+ uintptr_t val = GetGPR(vmap_table.ComputeRegister(core_spills, vmap_offset,
+ kReferenceVReg));
+ ref = reinterpret_cast<mirror::Object*>(val);
+ } else {
+ ref = reinterpret_cast<mirror::Object*>(GetVReg(cur_quick_frame, code_item,
+ core_spills, fp_spills, frame_size,
+ reg));
+ }
+
+ if (ref != NULL) {
+ visitor_(ref, reg, this);
+ }
+ }
+ }
+ }
+ }
+ }
+ return true;
+ }
+
+ private:
+ static bool TestBitmap(int reg, const uint8_t* reg_vector) {
+ return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
+ }
+
+ // Visitor for when we visit a root.
+ const RootVisitor& visitor_;
+
+ // A method helper we keep around to avoid dex file/cache re-computations.
+ MethodHelper mh_;
+};
+
+class RootCallbackVisitor {
+ public:
+ RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {
+
+ }
+
+ void operator()(const mirror::Object* obj, size_t, const StackVisitor*) const {
+ visitor_(obj, arg_);
+ }
+
+ private:
+ RootVisitor* visitor_;
+ void* arg_;
+};
+
+class VerifyCallbackVisitor {
+ public:
+ VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
+ : visitor_(visitor),
+ arg_(arg) {
+ }
+
+ void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
+ visitor_(obj, arg_, vreg, visitor);
+ }
+
+ private:
+ VerifyRootVisitor* const visitor_;
+ void* const arg_;
+};
+
+struct VerifyRootWrapperArg {
+ VerifyRootVisitor* visitor;
+ void* arg;
+};
+
+static void VerifyRootWrapperCallback(const mirror::Object* root, void* arg) {
+ VerifyRootWrapperArg* wrapperArg = reinterpret_cast<VerifyRootWrapperArg*>(arg);
+ wrapperArg->visitor(root, wrapperArg->arg, 0, NULL);
+}
+
+void Thread::VerifyRoots(VerifyRootVisitor* visitor, void* arg) {
+ // We need to map from a RootVisitor to VerifyRootVisitor, so pass in nulls for arguments we
+ // don't have.
+ VerifyRootWrapperArg wrapperArg;
+ wrapperArg.arg = arg;
+ wrapperArg.visitor = visitor;
+
+ if (opeer_ != NULL) {
+ VerifyRootWrapperCallback(opeer_, &wrapperArg);
+ }
+ if (exception_ != NULL) {
+ VerifyRootWrapperCallback(exception_, &wrapperArg);
+ }
+ throw_location_.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
+ if (class_loader_override_ != NULL) {
+ VerifyRootWrapperCallback(class_loader_override_, &wrapperArg);
+ }
+ jni_env_->locals.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
+ jni_env_->monitors.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
+
+ SirtVisitRoots(VerifyRootWrapperCallback, &wrapperArg);
+
+ // Visit roots on this thread's stack
+ Context* context = GetLongJumpContext();
+ VerifyCallbackVisitor visitorToCallback(visitor, arg);
+ ReferenceMapVisitor<VerifyCallbackVisitor> mapper(this, context, visitorToCallback);
+ mapper.WalkStack();
+ ReleaseLongJumpContext(context);
+
+ std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
+ typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
+ for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
+ mirror::Object* this_object = (*it).this_object_;
+ if (this_object != NULL) {
+ VerifyRootWrapperCallback(this_object, &wrapperArg);
+ }
+ mirror::AbstractMethod* method = (*it).method_;
+ VerifyRootWrapperCallback(method, &wrapperArg);
+ }
+}
+
+void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
+ if (opeer_ != NULL) {
+ visitor(opeer_, arg);
+ }
+ if (exception_ != NULL) {
+ visitor(exception_, arg);
+ }
+ throw_location_.VisitRoots(visitor, arg);
+ if (class_loader_override_ != NULL) {
+ visitor(class_loader_override_, arg);
+ }
+ jni_env_->locals.VisitRoots(visitor, arg);
+ jni_env_->monitors.VisitRoots(visitor, arg);
+
+ SirtVisitRoots(visitor, arg);
+
+ // Visit roots on this thread's stack
+ Context* context = GetLongJumpContext();
+ RootCallbackVisitor visitorToCallback(visitor, arg);
+ ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
+ mapper.WalkStack();
+ ReleaseLongJumpContext(context);
+
+ std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
+ typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
+ for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
+ mirror::Object* this_object = (*it).this_object_;
+ if (this_object != NULL) {
+ visitor(this_object, arg);
+ }
+ mirror::AbstractMethod* method = (*it).method_;
+ visitor(method, arg);
+ }
+}
+
+static void VerifyObject(const mirror::Object* root, void* arg) {
+ gc::Heap* heap = reinterpret_cast<gc::Heap*>(arg);
+ heap->VerifyObject(root);
+}
+
+void Thread::VerifyStackImpl() {
+ UniquePtr<Context> context(Context::Create());
+ RootCallbackVisitor visitorToCallback(VerifyObject, Runtime::Current()->GetHeap());
+ ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
+ mapper.WalkStack();
+}
+
+// Set the stack end to that to be used during a stack overflow
+void Thread::SetStackEndForStackOverflow() {
+ // During stack overflow we allow use of the full stack
+ if (stack_end_ == stack_begin_) {
+ DumpStack(std::cerr);
+ LOG(FATAL) << "Need to increase kStackOverflowReservedBytes (currently "
+ << kStackOverflowReservedBytes << ")";
+ }
+
+ stack_end_ = stack_begin_;
+}
+
+std::ostream& operator<<(std::ostream& os, const Thread& thread) {
+ thread.ShortDump(os);
+ return os;
+}
+
+} // namespace art