summaryrefslogtreecommitdiffstats
path: root/cryptfs.cpp
blob: f01929a0503737dd24ad4342ca5e23e02d46195f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* TO DO:
 *   1.  Perhaps keep several copies of the encrypted key, in case something
 *       goes horribly wrong?
 *
 */

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <ctype.h>
#include <fcntl.h>
#include <inttypes.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/dm-ioctl.h>
#include <libgen.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/mount.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <errno.h>
#include <ext4_utils/ext4.h>
#include <ext4_utils/ext4_utils.h>
#include <linux/kdev_t.h>
#include <fs_mgr.h>
#include <time.h>
#include <math.h>
#include <selinux/selinux.h>
#include "cryptfs.h"
#include "secontext.h"
#define LOG_TAG "Cryptfs"
#include "cutils/log.h"
#include "cutils/properties.h"
#include "cutils/android_reboot.h"
#include "hardware_legacy/power.h"
#include <logwrap/logwrap.h>
#include "ScryptParameters.h"
#include "VolumeManager.h"
#include "VoldUtil.h"
#include "Ext4Crypt.h"
#include "f2fs_sparseblock.h"
#include "CheckBattery.h"
#include "EncryptInplace.h"
#include "Process.h"
#include "Keymaster.h"
#include "android-base/properties.h"
#include <bootloader_message/bootloader_message.h>
#ifdef CONFIG_HW_DISK_ENCRYPTION
#include <cryptfs_hw.h>
#endif
extern "C" {
#include <crypto_scrypt.h>
}

#define UNUSED __attribute__((unused))

#define DM_CRYPT_BUF_SIZE 4096

#define HASH_COUNT 2000
#define KEY_LEN_BYTES 16
#define IV_LEN_BYTES 16

#define KEY_IN_FOOTER  "footer"

#define DEFAULT_HEX_PASSWORD "64656661756c745f70617373776f7264"
#define DEFAULT_PASSWORD "default_password"

#define CRYPTO_BLOCK_DEVICE "userdata"

#define BREADCRUMB_FILE "/data/misc/vold/convert_fde"

#define EXT4_FS 1
#define F2FS_FS 2

#define TABLE_LOAD_RETRIES 10

#define RSA_KEY_SIZE 2048
#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
#define RSA_EXPONENT 0x10001
#define KEYMASTER_CRYPTFS_RATE_LIMIT 1  // Maximum one try per second

#define RETRY_MOUNT_ATTEMPTS 10
#define RETRY_MOUNT_DELAY_SECONDS 1

static unsigned char saved_master_key[KEY_LEN_BYTES];
static char *saved_mount_point;
static int  master_key_saved = 0;
static struct crypt_persist_data *persist_data = NULL;

static int previous_type;

#ifdef CONFIG_HW_DISK_ENCRYPTION
static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
                            unsigned char *ikey, void *params);
static void convert_key_to_hex_ascii(const unsigned char *master_key,
                                     unsigned int keysize, char *master_key_ascii);
static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr);
static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
                const char *passwd, const char *mount_point, const char *label);
int cryptfs_changepw_hw_fde(int crypt_type, const char *currentpw,
                                   const char *newpw);
int cryptfs_check_passwd_hw(char *passwd);

static void convert_key_to_hex_ascii_for_upgrade(const unsigned char *master_key,
                                     unsigned int keysize, char *master_key_ascii)
{
    unsigned int i, a;
    unsigned char nibble;

    for (i = 0, a = 0; i < keysize; i++, a += 2) {
        /* For each byte, write out two ascii hex digits */
        nibble = (master_key[i] >> 4) & 0xf;
        master_key_ascii[a] = nibble + (nibble > 9 ? 0x57 : 0x30);

        nibble = master_key[i] & 0xf;
        master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x57 : 0x30);
    }

    /* Add the null termination */
    master_key_ascii[a] = '\0';
}

static int get_keymaster_hw_fde_passwd(const char* passwd, unsigned char* newpw,
                                  unsigned char* salt,
                                  const struct crypt_mnt_ftr *ftr)
{
    /* if newpw updated, return 0
     * if newpw not updated return -1
     */
    int rc = -1;

    if (should_use_keymaster()) {
        if (scrypt_keymaster(passwd, salt, newpw, (void*)ftr)) {
            SLOGE("scrypt failed");
        } else {
            rc = 0;
        }
    }

    return rc;
}

static int verify_hw_fde_passwd(const char *passwd, struct crypt_mnt_ftr* crypt_ftr)
{
    unsigned char newpw[32] = {0};
    int key_index;
    if (get_keymaster_hw_fde_passwd(passwd, newpw, crypt_ftr->salt, crypt_ftr))
        key_index = set_hw_device_encryption_key(passwd,
                                           (char*) crypt_ftr->crypto_type_name);
    else
        key_index = set_hw_device_encryption_key((const char*)newpw,
                                           (char*) crypt_ftr->crypto_type_name);
    return key_index;
}

static int verify_and_update_hw_fde_passwd(const char *passwd,
                                           struct crypt_mnt_ftr* crypt_ftr)
{
    char* new_passwd = NULL;
    unsigned char newpw[32] = {0};
    int key_index = -1;
    int passwd_updated = -1;
    int ascii_passwd_updated = (crypt_ftr->flags & CRYPT_ASCII_PASSWORD_UPDATED);

    key_index = verify_hw_fde_passwd(passwd, crypt_ftr);
    if (key_index < 0) {
        ++crypt_ftr->failed_decrypt_count;

        if (ascii_passwd_updated) {
            SLOGI("Ascii password was updated");
        } else {
            /* Code in else part would execute only once:
             * When device is upgraded from L->M release.
             * Once upgraded, code flow should never come here.
             * L release passed actual password in hex, so try with hex
             * Each nible of passwd was encoded as a byte, so allocate memory
             * twice of password len plus one more byte for null termination
             */
            if (crypt_ftr->crypt_type == CRYPT_TYPE_DEFAULT) {
                new_passwd = (char*)malloc(strlen(DEFAULT_HEX_PASSWORD) + 1);
                if (new_passwd == NULL) {
                    SLOGE("System out of memory. Password verification  incomplete");
                    goto out;
                }
                strlcpy(new_passwd, DEFAULT_HEX_PASSWORD, strlen(DEFAULT_HEX_PASSWORD) + 1);
            } else {
                new_passwd = (char*)malloc(strlen(passwd) * 2 + 1);
                if (new_passwd == NULL) {
                    SLOGE("System out of memory. Password verification  incomplete");
                    goto out;
                }
                convert_key_to_hex_ascii_for_upgrade((const unsigned char*)passwd,
                                       strlen(passwd), new_passwd);
            }
            key_index = set_hw_device_encryption_key((const char*)new_passwd,
                                       (char*) crypt_ftr->crypto_type_name);
            if (key_index >=0) {
                crypt_ftr->failed_decrypt_count = 0;
                SLOGI("Hex password verified...will try to update with Ascii value");
                /* Before updating password, tie that with keymaster to tie with ROT */

                if (get_keymaster_hw_fde_passwd(passwd, newpw,
                                                crypt_ftr->salt, crypt_ftr)) {
                    passwd_updated = update_hw_device_encryption_key(new_passwd,
                                     passwd, (char*)crypt_ftr->crypto_type_name);
                } else {
                    passwd_updated = update_hw_device_encryption_key(new_passwd,
                                     (const char*)newpw, (char*)crypt_ftr->crypto_type_name);
                }

                if (passwd_updated >= 0) {
                    crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED;
                    SLOGI("Ascii password recorded and updated");
                } else {
                    SLOGI("Passwd verified, could not update...Will try next time");
                }
            } else {
                ++crypt_ftr->failed_decrypt_count;
            }
            free(new_passwd);
        }
    } else {
        if (!ascii_passwd_updated)
            crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED;
    }
out:
    // update footer before leaving
    put_crypt_ftr_and_key(crypt_ftr);
    return key_index;
}
#endif

/* Should we use keymaster? */
static int keymaster_check_compatibility()
{
#ifdef MINIVOLD
    return -1;
#else
    return keymaster_compatibility_cryptfs_scrypt();
#endif
}

/* Create a new keymaster key and store it in this footer */
static int keymaster_create_key(struct crypt_mnt_ftr *ftr)
{
#ifdef MINIVOLD // no HALs in recovery...
    return -1;
#else
    if (ftr->keymaster_blob_size) {
        SLOGI("Already have key");
        return 0;
    }

    int rc = keymaster_create_key_for_cryptfs_scrypt(RSA_KEY_SIZE, RSA_EXPONENT,
            KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE,
            &ftr->keymaster_blob_size);
    if (rc) {
        if (ftr->keymaster_blob_size > KEYMASTER_BLOB_SIZE) {
            SLOGE("Keymaster key blob to large)");
            ftr->keymaster_blob_size = 0;
        }
        SLOGE("Failed to generate keypair");
        return -1;
    }
    return 0;
#endif
}

/* This signs the given object using the keymaster key. */
static int keymaster_sign_object(struct crypt_mnt_ftr *ftr,
                                 const unsigned char *object,
                                 const size_t object_size,
                                 unsigned char **signature,
                                 size_t *signature_size)
{
#ifdef MINIVOLD // no HALs in recovery...
    return -1;
#else
    unsigned char to_sign[RSA_KEY_SIZE_BYTES];
    size_t to_sign_size = sizeof(to_sign);
    memset(to_sign, 0, RSA_KEY_SIZE_BYTES);

    // To sign a message with RSA, the message must satisfy two
    // constraints:
    //
    // 1. The message, when interpreted as a big-endian numeric value, must
    //    be strictly less than the public modulus of the RSA key.  Note
    //    that because the most significant bit of the public modulus is
    //    guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
    //    key), an n-bit message with most significant bit 0 always
    //    satisfies this requirement.
    //
    // 2. The message must have the same length in bits as the public
    //    modulus of the RSA key.  This requirement isn't mathematically
    //    necessary, but is necessary to ensure consistency in
    //    implementations.
    switch (ftr->kdf_type) {
        case KDF_SCRYPT_KEYMASTER:
            // This ensures the most significant byte of the signed message
            // is zero.  We could have zero-padded to the left instead, but
            // this approach is slightly more robust against changes in
            // object size.  However, it's still broken (but not unusably
            // so) because we really should be using a proper deterministic
            // RSA padding function, such as PKCS1.
            memcpy(to_sign + 1, object, std::min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size));
            SLOGI("Signing safely-padded object");
            break;
        default:
            SLOGE("Unknown KDF type %d", ftr->kdf_type);
            return -1;
    }
    return keymaster_sign_object_for_cryptfs_scrypt(ftr->keymaster_blob, ftr->keymaster_blob_size,
            KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, to_sign_size, signature, signature_size,
            ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size);
#endif
}

/* Store password when userdata is successfully decrypted and mounted.
 * Cleared by cryptfs_clear_password
 *
 * To avoid a double prompt at boot, we need to store the CryptKeeper
 * password and pass it to KeyGuard, which uses it to unlock KeyStore.
 * Since the entire framework is torn down and rebuilt after encryption,
 * we have to use a daemon or similar to store the password. Since vold
 * is secured against IPC except from system processes, it seems a reasonable
 * place to store this.
 *
 * password should be cleared once it has been used.
 *
 * password is aged out after password_max_age_seconds seconds.
 */
static char* password = 0;
static int password_expiry_time = 0;
static const int password_max_age_seconds = 60;

extern struct fstab *fstab;

enum RebootType {reboot, recovery, shutdown};
static void cryptfs_reboot(enum RebootType rt)
{
  switch(rt) {
      case reboot:
          property_set(ANDROID_RB_PROPERTY, "reboot");
          break;

      case recovery:
          property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
          break;

      case shutdown:
          property_set(ANDROID_RB_PROPERTY, "shutdown");
          break;
    }

    sleep(20);

    /* Shouldn't get here, reboot should happen before sleep times out */
    return;
}

static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
{
    memset(io, 0, dataSize);
    io->data_size = dataSize;
    io->data_start = sizeof(struct dm_ioctl);
    io->version[0] = 4;
    io->version[1] = 0;
    io->version[2] = 0;
    io->flags = flags;
    if (name) {
        strlcpy(io->name, name, sizeof(io->name));
    }
}

/**
 * Gets the default device scrypt parameters for key derivation time tuning.
 * The parameters should lead to about one second derivation time for the
 * given device.
 */
static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) {
    char paramstr[PROPERTY_VALUE_MAX];
    int Nf, rf, pf;

    property_get(SCRYPT_PROP, paramstr, SCRYPT_DEFAULTS);
    if (!parse_scrypt_parameters(paramstr, &Nf, &rf, &pf)) {
        SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
        parse_scrypt_parameters(SCRYPT_DEFAULTS, &Nf, &rf, &pf);
    }
    ftr->N_factor = Nf;
    ftr->r_factor = rf;
    ftr->p_factor = pf;
}

static unsigned int get_fs_size(char *dev)
{
    int fd, block_size;
    struct ext4_super_block sb;
    off64_t len;

    if ((fd = open(dev, O_RDONLY|O_CLOEXEC)) < 0) {
        SLOGE("Cannot open device to get filesystem size ");
        return 0;
    }

    if (lseek64(fd, 1024, SEEK_SET) < 0) {
        SLOGE("Cannot seek to superblock");
        return 0;
    }

    if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
        SLOGE("Cannot read superblock");
        return 0;
    }

    close(fd);

    if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) {
        SLOGE("Not a valid ext4 superblock");
        return 0;
    }
    block_size = 1024 << sb.s_log_block_size;
    /* compute length in bytes */
    len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;

    /* return length in sectors */
    return (unsigned int) (len / 512);
}

static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
{
  static int cached_data = 0;
  static off64_t cached_off = 0;
  static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
  int fd;
  char key_loc[PROPERTY_VALUE_MAX];
  char real_blkdev[PROPERTY_VALUE_MAX];
  int rc = -1;

  if (!cached_data) {
    fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc));

    if (!strcmp(key_loc, KEY_IN_FOOTER)) {
      if ( (fd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) {
        SLOGE("Cannot open real block device %s\n", real_blkdev);
        return -1;
      }

      unsigned long nr_sec = 0;
      get_blkdev_size(fd, &nr_sec);
      if (nr_sec != 0) {
        /* If it's an encrypted Android partition, the last 16 Kbytes contain the
         * encryption info footer and key, and plenty of bytes to spare for future
         * growth.
         */
        strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
        cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
        cached_data = 1;
      } else {
        SLOGE("Cannot get size of block device %s\n", real_blkdev);
      }
      close(fd);
    } else {
      strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname));
      cached_off = 0;
      cached_data = 1;
    }
  }

  if (cached_data) {
    if (metadata_fname) {
        *metadata_fname = cached_metadata_fname;
    }
    if (off) {
        *off = cached_off;
    }
    rc = 0;
  }

  return rc;
}

/* Set sha256 checksum in structure */
static void set_ftr_sha(struct crypt_mnt_ftr *crypt_ftr)
{
    SHA256_CTX c;
    SHA256_Init(&c);
    memset(crypt_ftr->sha256, 0, sizeof(crypt_ftr->sha256));
    SHA256_Update(&c, crypt_ftr, sizeof(*crypt_ftr));
    SHA256_Final(crypt_ftr->sha256, &c);
}

/* key or salt can be NULL, in which case just skip writing that value.  Useful to
 * update the failed mount count but not change the key.
 */
static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
  int fd;
  unsigned int cnt;
  /* starting_off is set to the SEEK_SET offset
   * where the crypto structure starts
   */
  off64_t starting_off;
  int rc = -1;
  char *fname = NULL;
  struct stat statbuf;

  set_ftr_sha(crypt_ftr);

  if (get_crypt_ftr_info(&fname, &starting_off)) {
    SLOGE("Unable to get crypt_ftr_info\n");
    return -1;
  }
  if (fname[0] != '/') {
    SLOGE("Unexpected value for crypto key location\n");
    return -1;
  }
  if ( (fd = open(fname, O_RDWR | O_CREAT|O_CLOEXEC, 0600)) < 0) {
    SLOGE("Cannot open footer file %s for put\n", fname);
    return -1;
  }

  /* Seek to the start of the crypt footer */
  if (lseek64(fd, starting_off, SEEK_SET) == -1) {
    SLOGE("Cannot seek to real block device footer\n");
    goto errout;
  }

  if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
    SLOGE("Cannot write real block device footer\n");
    goto errout;
  }

  fstat(fd, &statbuf);
  /* If the keys are kept on a raw block device, do not try to truncate it. */
  if (S_ISREG(statbuf.st_mode)) {
    if (ftruncate(fd, 0x4000)) {
      SLOGE("Cannot set footer file size\n");
      goto errout;
    }
  }

  /* Success! */
  rc = 0;

errout:
  close(fd);
  return rc;

}

static bool check_ftr_sha(const struct crypt_mnt_ftr *crypt_ftr)
{
    struct crypt_mnt_ftr copy;
    memcpy(&copy, crypt_ftr, sizeof(copy));
    set_ftr_sha(&copy);
    return memcmp(copy.sha256, crypt_ftr->sha256, sizeof(copy.sha256)) == 0;
}

static inline int unix_read(int  fd, void*  buff, int  len)
{
    return TEMP_FAILURE_RETRY(read(fd, buff, len));
}

static inline int unix_write(int  fd, const void*  buff, int  len)
{
    return TEMP_FAILURE_RETRY(write(fd, buff, len));
}

static void init_empty_persist_data(struct crypt_persist_data *pdata, int len)
{
    memset(pdata, 0, len);
    pdata->persist_magic = PERSIST_DATA_MAGIC;
    pdata->persist_valid_entries = 0;
}

/* A routine to update the passed in crypt_ftr to the lastest version.
 * fd is open read/write on the device that holds the crypto footer and persistent
 * data, crypt_ftr is a pointer to the struct to be updated, and offset is the
 * absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
 */
static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset)
{
    int orig_major = crypt_ftr->major_version;
    int orig_minor = crypt_ftr->minor_version;

    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
        struct crypt_persist_data *pdata;
        off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;

        SLOGW("upgrading crypto footer to 1.1");

        pdata = (crypt_persist_data *)malloc(CRYPT_PERSIST_DATA_SIZE);
        if (pdata == NULL) {
            SLOGE("Cannot allocate persisent data\n");
            return;
        }
        memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);

        /* Need to initialize the persistent data area */
        if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
            SLOGE("Cannot seek to persisent data offset\n");
            free(pdata);
            return;
        }
        /* Write all zeros to the first copy, making it invalid */
        unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);

        /* Write a valid but empty structure to the second copy */
        init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
        unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);

        /* Update the footer */
        crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
        crypt_ftr->persist_data_offset[0] = pdata_offset;
        crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
        crypt_ftr->minor_version = 1;
        free(pdata);
    }

    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
        SLOGW("upgrading crypto footer to 1.2");
        /* But keep the old kdf_type.
         * It will get updated later to KDF_SCRYPT after the password has been verified.
         */
        crypt_ftr->kdf_type = KDF_PBKDF2;
        get_device_scrypt_params(crypt_ftr);
        crypt_ftr->minor_version = 2;
    }

    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
        SLOGW("upgrading crypto footer to 1.3");
        crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
        crypt_ftr->minor_version = 3;
    }

    if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
        if (lseek64(fd, offset, SEEK_SET) == -1) {
            SLOGE("Cannot seek to crypt footer\n");
            return;
        }
        unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
    }
}


static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
  int fd;
  unsigned int cnt;
  off64_t starting_off;
  int rc = -1;
  char *fname = NULL;
  struct stat statbuf;

  if (get_crypt_ftr_info(&fname, &starting_off)) {
    SLOGE("Unable to get crypt_ftr_info\n");
    return -1;
  }
  if (fname[0] != '/') {
    SLOGE("Unexpected value for crypto key location\n");
    return -1;
  }
  if ( (fd = open(fname, O_RDWR|O_CLOEXEC)) < 0) {
    SLOGE("Cannot open footer file %s for get\n", fname);
    return -1;
  }

  /* Make sure it's 16 Kbytes in length */
  fstat(fd, &statbuf);
  if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
    SLOGE("footer file %s is not the expected size!\n", fname);
    goto errout;
  }

  /* Seek to the start of the crypt footer */
  if (lseek64(fd, starting_off, SEEK_SET) == -1) {
    SLOGE("Cannot seek to real block device footer\n");
    goto errout;
  }

  if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
    SLOGE("Cannot read real block device footer\n");
    goto errout;
  }

  if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
    SLOGE("Bad magic for real block device %s\n", fname);
    goto errout;
  }

  if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
    SLOGE("Cannot understand major version %d real block device footer; expected %d\n",
          crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
    goto errout;
  }

  if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
    SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
          crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
  }

  /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
   * copy on disk before returning.
   */
  if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
    upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
  }

  /* Success! */
  rc = 0;

errout:
  close(fd);
  return rc;
}

static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr)
{
    if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
        crypt_ftr->persist_data_offset[1]) {
        SLOGE("Crypt_ftr persist data regions overlap");
        return -1;
    }

    if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
        SLOGE("Crypt_ftr persist data region 0 starts after region 1");
        return -1;
    }

    if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
        (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
        CRYPT_FOOTER_OFFSET) {
        SLOGE("Persistent data extends past crypto footer");
        return -1;
    }

    return 0;
}

static int load_persistent_data(void)
{
    struct crypt_mnt_ftr crypt_ftr;
    struct crypt_persist_data *pdata = NULL;
    char encrypted_state[PROPERTY_VALUE_MAX];
    char *fname;
    int found = 0;
    int fd;
    int ret;
    int i;

    if (persist_data) {
        /* Nothing to do, we've already loaded or initialized it */
        return 0;
    }


    /* If not encrypted, just allocate an empty table and initialize it */
    property_get("ro.crypto.state", encrypted_state, "");
    if (strcmp(encrypted_state, "encrypted") ) {
        pdata = (crypt_persist_data*)malloc(CRYPT_PERSIST_DATA_SIZE);
        if (pdata) {
            init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
            persist_data = pdata;
            return 0;
        }
        return -1;
    }

    if(get_crypt_ftr_and_key(&crypt_ftr)) {
        return -1;
    }

    if ((crypt_ftr.major_version < 1)
        || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
        SLOGE("Crypt_ftr version doesn't support persistent data");
        return -1;
    }

    if (get_crypt_ftr_info(&fname, NULL)) {
        return -1;
    }

    ret = validate_persistent_data_storage(&crypt_ftr);
    if (ret) {
        return -1;
    }

    fd = open(fname, O_RDONLY|O_CLOEXEC);
    if (fd < 0) {
        SLOGE("Cannot open %s metadata file", fname);
        return -1;
    }

    pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size);
    if (pdata == NULL) {
        SLOGE("Cannot allocate memory for persistent data");
        goto err;
    }

    for (i = 0; i < 2; i++) {
        if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
            SLOGE("Cannot seek to read persistent data on %s", fname);
            goto err2;
        }
        if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){
            SLOGE("Error reading persistent data on iteration %d", i);
            goto err2;
        }
        if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
            found = 1;
            break;
        }
    }

    if (!found) {
        SLOGI("Could not find valid persistent data, creating");
        init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
    }

    /* Success */
    persist_data = pdata;
    close(fd);
    return 0;

err2:
    free(pdata);

err:
    close(fd);
    return -1;
}

static int save_persistent_data(void)
{
    struct crypt_mnt_ftr crypt_ftr;
    struct crypt_persist_data *pdata;
    char *fname;
    off64_t write_offset;
    off64_t erase_offset;
    int fd;
    int ret;

    if (persist_data == NULL) {
        SLOGE("No persistent data to save");
        return -1;
    }

    if(get_crypt_ftr_and_key(&crypt_ftr)) {
        return -1;
    }

    if ((crypt_ftr.major_version < 1)
        || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
        SLOGE("Crypt_ftr version doesn't support persistent data");
        return -1;
    }

    ret = validate_persistent_data_storage(&crypt_ftr);
    if (ret) {
        return -1;
    }

    if (get_crypt_ftr_info(&fname, NULL)) {
        return -1;
    }

    fd = open(fname, O_RDWR|O_CLOEXEC);
    if (fd < 0) {
        SLOGE("Cannot open %s metadata file", fname);
        return -1;
    }

    pdata = (crypt_persist_data*)malloc(crypt_ftr.persist_data_size);
    if (pdata == NULL) {
        SLOGE("Cannot allocate persistant data");
        goto err;
    }

    if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
        SLOGE("Cannot seek to read persistent data on %s", fname);
        goto err2;
    }

    if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
            SLOGE("Error reading persistent data before save");
            goto err2;
    }

    if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
        /* The first copy is the curent valid copy, so write to
         * the second copy and erase this one */
       write_offset = crypt_ftr.persist_data_offset[1];
       erase_offset = crypt_ftr.persist_data_offset[0];
    } else {
        /* The second copy must be the valid copy, so write to
         * the first copy, and erase the second */
       write_offset = crypt_ftr.persist_data_offset[0];
       erase_offset = crypt_ftr.persist_data_offset[1];
    }

    /* Write the new copy first, if successful, then erase the old copy */
    if (lseek64(fd, write_offset, SEEK_SET) < 0) {
        SLOGE("Cannot seek to write persistent data");
        goto err2;
    }
    if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
        (int) crypt_ftr.persist_data_size) {
        if (lseek64(fd, erase_offset, SEEK_SET) < 0) {
            SLOGE("Cannot seek to erase previous persistent data");
            goto err2;
        }
        fsync(fd);
        memset(pdata, 0, crypt_ftr.persist_data_size);
        if (unix_write(fd, pdata, crypt_ftr.persist_data_size) !=
            (int) crypt_ftr.persist_data_size) {
            SLOGE("Cannot write to erase previous persistent data");
            goto err2;
        }
        fsync(fd);
    } else {
        SLOGE("Cannot write to save persistent data");
        goto err2;
    }

    /* Success */
    free(pdata);
    close(fd);
    return 0;

err2:
    free(pdata);
err:
    close(fd);
    return -1;
}

/* Convert a binary key of specified length into an ascii hex string equivalent,
 * without the leading 0x and with null termination
 */
static void convert_key_to_hex_ascii(const unsigned char *master_key,
                                     unsigned int keysize, char *master_key_ascii) {
    unsigned int i, a;
    unsigned char nibble;

    for (i=0, a=0; i<keysize; i++, a+=2) {
        /* For each byte, write out two ascii hex digits */
        nibble = (master_key[i] >> 4) & 0xf;
        master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);

        nibble = master_key[i] & 0xf;
        master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
    }

    /* Add the null termination */
    master_key_ascii[a] = '\0';

}

static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr,
        const unsigned char *master_key, const char *real_blk_name,
        const char *name, int fd, const char *extra_params) {
  alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE];
  struct dm_ioctl *io;
  struct dm_target_spec *tgt;
  char *crypt_params;
  char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
  size_t buff_offset;
  int i;

  io = (struct dm_ioctl *) buffer;

  /* Load the mapping table for this device */
  tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];

  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  io->target_count = 1;
  tgt->status = 0;
  tgt->sector_start = 0;
  tgt->length = crypt_ftr->fs_size;
  crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
  buff_offset = crypt_params - buffer;

#ifdef CONFIG_HW_DISK_ENCRYPTION
  if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) {
    strlcpy(tgt->target_type, "req-crypt",DM_MAX_TYPE_NAME);
    if (is_ice_enabled())
      convert_key_to_hex_ascii(master_key, sizeof(int), master_key_ascii);
    else
      convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
  }
  else {
    convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
    strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
  }
  snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s 0",
           crypt_ftr->crypto_type_name, master_key_ascii,
           real_blk_name, extra_params);

  SLOGI("target_type = %s", tgt->target_type);
  SLOGI("real_blk_name = %s, extra_params = %s", real_blk_name, extra_params);
#else
  convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
  strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME);
  snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s",
           crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name,
           extra_params);
#endif

  crypt_params += strlen(crypt_params) + 1;
  crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
  tgt->next = crypt_params - buffer;

  for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
    if (! ioctl(fd, DM_TABLE_LOAD, io)) {
      break;
    }
    usleep(500000);
  }

  if (i == TABLE_LOAD_RETRIES) {
    /* We failed to load the table, return an error */
    return -1;
  } else {
    return i + 1;
  }
}

static int get_dm_crypt_version(int fd, const char *name,  int *version)
{
    char buffer[DM_CRYPT_BUF_SIZE];
    struct dm_ioctl *io;
    struct dm_target_versions *v;

    io = (struct dm_ioctl *) buffer;

    ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);

    if (ioctl(fd, DM_LIST_VERSIONS, io)) {
        return -1;
    }

    /* Iterate over the returned versions, looking for name of "crypt".
     * When found, get and return the version.
     */
    v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
    while (v->next) {
#ifdef CONFIG_HW_DISK_ENCRYPTION
	if (! strcmp(v->name, "crypt") || ! strcmp(v->name, "req-crypt")) {
#else
        if (! strcmp(v->name, "crypt")) {
#endif
            /* We found the crypt driver, return the version, and get out */
            version[0] = v->version[0];
            version[1] = v->version[1];
            version[2] = v->version[2];
            return 0;
        }
        v = (struct dm_target_versions *)(((char *)v) + v->next);
    }

    return -1;
}

static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr,
        const unsigned char *master_key, const char *real_blk_name,
        char *crypto_blk_name, const char *name) {
  char buffer[DM_CRYPT_BUF_SIZE];
  struct dm_ioctl *io;
  unsigned int minor;
  int fd=0;
  int err;
  int retval = -1;
  int version[3];
  const char *extra_params;
  int load_count;
#ifdef CONFIG_HW_DISK_ENCRYPTION
  char encrypted_state[PROPERTY_VALUE_MAX] = {0};
  char progress[PROPERTY_VALUE_MAX] = {0};
#endif

  if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) {
    SLOGE("Cannot open device-mapper\n");
    goto errout;
  }

  io = (struct dm_ioctl *) buffer;

  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  err = ioctl(fd, DM_DEV_CREATE, io);
  if (err) {
    SLOGE("Cannot create dm-crypt device %s: %s\n", name, strerror(errno));
    goto errout;
  }

  /* Get the device status, in particular, the name of it's device file */
  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  if (ioctl(fd, DM_DEV_STATUS, io)) {
    SLOGE("Cannot retrieve dm-crypt device status\n");
    goto errout;
  }
  minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
  snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);

#ifdef CONFIG_HW_DISK_ENCRYPTION
  if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) {
    /* Set fde_enabled if either FDE completed or in-progress */
    property_get("ro.crypto.state", encrypted_state, ""); /* FDE completed */
    property_get("vold.encrypt_progress", progress, ""); /* FDE in progress */
    if (!strcmp(encrypted_state, "encrypted") || strcmp(progress, "")) {
      if (is_ice_enabled())
          extra_params = "fde_enabled ice";
      else
        extra_params = "fde_enabled";
    } else
      extra_params = "fde_disabled";
  } else {
    extra_params = "";
    if (! get_dm_crypt_version(fd, name, version)) {
      /* Support for allow_discards was added in version 1.11.0 */
      if ((version[0] >= 2) ||
          ((version[0] == 1) && (version[1] >= 11))) {
          extra_params = "1 allow_discards";
          SLOGI("Enabling support for allow_discards in dmcrypt.\n");
      }
    }
  }
#else
  extra_params = "";
  if (! get_dm_crypt_version(fd, name, version)) {
      /* Support for allow_discards was added in version 1.11.0 */
      if ((version[0] >= 2) ||
          ((version[0] == 1) && (version[1] >= 11))) {
          extra_params = "1 allow_discards";
          SLOGI("Enabling support for allow_discards in dmcrypt.\n");
      }
  }
#endif

  load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name,
                                         fd, extra_params);
  if (load_count < 0) {
      SLOGE("Cannot load dm-crypt mapping table.\n");
      goto errout;
  } else if (load_count > 1) {
      SLOGI("Took %d tries to load dmcrypt table.\n", load_count);
  }

  /* Resume this device to activate it */
  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);

  if (ioctl(fd, DM_DEV_SUSPEND, io)) {
    SLOGE("Cannot resume the dm-crypt device\n");
    goto errout;
  }

  /* We made it here with no errors.  Woot! */
  retval = 0;

errout:
  close(fd);   /* If fd is <0 from a failed open call, it's safe to just ignore the close error */

  return retval;
}

static int delete_crypto_blk_dev(const char *name)
{
  int fd;
  char buffer[DM_CRYPT_BUF_SIZE];
  struct dm_ioctl *io;
  int retval = -1;

  if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) {
    SLOGE("Cannot open device-mapper\n");
    goto errout;
  }

  io = (struct dm_ioctl *) buffer;

  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  if (ioctl(fd, DM_DEV_REMOVE, io)) {
    SLOGE("Cannot remove dm-crypt device\n");
    goto errout;
  }

  /* We made it here with no errors.  Woot! */
  retval = 0;

errout:
  close(fd);    /* If fd is <0 from a failed open call, it's safe to just ignore the close error */

  return retval;

}

static int pbkdf2(const char *passwd, const unsigned char *salt,
                  unsigned char *ikey, void *params UNUSED)
{
    SLOGI("Using pbkdf2 for cryptfs KDF");

    /* Turn the password into a key and IV that can decrypt the master key */
    return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
                                  HASH_COUNT, KEY_LEN_BYTES + IV_LEN_BYTES,
                                  ikey) != 1;
}

static int scrypt(const char *passwd, const unsigned char *salt,
                  unsigned char *ikey, void *params)
{
    SLOGI("Using scrypt for cryptfs KDF");

    struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;

    int N = 1 << ftr->N_factor;
    int r = 1 << ftr->r_factor;
    int p = 1 << ftr->p_factor;

    /* Turn the password into a key and IV that can decrypt the master key */
    unsigned int keysize;
    crypto_scrypt((const uint8_t*)passwd, strlen(passwd),
                  salt, SALT_LEN, N, r, p, ikey,
                  KEY_LEN_BYTES + IV_LEN_BYTES);

   return 0;
}

static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
                            unsigned char *ikey, void *params)
{
    SLOGI("Using scrypt with keymaster for cryptfs KDF");

    int rc;
    size_t signature_size;
    unsigned char* signature;
    struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;

    int N = 1 << ftr->N_factor;
    int r = 1 << ftr->r_factor;
    int p = 1 << ftr->p_factor;

    rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd),
                       salt, SALT_LEN, N, r, p, ikey,
                       KEY_LEN_BYTES + IV_LEN_BYTES);

    if (rc) {
        SLOGE("scrypt failed");
        return -1;
    }

    if (keymaster_sign_object(ftr, ikey, KEY_LEN_BYTES + IV_LEN_BYTES,
                              &signature, &signature_size)) {
        SLOGE("Signing failed");
        return -1;
    }

    rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN,
                       N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
    free(signature);

    if (rc) {
        SLOGE("scrypt failed");
        return -1;
    }

    return 0;
}

static int encrypt_master_key(const char *passwd, const unsigned char *salt,
                              const unsigned char *decrypted_master_key,
                              unsigned char *encrypted_master_key,
                              struct crypt_mnt_ftr *crypt_ftr,
                              bool create_keymaster_key)
{
    unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
    EVP_CIPHER_CTX e_ctx;
    int encrypted_len, final_len;
    int rc = 0;

    /* Turn the password into an intermediate key and IV that can decrypt the master key */
    get_device_scrypt_params(crypt_ftr);

    switch (crypt_ftr->kdf_type) {
    case KDF_SCRYPT_KEYMASTER:
        if (create_keymaster_key && keymaster_create_key(crypt_ftr)) {
            SLOGE("keymaster_create_key failed");
            return -1;
        }

        if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
            SLOGE("scrypt failed");
            return -1;
        }
        break;

    case KDF_SCRYPT:
        if (scrypt(passwd, salt, ikey, crypt_ftr)) {
            SLOGE("scrypt failed");
            return -1;
        }
        break;

    default:
        SLOGE("Invalid kdf_type");
        return -1;
    }

    /* Initialize the decryption engine */
    EVP_CIPHER_CTX_init(&e_ctx);
    if (! EVP_EncryptInit_ex(&e_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+KEY_LEN_BYTES)) {
        SLOGE("EVP_EncryptInit failed\n");
        return -1;
    }
    EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */

    /* Encrypt the master key */
    if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
                            decrypted_master_key, KEY_LEN_BYTES)) {
        SLOGE("EVP_EncryptUpdate failed\n");
        return -1;
    }
    if (! EVP_EncryptFinal_ex(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
        SLOGE("EVP_EncryptFinal failed\n");
        return -1;
    }

    if (encrypted_len + final_len != KEY_LEN_BYTES) {
        SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
        return -1;
    }

    /* Store the scrypt of the intermediate key, so we can validate if it's a
       password error or mount error when things go wrong.
       Note there's no need to check for errors, since if this is incorrect, we
       simply won't wipe userdata, which is the correct default behavior
    */
    int N = 1 << crypt_ftr->N_factor;
    int r = 1 << crypt_ftr->r_factor;
    int p = 1 << crypt_ftr->p_factor;

    rc = crypto_scrypt(ikey, KEY_LEN_BYTES,
                       crypt_ftr->salt, sizeof(crypt_ftr->salt), N, r, p,
                       crypt_ftr->scrypted_intermediate_key,
                       sizeof(crypt_ftr->scrypted_intermediate_key));

    if (rc) {
      SLOGE("encrypt_master_key: crypto_scrypt failed");
    }

    EVP_CIPHER_CTX_cleanup(&e_ctx);

    return 0;
}

static int decrypt_master_key_aux(const char *passwd, unsigned char *salt,
                                  unsigned char *encrypted_master_key,
                                  unsigned char *decrypted_master_key,
                                  kdf_func kdf, void *kdf_params,
                                  unsigned char** intermediate_key,
                                  size_t* intermediate_key_size)
{
  unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
  EVP_CIPHER_CTX d_ctx;
  int decrypted_len, final_len;

  /* Turn the password into an intermediate key and IV that can decrypt the
     master key */
  if (kdf(passwd, salt, ikey, kdf_params)) {
    SLOGE("kdf failed");
    return -1;
  }

  /* Initialize the decryption engine */
  EVP_CIPHER_CTX_init(&d_ctx);
  if (! EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+KEY_LEN_BYTES)) {
    return -1;
  }
  EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
  /* Decrypt the master key */
  if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
                            encrypted_master_key, KEY_LEN_BYTES)) {
    return -1;
  }
  if (! EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
    return -1;
  }

  if (decrypted_len + final_len != KEY_LEN_BYTES) {
    return -1;
  }

  /* Copy intermediate key if needed by params */
  if (intermediate_key && intermediate_key_size) {
    *intermediate_key = (unsigned char*) malloc(KEY_LEN_BYTES);
    if (*intermediate_key) {
      memcpy(*intermediate_key, ikey, KEY_LEN_BYTES);
      *intermediate_key_size = KEY_LEN_BYTES;
    }
  }

  EVP_CIPHER_CTX_cleanup(&d_ctx);

  return 0;
}

static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
{
    if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
        *kdf = scrypt_keymaster;
        *kdf_params = ftr;
    } else if (ftr->kdf_type == KDF_SCRYPT) {
        *kdf = scrypt;
        *kdf_params = ftr;
    } else {
        *kdf = pbkdf2;
        *kdf_params = NULL;
    }
}

static int decrypt_master_key(const char *passwd, unsigned char *decrypted_master_key,
                              struct crypt_mnt_ftr *crypt_ftr,
                              unsigned char** intermediate_key,
                              size_t* intermediate_key_size)
{
    kdf_func kdf;
    void *kdf_params;
    int ret;

    get_kdf_func(crypt_ftr, &kdf, &kdf_params);
    ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key,
                                 decrypted_master_key, kdf, kdf_params,
                                 intermediate_key, intermediate_key_size);
    if (ret != 0) {
        SLOGW("failure decrypting master key");
    }

    return ret;
}

static int create_encrypted_random_key(const char *passwd, unsigned char *master_key, unsigned char *salt,
        struct crypt_mnt_ftr *crypt_ftr) {
    int fd;
    unsigned char key_buf[KEY_LEN_BYTES];

    /* Get some random bits for a key */
    fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC);
    read(fd, key_buf, sizeof(key_buf));
    read(fd, salt, SALT_LEN);
    close(fd);

    /* Now encrypt it with the password */
    return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr, true);
}

int wait_and_unmount(const char *mountpoint, bool kill)
{
    int i, err, rc;
#define WAIT_UNMOUNT_COUNT 200

    /*  Now umount the tmpfs filesystem */
    for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
        if (umount(mountpoint) == 0) {
            break;
        }

        if (errno == EINVAL) {
            /* EINVAL is returned if the directory is not a mountpoint,
             * i.e. there is no filesystem mounted there.  So just get out.
             */
            break;
        }

        err = errno;

        /* If allowed, be increasingly aggressive before the last 2 seconds */
        if (kill) {
            if (i == (WAIT_UNMOUNT_COUNT - 30)) {
                SLOGW("sending SIGHUP to processes with open files\n");
                vold_killProcessesWithOpenFiles(mountpoint, SIGTERM);
            } else if (i == (WAIT_UNMOUNT_COUNT - 20)) {
                SLOGW("sending SIGKILL to processes with open files\n");
                vold_killProcessesWithOpenFiles(mountpoint, SIGKILL);
            }
        }

        usleep(100000);
    }

    if (i < WAIT_UNMOUNT_COUNT) {
      SLOGD("unmounting %s succeeded\n", mountpoint);
      rc = 0;
    } else {
      vold_killProcessesWithOpenFiles(mountpoint, 0);
      SLOGE("unmounting %s failed: %s\n", mountpoint, strerror(err));
      rc = -1;
    }

    return rc;
}

static void prep_data_fs(void)
{
    // NOTE: post_fs_data results in init calling back around to vold, so all
    // callers to this method must be async

    /* Do the prep of the /data filesystem */
    property_set("vold.post_fs_data_done", "0");
    property_set("vold.decrypt", "trigger_post_fs_data");
    SLOGD("Just triggered post_fs_data");

    /* Wait a max of 50 seconds, hopefully it takes much less */
    while (!android::base::WaitForProperty("vold.post_fs_data_done",
                                        "1",
                                        std::chrono::seconds(15))) {
        /* We timed out to prep /data in time.  Continue wait. */
        SLOGE("waited 15s for vold.post_fs_data_done, still waiting...");
    }
    SLOGD("post_fs_data done");
}

static void cryptfs_set_corrupt()
{
    // Mark the footer as bad
    struct crypt_mnt_ftr crypt_ftr;
    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Failed to get crypto footer - panic");
        return;
    }

    crypt_ftr.flags |= CRYPT_DATA_CORRUPT;
    if (put_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Failed to set crypto footer - panic");
        return;
    }
}

static void cryptfs_trigger_restart_min_framework()
{
    if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
      SLOGE("Failed to mount tmpfs on data - panic");
      return;
    }

    if (property_set("vold.decrypt", "trigger_post_fs_data")) {
        SLOGE("Failed to trigger post fs data - panic");
        return;
    }

    if (property_set("vold.decrypt", "trigger_restart_min_framework")) {
        SLOGE("Failed to trigger restart min framework - panic");
        return;
    }
}

/* returns < 0 on failure */
static int cryptfs_restart_internal(int restart_main)
{
    char crypto_blkdev[MAXPATHLEN];
    int rc = -1;
    static int restart_successful = 0;

    /* Validate that it's OK to call this routine */
    if (! master_key_saved) {
        SLOGE("Encrypted filesystem not validated, aborting");
        return -1;
    }

    if (restart_successful) {
        SLOGE("System already restarted with encrypted disk, aborting");
        return -1;
    }

    if (restart_main) {
        /* Here is where we shut down the framework.  The init scripts
         * start all services in one of three classes: core, main or late_start.
         * On boot, we start core and main.  Now, we stop main, but not core,
         * as core includes vold and a few other really important things that
         * we need to keep running.  Once main has stopped, we should be able
         * to umount the tmpfs /data, then mount the encrypted /data.
         * We then restart the class main, and also the class late_start.
         * At the moment, I've only put a few things in late_start that I know
         * are not needed to bring up the framework, and that also cause problems
         * with unmounting the tmpfs /data, but I hope to add add more services
         * to the late_start class as we optimize this to decrease the delay
         * till the user is asked for the password to the filesystem.
         */

        /* The init files are setup to stop the class main when vold.decrypt is
         * set to trigger_reset_main.
         */
        property_set("vold.decrypt", "trigger_reset_main");
        SLOGD("Just asked init to shut down class main\n");

        /* Ugh, shutting down the framework is not synchronous, so until it
         * can be fixed, this horrible hack will wait a moment for it all to
         * shut down before proceeding.  Without it, some devices cannot
         * restart the graphics services.
         */
        sleep(2);
    }

    /* Now that the framework is shutdown, we should be able to umount()
     * the tmpfs filesystem, and mount the real one.
     */

    property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
    if (strlen(crypto_blkdev) == 0) {
        SLOGE("fs_crypto_blkdev not set\n");
        return -1;
    }

    if (! (rc = wait_and_unmount(DATA_MNT_POINT, true)) ) {
        /* If ro.crypto.readonly is set to 1, mount the decrypted
         * filesystem readonly.  This is used when /data is mounted by
         * recovery mode.
         */
        char ro_prop[PROPERTY_VALUE_MAX];
        property_get("ro.crypto.readonly", ro_prop, "");
        if (strlen(ro_prop) > 0 && atoi(ro_prop)) {
            struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
            rec->flags |= MS_RDONLY;
        }

        /* If that succeeded, then mount the decrypted filesystem */
        int retries = RETRY_MOUNT_ATTEMPTS;
        int mount_rc;

        /*
         * fs_mgr_do_mount runs fsck. Use setexeccon to run trusted
         * partitions in the fsck domain.
         */
        if (setexeccon(secontextFsck())){
            SLOGE("Failed to setexeccon");
            return -1;
        }
        while ((mount_rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT,
                                           crypto_blkdev, 0))
               != 0) {
            if (mount_rc == FS_MGR_DOMNT_BUSY) {
                /* TODO: invoke something similar to
                   Process::killProcessWithOpenFiles(DATA_MNT_POINT,
                                   retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */
                SLOGI("Failed to mount %s because it is busy - waiting",
                      crypto_blkdev);
                if (--retries) {
                    sleep(RETRY_MOUNT_DELAY_SECONDS);
                } else {
                    /* Let's hope that a reboot clears away whatever is keeping
                       the mount busy */
                    cryptfs_reboot(reboot);
                }
            } else {
#ifdef CONFIG_HW_DISK_ENCRYPTION
                if (--retries) {
                    sleep(RETRY_MOUNT_DELAY_SECONDS);
                } else {
                    SLOGE("Failed to mount decrypted data");
                    cryptfs_set_corrupt();
                    cryptfs_trigger_restart_min_framework();
                    SLOGI("Started framework to offer wipe");
                    return -1;
                }
#else
                SLOGE("Failed to mount decrypted data");
                cryptfs_set_corrupt();
                cryptfs_trigger_restart_min_framework();
                SLOGI("Started framework to offer wipe");
                if (setexeccon(NULL)) {
                    SLOGE("Failed to setexeccon");
                }
                return -1;
#endif
            }
        }
        if (setexeccon(NULL)) {
            SLOGE("Failed to setexeccon");
            return -1;
        }

        /* Create necessary paths on /data */
        prep_data_fs();
        property_set("vold.decrypt", "trigger_load_persist_props");

        /* startup service classes main and late_start */
        property_set("vold.decrypt", "trigger_restart_framework");
        SLOGD("Just triggered restart_framework\n");

        /* Give it a few moments to get started */
        sleep(1);
    }

    if (rc == 0) {
        restart_successful = 1;
    }

    return rc;
}

int cryptfs_restart(void)
{
    SLOGI("cryptfs_restart");
    if (e4crypt_is_native()) {
        SLOGE("cryptfs_restart not valid for file encryption:");
        return -1;
    }

    /* Call internal implementation forcing a restart of main service group */
    return cryptfs_restart_internal(1);
}

static int do_crypto_complete(const char *mount_point)
{
  struct crypt_mnt_ftr crypt_ftr;
  char encrypted_state[PROPERTY_VALUE_MAX];
  char key_loc[PROPERTY_VALUE_MAX];

  property_get("ro.crypto.state", encrypted_state, "");
  if (strcmp(encrypted_state, "encrypted") ) {
    SLOGE("not running with encryption, aborting");
    return CRYPTO_COMPLETE_NOT_ENCRYPTED;
  }

  // crypto_complete is full disk encrypted status
  if (e4crypt_is_native()) {
    return CRYPTO_COMPLETE_NOT_ENCRYPTED;
  }

  if (get_crypt_ftr_and_key(&crypt_ftr)) {
    fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));

    /*
     * Only report this error if key_loc is a file and it exists.
     * If the device was never encrypted, and /data is not mountable for
     * some reason, returning 1 should prevent the UI from presenting the
     * a "enter password" screen, or worse, a "press button to wipe the
     * device" screen.
     */
    if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
      SLOGE("master key file does not exist, aborting");
      return CRYPTO_COMPLETE_NOT_ENCRYPTED;
    } else {
      SLOGE("Error getting crypt footer and key\n");
      return CRYPTO_COMPLETE_BAD_METADATA;
    }
  }

  // Test for possible error flags
  if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS){
    SLOGE("Encryption process is partway completed\n");
    return CRYPTO_COMPLETE_PARTIAL;
  }

  if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE){
    SLOGE("Encryption process was interrupted but cannot continue\n");
    return CRYPTO_COMPLETE_INCONSISTENT;
  }

  if (crypt_ftr.flags & CRYPT_DATA_CORRUPT){
    SLOGE("Encryption is successful but data is corrupt\n");
    return CRYPTO_COMPLETE_CORRUPT;
  }

  /* We passed the test! We shall diminish, and return to the west */
  return CRYPTO_COMPLETE_ENCRYPTED;
}

#ifdef CONFIG_HW_DISK_ENCRYPTION
static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
             const char *passwd, const char *mount_point, const char *label)
{
  /* Allocate enough space for a 256 bit key, but we may use less */
  unsigned char decrypted_master_key[32];
  char crypto_blkdev[MAXPATHLEN];
  char real_blkdev[MAXPATHLEN];
  unsigned int orig_failed_decrypt_count;
  int rc = 0;

  SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
  orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;

  fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));

  int key_index = 0;
  if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) {
    key_index = verify_and_update_hw_fde_passwd(passwd, crypt_ftr);
    if (key_index < 0) {
      rc = crypt_ftr->failed_decrypt_count;
      goto errout;
    }
    else {
      if (is_ice_enabled()) {
        if (create_crypto_blk_dev(crypt_ftr, (unsigned char*)&key_index,
                            real_blkdev, crypto_blkdev, label)) {
          SLOGE("Error creating decrypted block device");
          rc = -1;
          goto errout;
        }
      } else {
        if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
                            real_blkdev, crypto_blkdev, label)) {
          SLOGE("Error creating decrypted block device");
          rc = -1;
          goto errout;
        }
      }
    }
  }

  if (rc == 0) {
    crypt_ftr->failed_decrypt_count = 0;
    if (orig_failed_decrypt_count != 0) {
      put_crypt_ftr_and_key(crypt_ftr);
    }

    /* Save the name of the crypto block device
     * so we can mount it when restarting the framework. */
    property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
    master_key_saved = 1;
  }

 errout:
  return rc;
}
#endif


static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
                                   const char *passwd, const char *mount_point, const char *label)
{
  /* Allocate enough space for a 256 bit key, but we may use less */
  unsigned char decrypted_master_key[32];
  char crypto_blkdev[MAXPATHLEN];
  char real_blkdev[MAXPATHLEN];
  char tmp_mount_point[64];
  unsigned int orig_failed_decrypt_count;
  int rc;
  int use_keymaster = 0;
  int upgrade = 0;
  unsigned char* intermediate_key = 0;
  size_t intermediate_key_size = 0;
  int N = 1 << crypt_ftr->N_factor;
  int r = 1 << crypt_ftr->r_factor;
  int p = 1 << crypt_ftr->p_factor;

  SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
  orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;

  if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
    if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr,
                           &intermediate_key, &intermediate_key_size)) {
      SLOGE("Failed to decrypt master key\n");
      rc = -1;
      goto errout;
    }
  }

  fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));

  // Create crypto block device - all (non fatal) code paths
  // need it
  if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
                            real_blkdev, crypto_blkdev, label)) {
     SLOGE("Error creating decrypted block device\n");
     rc = -1;
     goto errout;
  }

  /* Work out if the problem is the password or the data */
  unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->
                                                 scrypted_intermediate_key)];

  rc = crypto_scrypt(intermediate_key, intermediate_key_size,
                     crypt_ftr->salt, sizeof(crypt_ftr->salt),
                     N, r, p, scrypted_intermediate_key,
                     sizeof(scrypted_intermediate_key));

  // Does the key match the crypto footer?
  if (rc == 0 && memcmp(scrypted_intermediate_key,
                        crypt_ftr->scrypted_intermediate_key,
                        sizeof(scrypted_intermediate_key)) == 0) {
    SLOGI("Password matches");
    rc = 0;
  } else {
    /* Try mounting the file system anyway, just in case the problem's with
     * the footer, not the key. */
    snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt",
             mount_point);
    mkdir(tmp_mount_point, 0755);
    if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
      SLOGE("Error temp mounting decrypted block device\n");
      delete_crypto_blk_dev(label);

      rc = ++crypt_ftr->failed_decrypt_count;
      put_crypt_ftr_and_key(crypt_ftr);
    } else {
      /* Success! */
      SLOGI("Password did not match but decrypted drive mounted - continue");
      umount(tmp_mount_point);
      rc = 0;
    }
  }

  if (rc == 0) {
    crypt_ftr->failed_decrypt_count = 0;
    if (orig_failed_decrypt_count != 0) {
      put_crypt_ftr_and_key(crypt_ftr);
    }

    /* Save the name of the crypto block device
     * so we can mount it when restarting the framework. */
    property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);

    /* Also save a the master key so we can reencrypted the key
     * the key when we want to change the password on it. */
    memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
    saved_mount_point = strdup(mount_point);
    master_key_saved = 1;
    SLOGD("%s(): Master key saved\n", __FUNCTION__);
    rc = 0;

    // Upgrade if we're not using the latest KDF.
    use_keymaster = keymaster_check_compatibility();
    if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
        // Don't allow downgrade
    } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
        crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
        upgrade = 1;
    } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
        crypt_ftr->kdf_type = KDF_SCRYPT;
        upgrade = 1;
    }

    if (upgrade) {
        rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
                                crypt_ftr->master_key, crypt_ftr, true);
        if (!rc) {
            rc = put_crypt_ftr_and_key(crypt_ftr);
        }
        SLOGD("Key Derivation Function upgrade: rc=%d\n", rc);

        // Do not fail even if upgrade failed - machine is bootable
        // Note that if this code is ever hit, there is a *serious* problem
        // since KDFs should never fail. You *must* fix the kdf before
        // proceeding!
        if (rc) {
          SLOGW("Upgrade failed with error %d,"
                " but continuing with previous state",
                rc);
          rc = 0;
        }
    }
  }

 errout:
  if (intermediate_key) {
    memset(intermediate_key, 0, intermediate_key_size);
    free(intermediate_key);
  }
  return rc;
}

/*
 * Called by vold when it's asked to mount an encrypted external
 * storage volume. The incoming partition has no crypto header/footer,
 * as any metadata is been stored in a separate, small partition.
 *
 * out_crypto_blkdev must be MAXPATHLEN.
 */
int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev,
        const unsigned char* key, int keysize, char* out_crypto_blkdev) {
    int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC);
    if (fd == -1) {
        SLOGE("Failed to open %s: %s", real_blkdev, strerror(errno));
        return -1;
    }

    unsigned long nr_sec = 0;
    get_blkdev_size(fd, &nr_sec);
    close(fd);

    if (nr_sec == 0) {
        SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno));
        return -1;
    }

    struct crypt_mnt_ftr ext_crypt_ftr;
    memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr));
    ext_crypt_ftr.fs_size = nr_sec;
    ext_crypt_ftr.keysize = keysize;
    strlcpy((char*) ext_crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256",
            MAX_CRYPTO_TYPE_NAME_LEN);

    return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev,
            out_crypto_blkdev, label);
}

/*
 * Called by vold when it's asked to unmount an encrypted external
 * storage volume.
 */
int cryptfs_revert_ext_volume(const char* label) {
    return delete_crypto_blk_dev((char*) label);
}

int cryptfs_crypto_complete(void)
{
  return do_crypto_complete("/data");
}

int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr)
{
    char encrypted_state[PROPERTY_VALUE_MAX];
    property_get("ro.crypto.state", encrypted_state, "");
    if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
        SLOGE("encrypted fs already validated or not running with encryption,"
              " aborting");
        return -1;
    }

    if (get_crypt_ftr_and_key(crypt_ftr)) {
        SLOGE("Error getting crypt footer and key");
        return -1;
    }

    return 0;
}

#ifdef CONFIG_HW_DISK_ENCRYPTION
int cryptfs_check_passwd_hw(const char* passwd)
{
    struct crypt_mnt_ftr crypt_ftr;
    int rc;
    unsigned char master_key[KEY_LEN_BYTES];

    /* get key */
    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Error getting crypt footer and key");
        return -1;
    }

    /*
     * in case of manual encryption (from GUI), the encryption is done with
     * default password
     */
    if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) {
        /* compare scrypted_intermediate_key with stored scrypted_intermediate_key
         * which was created with actual password before reboot.
         */
        rc = cryptfs_get_master_key(&crypt_ftr, passwd, master_key);
        if (rc) {
            SLOGE("password doesn't match");
            rc = ++crypt_ftr.failed_decrypt_count;
            put_crypt_ftr_and_key(&crypt_ftr);
            return rc;
        }

        rc = test_mount_hw_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD,
            DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);

        if (rc) {
            SLOGE("Default password did not match on reboot encryption");
            return rc;
        }

        crypt_ftr.flags &= ~CRYPT_FORCE_COMPLETE;
        put_crypt_ftr_and_key(&crypt_ftr);
        rc = cryptfs_changepw(crypt_ftr.crypt_type, DEFAULT_PASSWORD, passwd);
        if (rc) {
            SLOGE("Could not change password on reboot encryption");
            return rc;
        }
    } else
        rc = test_mount_hw_encrypted_fs(&crypt_ftr, passwd,
            DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);

    if (crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
        cryptfs_clear_password();
        password = strdup(passwd);
        struct timespec now;
        clock_gettime(CLOCK_BOOTTIME, &now);
        password_expiry_time = now.tv_sec + password_max_age_seconds;
    }

    return rc;
}
#endif

int cryptfs_check_passwd(const char *passwd)
{
    SLOGI("cryptfs_check_passwd");
    if (e4crypt_is_native()) {
        SLOGE("cryptfs_check_passwd not valid for file encryption");
        return -1;
    }

    struct crypt_mnt_ftr crypt_ftr;
    int rc;

    rc = check_unmounted_and_get_ftr(&crypt_ftr);
    if (rc) {
        SLOGE("Could not get footer");
        return rc;
    }

#ifdef CONFIG_HW_DISK_ENCRYPTION
    if (is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name))
        return cryptfs_check_passwd_hw(passwd);
#endif

    rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
                                 DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);

    if (rc) {
        SLOGE("Password did not match");
        return rc;
    }

    if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) {
        // Here we have a default actual password but a real password
        // we must test against the scrypted value
        // First, we must delete the crypto block device that
        // test_mount_encrypted_fs leaves behind as a side effect
        delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);
        rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD,
                                     DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE);
        if (rc) {
            SLOGE("Default password did not match on reboot encryption");
            return rc;
        }

        crypt_ftr.flags &= ~CRYPT_FORCE_COMPLETE;
        put_crypt_ftr_and_key(&crypt_ftr);
        rc = cryptfs_changepw(crypt_ftr.crypt_type, DEFAULT_PASSWORD, passwd);
        if (rc) {
            SLOGE("Could not change password on reboot encryption");
            return rc;
        }
    }

    if (crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
        cryptfs_clear_password();
        password = strdup(passwd);
        struct timespec now;
        clock_gettime(CLOCK_BOOTTIME, &now);
        password_expiry_time = now.tv_sec + password_max_age_seconds;
    }

    return rc;
}

int cryptfs_verify_passwd(char *passwd)
{
    struct crypt_mnt_ftr crypt_ftr;
    /* Allocate enough space for a 256 bit key, but we may use less */
    unsigned char decrypted_master_key[32];
    char encrypted_state[PROPERTY_VALUE_MAX];
    int rc;

    property_get("ro.crypto.state", encrypted_state, "");
    if (strcmp(encrypted_state, "encrypted") ) {
        SLOGE("device not encrypted, aborting");
        return -2;
    }

    if (!master_key_saved) {
        SLOGE("encrypted fs not yet mounted, aborting");
        return -1;
    }

    if (!saved_mount_point) {
        SLOGE("encrypted fs failed to save mount point, aborting");
        return -1;
    }

    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Error getting crypt footer and key\n");
        return -1;
    }

    if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
        /* If the device has no password, then just say the password is valid */
        rc = 0;
    } else {
#ifdef CONFIG_HW_DISK_ENCRYPTION
        if(is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) {
            if (verify_hw_fde_passwd(passwd, &crypt_ftr) >= 0)
              rc = 0;
            else
              rc = -1;
        } else {
            decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
            if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
                /* They match, the password is correct */
                rc = 0;
            } else {
              /* If incorrect, sleep for a bit to prevent dictionary attacks */
                sleep(1);
                rc = 1;
            }
        }
#else
        decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
        if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
            /* They match, the password is correct */
            rc = 0;
        } else {
            /* If incorrect, sleep for a bit to prevent dictionary attacks */
            sleep(1);
            rc = 1;
        }
#endif
    }

    return rc;
}

/* Initialize a crypt_mnt_ftr structure.  The keysize is
 * defaulted to 16 bytes, and the filesystem size to 0.
 * Presumably, at a minimum, the caller will update the
 * filesystem size and crypto_type_name after calling this function.
 */
static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
{
    off64_t off;

    memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
    ftr->magic = CRYPT_MNT_MAGIC;
    ftr->major_version = CURRENT_MAJOR_VERSION;
    ftr->minor_version = CURRENT_MINOR_VERSION;
    ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
    ftr->keysize = KEY_LEN_BYTES;

    switch (keymaster_check_compatibility()) {
    case 1:
        ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
        break;

    case 0:
        ftr->kdf_type = KDF_SCRYPT;
        break;

    default:
        SLOGE("keymaster_check_compatibility failed");
        return -1;
    }

    get_device_scrypt_params(ftr);

    ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
    if (get_crypt_ftr_info(NULL, &off) == 0) {
        ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
        ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET +
                                    ftr->persist_data_size;
    }

    return 0;
}

static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
{
    const char *args[10];
    char size_str[32]; /* Must be large enough to hold a %lld and null byte */
    int num_args;
    int status;
    int tmp;
    int rc = -1;

    if (type == EXT4_FS) {
#ifdef TARGET_USES_MKE2FS
        args[0] = "/system/bin/mke2fs";
        args[1] = "-M";
        args[2] = "/data";
        args[3] = "-b";
        args[4] = "4096";
        args[5] = "-t";
        args[6] = "ext4";
        args[7] = crypto_blkdev;
        snprintf(size_str, sizeof(size_str), "%" PRId64, size / (4096 / 512));
        args[8] = size_str;
        num_args = 9;
#else
        args[0] = "/system/bin/make_ext4fs";
        args[1] = "-a";
        args[2] = "/data";
        args[3] = "-l";
        snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512);
        args[4] = size_str;
        args[5] = crypto_blkdev;
        num_args = 6;
#endif
        SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n",
              args[0], args[1], args[2], args[3], args[4], args[5]);
    } else if (type == F2FS_FS) {
        args[0] = "/system/bin/make_f2fs";
        args[1] = "-f";
        args[2] = "-d1";
        args[3] = "-O";
        args[4] = "encrypt";
        args[5] = "-O";
        args[6] = "quota";
        args[7] = crypto_blkdev;
        snprintf(size_str, sizeof(size_str), "%" PRId64, size);
        args[8] = size_str;
        num_args = 9;
        SLOGI("Making empty filesystem with command %s %s %s %s %s %s %s %s %s\n",
              args[0], args[1], args[2], args[3], args[4], args[5],
              args[6], args[7], args[8]);
    } else {
        SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
        return -1;
    }

    tmp = android_fork_execvp(num_args, (char **)args, &status, false, true);

    if (tmp != 0) {
      SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev);
    } else {
        if (WIFEXITED(status)) {
            if (WEXITSTATUS(status)) {
                SLOGE("Error creating filesystem on %s, exit status %d ",
                      crypto_blkdev, WEXITSTATUS(status));
            } else {
                SLOGD("Successfully created filesystem on %s\n", crypto_blkdev);
                rc = 0;
            }
        } else {
            SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev);
       }
    }

    return rc;
}

#define CRYPTO_ENABLE_WIPE 1
#define CRYPTO_ENABLE_INPLACE 2

#define FRAMEWORK_BOOT_WAIT 60

static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf)
{
    int fd = open(filename, O_RDONLY|O_CLOEXEC);
    if (fd == -1) {
        SLOGE("Error opening file %s", filename);
        return -1;
    }

    char block[CRYPT_INPLACE_BUFSIZE];
    memset(block, 0, sizeof(block));
    if (unix_read(fd, block, sizeof(block)) < 0) {
        SLOGE("Error reading file %s", filename);
        close(fd);
        return -1;
    }

    close(fd);

    SHA256_CTX c;
    SHA256_Init(&c);
    SHA256_Update(&c, block, sizeof(block));
    SHA256_Final(buf, &c);

    return 0;
}

static int get_fs_type(struct fstab_rec *rec)
{
    if (!strcmp(rec->fs_type, "ext4")) {
        return EXT4_FS;
    } else if (!strcmp(rec->fs_type, "f2fs")) {
        return F2FS_FS;
    } else {
        return -1;
    }
}

static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr *crypt_ftr, int how,
                                      char *crypto_blkdev, char *real_blkdev,
                                      int previously_encrypted_upto)
{
    off64_t cur_encryption_done=0, tot_encryption_size=0;
    int rc = -1;

    if (!is_battery_ok_to_start()) {
        SLOGW("Not starting encryption due to low battery");
        return 0;
    }

    /* The size of the userdata partition, and add in the vold volumes below */
    tot_encryption_size = crypt_ftr->fs_size;

    if (how == CRYPTO_ENABLE_WIPE) {
        struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
        int fs_type = get_fs_type(rec);
        if (fs_type < 0) {
            SLOGE("cryptfs_enable: unsupported fs type %s\n", rec->fs_type);
            return -1;
        }
        rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr->fs_size, fs_type);
    } else if (how == CRYPTO_ENABLE_INPLACE) {
        rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev,
                                    crypt_ftr->fs_size, &cur_encryption_done,
                                    tot_encryption_size,
                                    previously_encrypted_upto);

        if (rc == ENABLE_INPLACE_ERR_DEV) {
            /* Hack for b/17898962 */
            SLOGE("cryptfs_enable: crypto block dev failure. Must reboot...\n");
            cryptfs_reboot(reboot);
        }

        if (!rc) {
            crypt_ftr->encrypted_upto = cur_encryption_done;
        }

        if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) {
            /* The inplace routine never actually sets the progress to 100% due
             * to the round down nature of integer division, so set it here */
            property_set("vold.encrypt_progress", "100");
        }
    } else {
        /* Shouldn't happen */
        SLOGE("cryptfs_enable: internal error, unknown option\n");
        rc = -1;
    }

    return rc;
}

int cryptfs_enable_internal(char *howarg, int crypt_type, const char *passwd,
                            int no_ui)
{
    int how = 0;
    char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
    unsigned char decrypted_master_key[KEY_LEN_BYTES];
    int rc=-1, i;
    struct crypt_mnt_ftr crypt_ftr;
    struct crypt_persist_data *pdata;
    char encrypted_state[PROPERTY_VALUE_MAX];
    char lockid[32] = { 0 };
    char key_loc[PROPERTY_VALUE_MAX];
    int num_vols;
    off64_t previously_encrypted_upto = 0;
    bool rebootEncryption = false;
    bool onlyCreateHeader = false;
#ifdef CONFIG_HW_DISK_ENCRYPTION
    unsigned char newpw[32];
    int key_index = 0;
#endif
    int index = 0;

    int fd = -1;

    if (!strcmp(howarg, "wipe")) {
      how = CRYPTO_ENABLE_WIPE;
    } else if (! strcmp(howarg, "inplace")) {
      how = CRYPTO_ENABLE_INPLACE;
    } else {
      /* Shouldn't happen, as CommandListener vets the args */
      goto error_unencrypted;
    }

    if (how == CRYPTO_ENABLE_INPLACE
          && get_crypt_ftr_and_key(&crypt_ftr) == 0) {
        if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
            /* An encryption was underway and was interrupted */
            previously_encrypted_upto = crypt_ftr.encrypted_upto;
            crypt_ftr.encrypted_upto = 0;
            crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;

            /* At this point, we are in an inconsistent state. Until we successfully
               complete encryption, a reboot will leave us broken. So mark the
               encryption failed in case that happens.
               On successfully completing encryption, remove this flag */
            crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;

            put_crypt_ftr_and_key(&crypt_ftr);
        } else if (crypt_ftr.flags & CRYPT_FORCE_ENCRYPTION) {
            if (!check_ftr_sha(&crypt_ftr)) {
                memset(&crypt_ftr, 0, sizeof(crypt_ftr));
                put_crypt_ftr_and_key(&crypt_ftr);
                goto error_unencrypted;
            }

            /* Doing a reboot-encryption*/
            crypt_ftr.flags &= ~CRYPT_FORCE_ENCRYPTION;
            crypt_ftr.flags |= CRYPT_FORCE_COMPLETE;
            rebootEncryption = true;
        }
    }

    property_get("ro.crypto.state", encrypted_state, "");
    if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
        SLOGE("Device is already running encrypted, aborting");
        goto error_unencrypted;
    }

    // TODO refactor fs_mgr_get_crypt_info to get both in one call
    fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
    fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));

    /* Get the size of the real block device */
    fd = open(real_blkdev, O_RDONLY|O_CLOEXEC);
    if (fd == -1) {
        SLOGE("Cannot open block device %s\n", real_blkdev);
        goto error_unencrypted;
    }
    unsigned long nr_sec;
    get_blkdev_size(fd, &nr_sec);
    if (nr_sec == 0) {
        SLOGE("Cannot get size of block device %s\n", real_blkdev);
        goto error_unencrypted;
    }
    close(fd);

    /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
    if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
        unsigned int fs_size_sec, max_fs_size_sec;
        fs_size_sec = get_fs_size(real_blkdev);
        if (fs_size_sec == 0)
            fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev);

        max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);

        if (fs_size_sec > max_fs_size_sec) {
            SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
            goto error_unencrypted;
        }
    }

    /* Get a wakelock as this may take a while, and we don't want the
     * device to sleep on us.  We'll grab a partial wakelock, and if the UI
     * wants to keep the screen on, it can grab a full wakelock.
     */
    snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
    acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);

    /* The init files are setup to stop the class main and late start when
     * vold sets trigger_shutdown_framework.
     */
    property_set("vold.decrypt", "trigger_shutdown_framework");
    SLOGD("Just asked init to shut down class main\n");

    /* Ask vold to unmount all devices that it manages */
    if (vold_unmountAll()) {
        SLOGE("Failed to unmount all vold managed devices");
    }

    /* no_ui means we are being called from init, not settings.
       Now we always reboot from settings, so !no_ui means reboot
     */
    if (!no_ui) {
        /* Try fallback, which is to reboot and try there */
        onlyCreateHeader = true;
        FILE* breadcrumb = fopen(BREADCRUMB_FILE, "we");
        if (breadcrumb == 0) {
            SLOGE("Failed to create breadcrumb file");
            goto error_shutting_down;
        }
        fclose(breadcrumb);
    }

    /* Start the actual work of making an encrypted filesystem */
    /* Initialize a crypt_mnt_ftr for the partition */
    if (previously_encrypted_upto == 0 && !rebootEncryption) {
        if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
            goto error_shutting_down;
        }

        if (!strcmp(key_loc, KEY_IN_FOOTER)) {
            crypt_ftr.fs_size = nr_sec
              - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
        } else {
            crypt_ftr.fs_size = nr_sec;
        }
        /* At this point, we are in an inconsistent state. Until we successfully
           complete encryption, a reboot will leave us broken. So mark the
           encryption failed in case that happens.
           On successfully completing encryption, remove this flag */
        if (onlyCreateHeader) {
            crypt_ftr.flags |= CRYPT_FORCE_ENCRYPTION;
        } else {
            crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
        }
        crypt_ftr.crypt_type = crypt_type;
#ifdef CONFIG_HW_DISK_ENCRYPTION
	strlcpy((char *)crypt_ftr.crypto_type_name, "aes-xts", MAX_CRYPTO_TYPE_NAME_LEN);
#else
        strlcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256", MAX_CRYPTO_TYPE_NAME_LEN);
#endif

        /* Make an encrypted master key */
        if (create_encrypted_random_key(onlyCreateHeader ? DEFAULT_PASSWORD : passwd,
                                        crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
            SLOGE("Cannot create encrypted master key\n");
            goto error_shutting_down;
        }

        /* Replace scrypted intermediate key if we are preparing for a reboot */
        if (onlyCreateHeader) {
            unsigned char fake_master_key[KEY_LEN_BYTES];
            unsigned char encrypted_fake_master_key[KEY_LEN_BYTES];
            memset(fake_master_key, 0, sizeof(fake_master_key));
            encrypt_master_key(passwd, crypt_ftr.salt, fake_master_key,
                               encrypted_fake_master_key, &crypt_ftr, true);
        }

        /* Write the key to the end of the partition */
        put_crypt_ftr_and_key(&crypt_ftr);

        /* If any persistent data has been remembered, save it.
         * If none, create a valid empty table and save that.
         */
        if (!persist_data) {
            pdata = (crypt_persist_data *)malloc(CRYPT_PERSIST_DATA_SIZE);
           if (pdata) {
               init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
               persist_data = pdata;
           }
        }
        if (persist_data) {
            save_persistent_data();
        }
    }

    /* When encryption triggered from settings, encryption starts after reboot.
       So set the encryption key when the actual encryption starts.
     */
#ifdef CONFIG_HW_DISK_ENCRYPTION
    if (previously_encrypted_upto == 0) {
        if (!rebootEncryption)
            clear_hw_device_encryption_key();

        if (get_keymaster_hw_fde_passwd(
                         onlyCreateHeader ? DEFAULT_PASSWORD : passwd,
                         newpw, crypt_ftr.salt, &crypt_ftr))
            key_index = set_hw_device_encryption_key(
                         onlyCreateHeader ? DEFAULT_PASSWORD : passwd,
                         (char*)crypt_ftr.crypto_type_name);
        else
            key_index = set_hw_device_encryption_key((const char*)newpw,
                                (char*) crypt_ftr.crypto_type_name);
        if (key_index < 0)
            goto error_shutting_down;

        crypt_ftr.flags |= CRYPT_ASCII_PASSWORD_UPDATED;
        put_crypt_ftr_and_key(&crypt_ftr);
    }
#endif

    if (onlyCreateHeader) {
        sleep(2);
        cryptfs_reboot(reboot);
    }

    /* Do extra work for a better UX when doing the long inplace encryption */
    if (how == CRYPTO_ENABLE_INPLACE) {
        /* Now that /data is unmounted, we need to mount a tmpfs
         * /data, set a property saying we're doing inplace encryption,
         * and restart the framework.
         */
        if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
            goto error_shutting_down;
        }
        /* Tells the framework that inplace encryption is starting */
        property_set("vold.encrypt_progress", "0");

        /* restart the framework. */
        /* Create necessary paths on /data */
        prep_data_fs();

        /* Ugh, shutting down the framework is not synchronous, so until it
         * can be fixed, this horrible hack will wait a moment for it all to
         * shut down before proceeding.  Without it, some devices cannot
         * restart the graphics services.
         */
        sleep(2);

        /* startup service classes main and late_start */
        property_set("vold.decrypt", "trigger_restart_min_framework");
        SLOGD("Just triggered restart_min_framework\n");

        /* OK, the framework is restarted and will soon be showing a
         * progress bar.  Time to setup an encrypted mapping, and
         * either write a new filesystem, or encrypt in place updating
         * the progress bar as we work.
         */
    }

    decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
#ifdef CONFIG_HW_DISK_ENCRYPTION
    if (is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name) && is_ice_enabled())
      create_crypto_blk_dev(&crypt_ftr, (unsigned char*)&key_index, real_blkdev, crypto_blkdev,
                          CRYPTO_BLOCK_DEVICE);
    else
      create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
                          CRYPTO_BLOCK_DEVICE);
#else
    create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
                          CRYPTO_BLOCK_DEVICE);
#endif

    /* If we are continuing, check checksums match */
    rc = 0;
    if (previously_encrypted_upto) {
        __le8 hash_first_block[SHA256_DIGEST_LENGTH];
        rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block);

        if (!rc && memcmp(hash_first_block, crypt_ftr.hash_first_block,
                          sizeof(hash_first_block)) != 0) {
            SLOGE("Checksums do not match - trigger wipe");
            rc = -1;
        }
    }

    if (!rc) {
        rc = cryptfs_enable_all_volumes(&crypt_ftr, how,
                                        crypto_blkdev, real_blkdev,
                                        previously_encrypted_upto);
    }

    /* Calculate checksum if we are not finished */
    if (!rc && how == CRYPTO_ENABLE_INPLACE
            && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
        rc = cryptfs_SHA256_fileblock(crypto_blkdev,
                                      crypt_ftr.hash_first_block);
        if (rc) {
            SLOGE("Error calculating checksum for continuing encryption");
            rc = -1;
        }
    }

    /* Undo the dm-crypt mapping whether we succeed or not */
    delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE);

    if (! rc) {
        /* Success */
        crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE;

        if (how == CRYPTO_ENABLE_INPLACE
              && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
            SLOGD("Encrypted up to sector %lld - will continue after reboot",
                  crypt_ftr.encrypted_upto);
            crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
        }

        put_crypt_ftr_and_key(&crypt_ftr);

        if (how == CRYPTO_ENABLE_WIPE
              || crypt_ftr.encrypted_upto == crypt_ftr.fs_size) {
          char value[PROPERTY_VALUE_MAX];
          property_get("ro.crypto.state", value, "");
          if (!strcmp(value, "")) {
            /* default encryption - continue first boot sequence */
            property_set("ro.crypto.state", "encrypted");
            property_set("ro.crypto.type", "block");
            release_wake_lock(lockid);
            if (rebootEncryption && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
                // Bring up cryptkeeper that will check the password and set it
                property_set("vold.decrypt", "trigger_shutdown_framework");
                sleep(2);
                property_set("vold.encrypt_progress", "");
                cryptfs_trigger_restart_min_framework();
            } else {
                cryptfs_check_passwd(DEFAULT_PASSWORD);
                cryptfs_restart_internal(1);
            }
            return 0;
          } else {
            sleep(2); /* Give the UI a chance to show 100% progress */
            cryptfs_reboot(reboot);
          }
        } else {
            sleep(2); /* Partially encrypted, ensure writes flushed to ssd */
            cryptfs_reboot(shutdown);
        }
    } else {
        char value[PROPERTY_VALUE_MAX];

        property_get("ro.vold.wipe_on_crypt_fail", value, "0");
        if (!strcmp(value, "1")) {
            /* wipe data if encryption failed */
            SLOGE("encryption failed - rebooting into recovery to wipe data\n");
            std::string err;
            const std::vector<std::string> options = {
                "--wipe_data\n--reason=cryptfs_enable_internal\n"
            };
            if (!write_bootloader_message(options, &err)) {
                SLOGE("could not write bootloader message: %s", err.c_str());
            }
            cryptfs_reboot(recovery);
        } else {
            /* set property to trigger dialog */
            property_set("vold.encrypt_progress", "error_partially_encrypted");
            release_wake_lock(lockid);
        }
        return -1;
    }

    /* hrm, the encrypt step claims success, but the reboot failed.
     * This should not happen.
     * Set the property and return.  Hope the framework can deal with it.
     */
    property_set("vold.encrypt_progress", "error_reboot_failed");
    release_wake_lock(lockid);
    return rc;

error_unencrypted:
    property_set("vold.encrypt_progress", "error_not_encrypted");
    if (lockid[0]) {
        release_wake_lock(lockid);
    }
    return -1;

error_shutting_down:
    /* we failed, and have not encrypted anthing, so the users's data is still intact,
     * but the framework is stopped and not restarted to show the error, so it's up to
     * vold to restart the system.
     */
    SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
    cryptfs_reboot(reboot);

    /* shouldn't get here */
    property_set("vold.encrypt_progress", "error_shutting_down");
    if (lockid[0]) {
        release_wake_lock(lockid);
    }
    return -1;
}

int cryptfs_enable(char *howarg, int type, char *passwd, int no_ui)
{
    return cryptfs_enable_internal(howarg, type, passwd, no_ui);
}

int cryptfs_enable_default(char *howarg, int no_ui)
{
    return cryptfs_enable_internal(howarg, CRYPT_TYPE_DEFAULT,
                          DEFAULT_PASSWORD, no_ui);
}

int cryptfs_changepw(int crypt_type, const char *currentpw, const char *newpw)
{
    if (e4crypt_is_native()) {
        SLOGE("cryptfs_changepw not valid for file encryption");
        return -1;
    }

    struct crypt_mnt_ftr crypt_ftr;
    int rc;

    /* This is only allowed after we've successfully decrypted the master key */
    if (!master_key_saved) {
        SLOGE("Key not saved, aborting");
        return -1;
    }

    if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
        SLOGE("Invalid crypt_type %d", crypt_type);
        return -1;
    }

    /* get key */
    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Error getting crypt footer and key");
        return -1;
    }

#ifdef CONFIG_HW_DISK_ENCRYPTION
    if(is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name))
        return  cryptfs_changepw_hw_fde(crypt_type, currentpw, newpw);
    else {
        crypt_ftr.crypt_type = crypt_type;

        rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ?
                                     DEFAULT_PASSWORD : newpw,
                                     crypt_ftr.salt,
                                     saved_master_key,
                                     crypt_ftr.master_key,
                                     &crypt_ftr, false);
        if (rc) {
            SLOGE("Encrypt master key failed: %d", rc);
            return -1;
        }
        /* save the key */
        put_crypt_ftr_and_key(&crypt_ftr);

        return 0;
    }
#else
    crypt_ftr.crypt_type = crypt_type;

    rc = encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD
                                                        : newpw,
                       crypt_ftr.salt,
                       saved_master_key,
                       crypt_ftr.master_key,
                       &crypt_ftr, false);
    if (rc) {
        SLOGE("Encrypt master key failed: %d", rc);
        return -1;
    }
    /* save the key */
    put_crypt_ftr_and_key(&crypt_ftr);

    return 0;
#endif
}

#ifdef CONFIG_HW_DISK_ENCRYPTION
int cryptfs_changepw_hw_fde(int crypt_type, const char *currentpw, const char *newpw)
{
    struct crypt_mnt_ftr crypt_ftr;
    int rc;
    int previous_type;

    /* get key */
    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Error getting crypt footer and key");
        return -1;
    }

    previous_type = crypt_ftr.crypt_type;
    int rc1;
    unsigned char tmp_curpw[32] = {0};
    rc1 = get_keymaster_hw_fde_passwd(crypt_ftr.crypt_type == CRYPT_TYPE_DEFAULT ?
                                      DEFAULT_PASSWORD : currentpw, tmp_curpw,
                                      crypt_ftr.salt, &crypt_ftr);

    crypt_ftr.crypt_type = crypt_type;

    int ret, rc2;
    unsigned char tmp_newpw[32] = {0};

    rc2 = get_keymaster_hw_fde_passwd(crypt_type == CRYPT_TYPE_DEFAULT ?
                                DEFAULT_PASSWORD : newpw , tmp_newpw,
                                crypt_ftr.salt, &crypt_ftr);

    if (is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) {
        ret = update_hw_device_encryption_key(
                rc1 ? (previous_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD : currentpw) : (const char*)tmp_curpw,
                rc2 ? (crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD : newpw): (const char*)tmp_newpw,
                                    (char*)crypt_ftr.crypto_type_name);
        if (ret) {
            SLOGE("Error updating device encryption hardware key ret %d", ret);
            return -1;
        } else {
            SLOGI("Encryption hardware key updated");
        }
    }

    /* save the key */
    put_crypt_ftr_and_key(&crypt_ftr);
    return 0;
}
#endif

static unsigned int persist_get_max_entries(int encrypted) {
    struct crypt_mnt_ftr crypt_ftr;
    unsigned int dsize;
    unsigned int max_persistent_entries;

    /* If encrypted, use the values from the crypt_ftr, otherwise
     * use the values for the current spec.
     */
    if (encrypted) {
        if (get_crypt_ftr_and_key(&crypt_ftr)) {
            return -1;
        }
        dsize = crypt_ftr.persist_data_size;
    } else {
        dsize = CRYPT_PERSIST_DATA_SIZE;
    }

    max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) /
        sizeof(struct crypt_persist_entry);

    return max_persistent_entries;
}

static int persist_get_key(const char *fieldname, char *value)
{
    unsigned int i;

    if (persist_data == NULL) {
        return -1;
    }
    for (i = 0; i < persist_data->persist_valid_entries; i++) {
        if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
            /* We found it! */
            strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
            return 0;
        }
    }

    return -1;
}

static int persist_set_key(const char *fieldname, const char *value, int encrypted)
{
    unsigned int i;
    unsigned int num;
    unsigned int max_persistent_entries;

    if (persist_data == NULL) {
        return -1;
    }

    max_persistent_entries = persist_get_max_entries(encrypted);

    num = persist_data->persist_valid_entries;

    for (i = 0; i < num; i++) {
        if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
            /* We found an existing entry, update it! */
            memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
            strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
            return 0;
        }
    }

    /* We didn't find it, add it to the end, if there is room */
    if (persist_data->persist_valid_entries < max_persistent_entries) {
        memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
        strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
        strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
        persist_data->persist_valid_entries++;
        return 0;
    }

    return -1;
}

/**
 * Test if key is part of the multi-entry (field, index) sequence. Return non-zero if key is in the
 * sequence and its index is greater than or equal to index. Return 0 otherwise.
 */
static int match_multi_entry(const char *key, const char *field, unsigned index) {
    unsigned int field_len;
    unsigned int key_index;
    field_len = strlen(field);

    if (index == 0) {
        // The first key in a multi-entry field is just the filedname itself.
        if (!strcmp(key, field)) {
            return 1;
        }
    }
    // Match key against "%s_%d" % (field, index)
    if (strlen(key) < field_len + 1 + 1) {
        // Need at least a '_' and a digit.
        return 0;
    }
    if (strncmp(key, field, field_len)) {
        // If the key does not begin with field, it's not a match.
        return 0;
    }
    if (1 != sscanf(&key[field_len],"_%d", &key_index)) {
        return 0;
    }
    return key_index >= index;
}

/*
 * Delete entry/entries from persist_data. If the entries are part of a multi-segment field, all
 * remaining entries starting from index will be deleted.
 * returns PERSIST_DEL_KEY_OK if deletion succeeds,
 * PERSIST_DEL_KEY_ERROR_NO_FIELD if the field does not exist,
 * and PERSIST_DEL_KEY_ERROR_OTHER if error occurs.
 *
 */
static int persist_del_keys(const char *fieldname, unsigned index)
{
    unsigned int i;
    unsigned int j;
    unsigned int num;

    if (persist_data == NULL) {
        return PERSIST_DEL_KEY_ERROR_OTHER;
    }

    num = persist_data->persist_valid_entries;

    j = 0; // points to the end of non-deleted entries.
    // Filter out to-be-deleted entries in place.
    for (i = 0; i < num; i++) {
        if (!match_multi_entry(persist_data->persist_entry[i].key, fieldname, index)) {
            persist_data->persist_entry[j] = persist_data->persist_entry[i];
            j++;
        }
    }

    if (j < num) {
        persist_data->persist_valid_entries = j;
        // Zeroise the remaining entries
        memset(&persist_data->persist_entry[j], 0, (num - j) * sizeof(struct crypt_persist_entry));
        return PERSIST_DEL_KEY_OK;
    } else {
        // Did not find an entry matching the given fieldname
        return PERSIST_DEL_KEY_ERROR_NO_FIELD;
    }
}

static int persist_count_keys(const char *fieldname)
{
    unsigned int i;
    unsigned int count;

    if (persist_data == NULL) {
        return -1;
    }

    count = 0;
    for (i = 0; i < persist_data->persist_valid_entries; i++) {
        if (match_multi_entry(persist_data->persist_entry[i].key, fieldname, 0)) {
            count++;
        }
    }

    return count;
}

/* Return the value of the specified field. */
int cryptfs_getfield(const char *fieldname, char *value, int len)
{
    if (e4crypt_is_native()) {
        SLOGE("Cannot get field when file encrypted");
        return -1;
    }

    char temp_value[PROPERTY_VALUE_MAX];
    /* CRYPTO_GETFIELD_OK is success,
     * CRYPTO_GETFIELD_ERROR_NO_FIELD is value not set,
     * CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL is buffer (as given by len) too small,
     * CRYPTO_GETFIELD_ERROR_OTHER is any other error
     */
    int rc = CRYPTO_GETFIELD_ERROR_OTHER;
    int i;
    char temp_field[PROPERTY_KEY_MAX];

    if (persist_data == NULL) {
        load_persistent_data();
        if (persist_data == NULL) {
            SLOGE("Getfield error, cannot load persistent data");
            goto out;
        }
    }

    // Read value from persistent entries. If the original value is split into multiple entries,
    // stitch them back together.
    if (!persist_get_key(fieldname, temp_value)) {
        // We found it, copy it to the caller's buffer and keep going until all entries are read.
        if (strlcpy(value, temp_value, len) >= (unsigned) len) {
            // value too small
            rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
            goto out;
        }
        rc = CRYPTO_GETFIELD_OK;

        for (i = 1; /* break explicitly */; i++) {
            if (snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, i) >=
                    (int) sizeof(temp_field)) {
                // If the fieldname is very long, we stop as soon as it begins to overflow the
                // maximum field length. At this point we have in fact fully read out the original
                // value because cryptfs_setfield would not allow fields with longer names to be
                // written in the first place.
                break;
            }
            if (!persist_get_key(temp_field, temp_value)) {
                  if (strlcat(value, temp_value, len) >= (unsigned)len) {
                      // value too small.
                      rc = CRYPTO_GETFIELD_ERROR_BUF_TOO_SMALL;
                      goto out;
                  }
            } else {
                // Exhaust all entries.
                break;
            }
        }
    } else {
        /* Sadness, it's not there.  Return the error */
        rc = CRYPTO_GETFIELD_ERROR_NO_FIELD;
    }

out:
    return rc;
}

/* Set the value of the specified field. */
int cryptfs_setfield(const char *fieldname, const char *value)
{
    if (e4crypt_is_native()) {
        SLOGE("Cannot set field when file encrypted");
        return -1;
    }

    char encrypted_state[PROPERTY_VALUE_MAX];
    /* 0 is success, negative values are error */
    int rc = CRYPTO_SETFIELD_ERROR_OTHER;
    int encrypted = 0;
    unsigned int field_id;
    char temp_field[PROPERTY_KEY_MAX];
    unsigned int num_entries;
    unsigned int max_keylen;

    if (persist_data == NULL) {
        load_persistent_data();
        if (persist_data == NULL) {
            SLOGE("Setfield error, cannot load persistent data");
            goto out;
        }
    }

    property_get("ro.crypto.state", encrypted_state, "");
    if (!strcmp(encrypted_state, "encrypted") ) {
        encrypted = 1;
    }

    // Compute the number of entries required to store value, each entry can store up to
    // (PROPERTY_VALUE_MAX - 1) chars
    if (strlen(value) == 0) {
        // Empty value also needs one entry to store.
        num_entries = 1;
    } else {
        num_entries = (strlen(value) + (PROPERTY_VALUE_MAX - 1) - 1) / (PROPERTY_VALUE_MAX - 1);
    }

    max_keylen = strlen(fieldname);
    if (num_entries > 1) {
        // Need an extra "_%d" suffix.
        max_keylen += 1 + log10(num_entries);
    }
    if (max_keylen > PROPERTY_KEY_MAX - 1) {
        rc = CRYPTO_SETFIELD_ERROR_FIELD_TOO_LONG;
        goto out;
    }

    // Make sure we have enough space to write the new value
    if (persist_data->persist_valid_entries + num_entries - persist_count_keys(fieldname) >
        persist_get_max_entries(encrypted)) {
        rc = CRYPTO_SETFIELD_ERROR_VALUE_TOO_LONG;
        goto out;
    }

    // Now that we know persist_data has enough space for value, let's delete the old field first
    // to make up space.
    persist_del_keys(fieldname, 0);

    if (persist_set_key(fieldname, value, encrypted)) {
        // fail to set key, should not happen as we have already checked the available space
        SLOGE("persist_set_key() error during setfield()");
        goto out;
    }

    for (field_id = 1; field_id < num_entries; field_id++) {
        snprintf(temp_field, sizeof(temp_field), "%s_%d", fieldname, field_id);

        if (persist_set_key(temp_field, value + field_id * (PROPERTY_VALUE_MAX - 1), encrypted)) {
            // fail to set key, should not happen as we have already checked the available space.
            SLOGE("persist_set_key() error during setfield()");
            goto out;
        }
    }

    /* If we are running encrypted, save the persistent data now */
    if (encrypted) {
        if (save_persistent_data()) {
            SLOGE("Setfield error, cannot save persistent data");
            goto out;
        }
    }

    rc = CRYPTO_SETFIELD_OK;

out:
    return rc;
}

/* Checks userdata. Attempt to mount the volume if default-
 * encrypted.
 * On success trigger next init phase and return 0.
 * Currently do not handle failure - see TODO below.
 */
int cryptfs_mount_default_encrypted(void)
{
    int crypt_type = cryptfs_get_password_type();
    if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
        SLOGE("Bad crypt type - error");
    } else if (crypt_type != CRYPT_TYPE_DEFAULT) {
        SLOGD("Password is not default - "
              "starting min framework to prompt");
        property_set("vold.decrypt", "trigger_restart_min_framework");
        return 0;
    } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
        SLOGD("Password is default - restarting filesystem");
        cryptfs_restart_internal(0);
        return 0;
    } else {
        SLOGE("Encrypted, default crypt type but can't decrypt");
    }

    /** Corrupt. Allow us to boot into framework, which will detect bad
        crypto when it calls do_crypto_complete, then do a factory reset
     */
    property_set("vold.decrypt", "trigger_restart_min_framework");
    return 0;
}

/* Returns type of the password, default, pattern, pin or password.
 */
int cryptfs_get_password_type(void)
{
    if (e4crypt_is_native()) {
        SLOGE("cryptfs_get_password_type not valid for file encryption");
        return -1;
    }

    struct crypt_mnt_ftr crypt_ftr;

    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        SLOGE("Error getting crypt footer and key\n");
        return -1;
    }

    if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
        return -1;
    }

    return crypt_ftr.crypt_type;
}

const char* cryptfs_get_password()
{
    if (e4crypt_is_native()) {
        SLOGE("cryptfs_get_password not valid for file encryption");
        return 0;
    }

    struct timespec now;
    clock_gettime(CLOCK_BOOTTIME, &now);
    if (now.tv_sec < password_expiry_time) {
        return password;
    } else {
        cryptfs_clear_password();
        return 0;
    }
}

void cryptfs_clear_password()
{
    if (password) {
        size_t len = strlen(password);
        memset(password, 0, len);
        free(password);
        password = 0;
        password_expiry_time = 0;
    }
}

int cryptfs_isConvertibleToFBE()
{
    struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
    return fs_mgr_is_convertible_to_fbe(rec) ? 1 : 0;
}

int cryptfs_create_default_ftr(struct crypt_mnt_ftr* crypt_ftr, __attribute__((unused))int key_length)
{
    if (cryptfs_init_crypt_mnt_ftr(crypt_ftr)) {
        SLOGE("Failed to initialize crypt_ftr");
        return -1;
    }

    if (create_encrypted_random_key(DEFAULT_PASSWORD, crypt_ftr->master_key,
                                    crypt_ftr->salt, crypt_ftr)) {
        SLOGE("Cannot create encrypted master key\n");
        return -1;
    }

    //crypt_ftr->keysize = key_length / 8;
    return 0;
}

int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password,
                           unsigned char* master_key)
{
    int rc;

    unsigned char* intermediate_key = 0;
    size_t intermediate_key_size = 0;

    if (password == 0 || *password == 0) {
        password = DEFAULT_PASSWORD;
    }

    rc = decrypt_master_key(password, master_key, ftr, &intermediate_key,
                            &intermediate_key_size);

    if (rc) {
        SLOGE("Can't calculate intermediate key");
        return rc;
    }

    int N = 1 << ftr->N_factor;
    int r = 1 << ftr->r_factor;
    int p = 1 << ftr->p_factor;

    unsigned char scrypted_intermediate_key[sizeof(ftr->scrypted_intermediate_key)];

    rc = crypto_scrypt(intermediate_key, intermediate_key_size,
                       ftr->salt, sizeof(ftr->salt), N, r, p,
                       scrypted_intermediate_key,
                       sizeof(scrypted_intermediate_key));

    free(intermediate_key);

    if (rc) {
        SLOGE("Can't scrypt intermediate key");
        return rc;
    }

    return memcmp(scrypted_intermediate_key, ftr->scrypted_intermediate_key,
                  intermediate_key_size);
}

int cryptfs_set_password(struct crypt_mnt_ftr* ftr, const char* password,
                         const unsigned char* master_key)
{
    return encrypt_master_key(password, ftr->salt, master_key, ftr->master_key,
                              ftr, true);
}

void cryptfs_get_file_encryption_modes(const char **contents_mode_ret,
                                       const char **filenames_mode_ret)
{
    struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
    fs_mgr_get_file_encryption_modes(rec, contents_mode_ret, filenames_mode_ret);
}