summaryrefslogtreecommitdiffstats
path: root/include/keymaster/android_keymaster_utils.h
blob: 9f0cf6a0af25246c59f71c469f1f83bf1915deac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
#define SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_

#include <stdint.h>
#include <string.h>
#include <time.h>  // for time_t.

#include <UniquePtr.h>

#include <hardware/keymaster_defs.h>
#include <keymaster/serializable.h>

namespace keymaster {

/**
 * Convert the specified time value into "Java time", which is a signed 64-bit integer representing
 * elapsed milliseconds since Jan 1, 1970.
 */
inline int64_t java_time(time_t time) {
    // The exact meaning of a time_t value is implementation-dependent.  If this code is ported to a
    // platform that doesn't define it as "seconds since Jan 1, 1970 UTC", this function will have
    // to be revised.
    return time * 1000;
}

/*
 * Array Manipulation functions.  This set of templated inline functions provides some nice tools
 * for operating on c-style arrays.  C-style arrays actually do have a defined size associated with
 * them, as long as they are not allowed to decay to a pointer.  These template methods exploit this
 * to allow size-based array operations without explicitly specifying the size.  If passed a pointer
 * rather than an array, they'll fail to compile.
 */

/**
 * Return the size in bytes of the array \p a.
 */
template <typename T, size_t N> inline size_t array_size(const T (&a)[N]) {
    return sizeof(a);
}

/**
 * Return the number of elements in array \p a.
 */
template <typename T, size_t N> inline size_t array_length(const T (&)[N]) {
    return N;
}

/**
 * Duplicate the array \p a.  The memory for the new array is allocated and the caller takes
 * responsibility.
 */
template <typename T> inline T* dup_array(const T* a, size_t n) {
    T* dup = new (std::nothrow) T[n];
    if (dup)
        for (size_t i = 0; i < n; ++i)
            dup[i] = a[i];
    return dup;
}

/**
 * Duplicate the array \p a.  The memory for the new array is allocated and the caller takes
 * responsibility.  Note that the dup is necessarily returned as a pointer, so size is lost.  Call
 * array_length() on the original array to discover the size.
 */
template <typename T, size_t N> inline T* dup_array(const T (&a)[N]) {
    return dup_array(a, N);
}

/**
 * Duplicate the buffer \p buf.  The memory for the new buffer is allocated and the caller takes
 * responsibility.
 */
uint8_t* dup_buffer(const void* buf, size_t size);

/**
 * Copy the contents of array \p arr to \p dest.
 */
template <typename T, size_t N> inline void copy_array(const T (&arr)[N], T* dest) {
    for (size_t i = 0; i < N; ++i)
        dest[i] = arr[i];
}

/**
 * Search array \p a for value \p val, returning true if found.  Note that this function is
 * early-exit, meaning that it should not be used in contexts where timing analysis attacks could be
 * a concern.
 */
template <typename T, size_t N> inline bool array_contains(const T (&a)[N], T val) {
    for (size_t i = 0; i < N; ++i) {
        if (a[i] == val) {
            return true;
        }
    }
    return false;
}

/**
 * Variant of memset() that uses GCC-specific pragmas to disable optimizations, so effect is not
 * optimized away.  This is important because we often need to wipe blocks of sensitive data from
 * memory.  As an additional convenience, this implementation avoids writing to NULL pointers.
 */
#ifdef __clang__
#define OPTNONE __attribute__((optnone))
#else  // not __clang__
#define OPTNONE __attribute__((optimize("O0")))
#endif  // not __clang__
inline OPTNONE void* memset_s(void* s, int c, size_t n) {
    if (!s)
        return s;
    return memset(s, c, n);
}
#undef OPTNONE

/**
 * Variant of memcmp that has the same runtime regardless of whether the data matches (i.e. doesn't
 * short-circuit).  Not an exact equivalent to memcmp because it doesn't return <0 if p1 < p2, just
 * 0 for match and non-zero for non-match.
 */
int memcmp_s(const void* p1, const void* p2, size_t length);

/**
 * Eraser clears buffers.  Construct it with a buffer or object and the destructor will ensure that
 * it is zeroed.
 */
class Eraser {
  public:
    /* Not implemented.  If this gets used, we want a link error. */
    template <typename T> explicit Eraser(T* t);

    template <typename T>
    explicit Eraser(T& t) : buf_(reinterpret_cast<uint8_t*>(&t)), size_(sizeof(t)) {}

    template <size_t N> explicit Eraser(uint8_t (&arr)[N]) : buf_(arr), size_(N) {}

    Eraser(void* buf, size_t size) : buf_(static_cast<uint8_t*>(buf)), size_(size) {}
    ~Eraser() { memset_s(buf_, 0, size_); }

  private:
    Eraser(const Eraser&);
    void operator=(const Eraser&);

    uint8_t* buf_;
    size_t size_;
};

/**
 * ArrayWrapper is a trivial wrapper around a C-style array that provides begin() and end()
 * methods. This is primarily to facilitate range-based iteration on arrays.  It does not copy, nor
 * does it take ownership; it just holds pointers.
 */
template <typename T> class ArrayWrapper {
  public:
    ArrayWrapper(T* array, size_t size) : begin_(array), end_(array + size) {}

    T* begin() { return begin_; }
    T* end() { return end_; }

  private:
    T* begin_;
    T* end_;
};
template <typename T> ArrayWrapper<T> array_range(T* begin, size_t length) {
    return ArrayWrapper<T>(begin, length);
}

/**
 * Convert any unsigned integer from network to host order.  We implement this here rather than
 * using the functions from arpa/inet.h because the TEE doesn't have inet.h.  This isn't the most
 * efficient implementation, but the compiler should unroll the loop and tighten it up.
 */
template <typename T> T ntoh(T t) {
    const uint8_t* byte_ptr = reinterpret_cast<const uint8_t*>(&t);
    T retval = 0;
    for (size_t i = 0; i < sizeof(t); ++i) {
        retval <<= 8;
        retval |= byte_ptr[i];
    }
    return retval;
}

/**
 * Convert any unsigned integer from host to network order.  We implement this here rather than
 * using the functions from arpa/inet.h because the TEE doesn't have inet.h.  This isn't the most
 * efficient implementation, but the compiler should unroll the loop and tighten it up.
 */
template <typename T> T hton(T t) {
    T retval;
    uint8_t* byte_ptr = reinterpret_cast<uint8_t*>(&retval);
    for (size_t i = sizeof(t); i > 0; --i) {
        byte_ptr[i - 1] = t & 0xFF;
        t >>= 8;
    }
    return retval;
}

/**
 * KeymasterKeyBlob is a very simple extension of the C struct keymaster_key_blob_t.  It manages its
 * own memory, which makes avoiding memory leaks much easier.
 */
struct KeymasterKeyBlob : public keymaster_key_blob_t {
    KeymasterKeyBlob() {
        key_material = nullptr;
        key_material_size = 0;
    }

    KeymasterKeyBlob(const uint8_t* data, size_t size) {
        key_material_size = 0;
        key_material = dup_buffer(data, size);
        if (key_material)
            key_material_size = size;
    }

    explicit KeymasterKeyBlob(size_t size) {
        key_material_size = 0;
        key_material = new (std::nothrow) uint8_t[size];
        if (key_material)
            key_material_size = size;
    }

    explicit KeymasterKeyBlob(const keymaster_key_blob_t& blob) {
        key_material_size = 0;
        key_material = dup_buffer(blob.key_material, blob.key_material_size);
        if (key_material)
            key_material_size = blob.key_material_size;
    }

    KeymasterKeyBlob(const KeymasterKeyBlob& blob) {
        key_material_size = 0;
        key_material = dup_buffer(blob.key_material, blob.key_material_size);
        if (key_material)
            key_material_size = blob.key_material_size;
    }

    void operator=(const KeymasterKeyBlob& blob) {
        Clear();
        key_material = dup_buffer(blob.key_material, blob.key_material_size);
        key_material_size = blob.key_material_size;
    }

    ~KeymasterKeyBlob() { Clear(); }

    const uint8_t* begin() const { return key_material; }
    const uint8_t* end() const { return key_material + key_material_size; }

    void Clear() {
        memset_s(const_cast<uint8_t*>(key_material), 0, key_material_size);
        delete[] key_material;
        key_material = nullptr;
        key_material_size = 0;
    }

    const uint8_t* Reset(size_t new_size) {
        Clear();
        key_material = new (std::nothrow) uint8_t[new_size];
        if (key_material)
            key_material_size = new_size;
        return key_material;
    }

    // The key_material in keymaster_key_blob_t is const, which is the right thing in most
    // circumstances, but occasionally we do need to write into it.  This method exposes a non-const
    // version of the pointer.  Use sparingly.
    uint8_t* writable_data() { return const_cast<uint8_t*>(key_material); }

    keymaster_key_blob_t release() {
        keymaster_key_blob_t tmp = {key_material, key_material_size};
        key_material = nullptr;
        key_material_size = 0;
        return tmp;
    }

    size_t SerializedSize() const { return sizeof(uint32_t) + key_material_size; }
    uint8_t* Serialize(uint8_t* buf, const uint8_t* end) const {
        return append_size_and_data_to_buf(buf, end, key_material, key_material_size);
    }

    bool Deserialize(const uint8_t** buf_ptr, const uint8_t* end) {
        Clear();
        UniquePtr<uint8_t[]> tmp;
        if (!copy_size_and_data_from_buf(buf_ptr, end, &key_material_size, &tmp)) {
            key_material = nullptr;
            key_material_size = 0;
            return false;
        }
        key_material = tmp.release();
        return true;
    }
};

struct Characteristics_Delete {
    void operator()(keymaster_key_characteristics_t* p) {
        keymaster_free_characteristics(p);
        free(p);
    }
};

struct Malloc_Delete {
    void operator()(void* p) { free(p); }
};

}  // namespace keymaster

#endif  // SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_