/*------------------------------------------------------------------------ / OCB Version 3 Reference Code (Optimized C) Last modified 12-JUN-2013 /------------------------------------------------------------------------- / Copyright (c) 2013 Ted Krovetz. / / Permission to use, copy, modify, and/or distribute this software for any / purpose with or without fee is hereby granted, provided that the above / copyright notice and this permission notice appear in all copies. / / THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES / WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF / MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR / ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES / WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN / ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF / OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. / / Phillip Rogaway holds patents relevant to OCB. See the following for / his patent grant: http://www.cs.ucdavis.edu/~rogaway/ocb/grant.htm / / Special thanks to Keegan McAllister for suggesting several good improvements / / Comments are welcome: Ted Krovetz - Dedicated to Laurel K /------------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ /* Usage notes */ /* ----------------------------------------------------------------------- */ /* - When AE_PENDING is passed as the 'final' parameter of any function, / the length parameters must be a multiple of (BPI*16). / - When available, SSE or AltiVec registers are used to manipulate data. / So, when on machines with these facilities, all pointers passed to / any function should be 16-byte aligned. / - Plaintext and ciphertext pointers may be equal (ie, plaintext gets / encrypted in-place), but no other pair of pointers may be equal. / - This code assumes all x86 processors have SSE2 and SSSE3 instructions / when compiling under MSVC. If untrue, alter the #define. / - This code is tested for C99 and recent versions of GCC and MSVC. */ /* ----------------------------------------------------------------------- */ /* User configuration options */ /* ----------------------------------------------------------------------- */ /* Set the AES key length to use and length of authentication tag to produce. / Setting either to 0 requires the value be set at runtime via ae_init(). / Some optimizations occur for each when set to a fixed value. */ #define OCB_KEY_LEN 16 /* 0, 16, 24 or 32. 0 means set in ae_init */ #define OCB_TAG_LEN 16 /* 0 to 16. 0 means set in ae_init */ /* This implementation has built-in support for multiple AES APIs. Set any / one of the following to non-zero to specify which to use. */ #define USE_OPENSSL_AES 1 /* http://openssl.org */ #define USE_REFERENCE_AES 0 /* Internet search: rijndael-alg-fst.c */ #define USE_AES_NI 0 /* Uses compiler's intrinsics */ /* During encryption and decryption, various "L values" are required. / The L values can be precomputed during initialization (requiring extra / space in ae_ctx), generated as needed (slightly slowing encryption and / decryption), or some combination of the two. L_TABLE_SZ specifies how many / L values to precompute. L_TABLE_SZ must be at least 3. L_TABLE_SZ*16 bytes / are used for L values in ae_ctx. Plaintext and ciphertexts shorter than / 2^L_TABLE_SZ blocks need no L values calculated dynamically. */ #define L_TABLE_SZ 16 /* Set L_TABLE_SZ_IS_ENOUGH non-zero iff you know that all plaintexts / will be shorter than 2^(L_TABLE_SZ+4) bytes in length. This results / in better performance. */ #define L_TABLE_SZ_IS_ENOUGH 1 /* ----------------------------------------------------------------------- */ /* Includes and compiler specific definitions */ /* ----------------------------------------------------------------------- */ #include "ae.h" #include #include /* Define standard sized integers */ #if defined(_MSC_VER) && (_MSC_VER < 1600) typedef unsigned __int8 uint8_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; typedef __int64 int64_t; #else #include #endif /* Compiler-specific intrinsics and fixes: bswap64, ntz */ #if _MSC_VER #define inline __inline /* MSVC doesn't recognize "inline" in C */ #define restrict __restrict /* MSVC doesn't recognize "restrict" in C */ #define __SSE2__ (_M_IX86 || _M_AMD64 || _M_X64) /* Assume SSE2 */ #define __SSSE3__ (_M_IX86 || _M_AMD64 || _M_X64) /* Assume SSSE3 */ #include #pragma intrinsic(_byteswap_uint64, _BitScanForward, memcpy) #define bswap64(x) _byteswap_uint64(x) static inline unsigned ntz(unsigned x) { _BitScanForward(&x, x); return x; } #elif __GNUC__ #define inline __inline__ /* No "inline" in GCC ansi C mode */ #define restrict __restrict__ /* No "restrict" in GCC ansi C mode */ #define bswap64(x) __builtin_bswap64(x) /* Assuming GCC 4.3+ */ #define ntz(x) __builtin_ctz((unsigned)(x)) /* Assuming GCC 3.4+ */ #else /* Assume some C99 features: stdint.h, inline, restrict */ #define bswap32(x) \ ((((x)&0xff000000u) >> 24) | (((x)&0x00ff0000u) >> 8) | (((x)&0x0000ff00u) << 8) | \ (((x)&0x000000ffu) << 24)) static inline uint64_t bswap64(uint64_t x) { union { uint64_t u64; uint32_t u32[2]; } in, out; in.u64 = x; out.u32[0] = bswap32(in.u32[1]); out.u32[1] = bswap32(in.u32[0]); return out.u64; } #if (L_TABLE_SZ <= 9) && (L_TABLE_SZ_IS_ENOUGH) /* < 2^13 byte texts */ static inline unsigned ntz(unsigned x) { static const unsigned char tz_table[] = { 0, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2}; return tz_table[x / 4]; } #else /* From http://supertech.csail.mit.edu/papers/debruijn.pdf */ static inline unsigned ntz(unsigned x) { static const unsigned char tz_table[32] = {0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9}; return tz_table[((uint32_t)((x & -x) * 0x077CB531u)) >> 27]; } #endif #endif /* ----------------------------------------------------------------------- */ /* Define blocks and operations -- Patch if incorrect on your compiler. */ /* ----------------------------------------------------------------------- */ #if __SSE2__ && !KEYMASTER_CLANG_TEST_BUILD #include /* SSE instructions and _mm_malloc */ #include /* SSE2 instructions */ typedef __m128i block; #define xor_block(x, y) _mm_xor_si128(x, y) #define zero_block() _mm_setzero_si128() #define unequal_blocks(x, y) (_mm_movemask_epi8(_mm_cmpeq_epi8(x, y)) != 0xffff) #if __SSSE3__ || USE_AES_NI #include /* SSSE3 instructions */ #define swap_if_le(b) \ _mm_shuffle_epi8(b, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)) #else static inline block swap_if_le(block b) { block a = _mm_shuffle_epi32(b, _MM_SHUFFLE(0, 1, 2, 3)); a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); return _mm_xor_si128(_mm_srli_epi16(a, 8), _mm_slli_epi16(a, 8)); } #endif static inline block gen_offset(uint64_t KtopStr[3], unsigned bot) { block hi = _mm_load_si128((__m128i*)(KtopStr + 0)); /* hi = B A */ block lo = _mm_loadu_si128((__m128i*)(KtopStr + 1)); /* lo = C B */ __m128i lshift = _mm_cvtsi32_si128(bot); __m128i rshift = _mm_cvtsi32_si128(64 - bot); lo = _mm_xor_si128(_mm_sll_epi64(hi, lshift), _mm_srl_epi64(lo, rshift)); #if __SSSE3__ || USE_AES_NI return _mm_shuffle_epi8(lo, _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7)); #else return swap_if_le(_mm_shuffle_epi32(lo, _MM_SHUFFLE(1, 0, 3, 2))); #endif } static inline block double_block(block bl) { const __m128i mask = _mm_set_epi32(135, 1, 1, 1); __m128i tmp = _mm_srai_epi32(bl, 31); tmp = _mm_and_si128(tmp, mask); tmp = _mm_shuffle_epi32(tmp, _MM_SHUFFLE(2, 1, 0, 3)); bl = _mm_slli_epi32(bl, 1); return _mm_xor_si128(bl, tmp); } #elif __ALTIVEC__ #include typedef vector unsigned block; #define xor_block(x, y) vec_xor(x, y) #define zero_block() vec_splat_u32(0) #define unequal_blocks(x, y) vec_any_ne(x, y) #define swap_if_le(b) (b) #if __PPC64__ block gen_offset(uint64_t KtopStr[3], unsigned bot) { union { uint64_t u64[2]; block bl; } rval; rval.u64[0] = (KtopStr[0] << bot) | (KtopStr[1] >> (64 - bot)); rval.u64[1] = (KtopStr[1] << bot) | (KtopStr[2] >> (64 - bot)); return rval.bl; } #else /* Special handling: Shifts are mod 32, and no 64-bit types */ block gen_offset(uint64_t KtopStr[3], unsigned bot) { const vector unsigned k32 = {32, 32, 32, 32}; vector unsigned hi = *(vector unsigned*)(KtopStr + 0); vector unsigned lo = *(vector unsigned*)(KtopStr + 2); vector unsigned bot_vec; if (bot < 32) { lo = vec_sld(hi, lo, 4); } else { vector unsigned t = vec_sld(hi, lo, 4); lo = vec_sld(hi, lo, 8); hi = t; bot = bot - 32; } if (bot == 0) return hi; *(unsigned*)&bot_vec = bot; vector unsigned lshift = vec_splat(bot_vec, 0); vector unsigned rshift = vec_sub(k32, lshift); hi = vec_sl(hi, lshift); lo = vec_sr(lo, rshift); return vec_xor(hi, lo); } #endif static inline block double_block(block b) { const vector unsigned char mask = {135, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const vector unsigned char perm = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0}; const vector unsigned char shift7 = vec_splat_u8(7); const vector unsigned char shift1 = vec_splat_u8(1); vector unsigned char c = (vector unsigned char)b; vector unsigned char t = vec_sra(c, shift7); t = vec_and(t, mask); t = vec_perm(t, t, perm); c = vec_sl(c, shift1); return (block)vec_xor(c, t); } #elif __ARM_NEON__ #include typedef int8x16_t block; /* Yay! Endian-neutral reads! */ #define xor_block(x, y) veorq_s8(x, y) #define zero_block() vdupq_n_s8(0) static inline int unequal_blocks(block a, block b) { int64x2_t t = veorq_s64((int64x2_t)a, (int64x2_t)b); return (vgetq_lane_s64(t, 0) | vgetq_lane_s64(t, 1)) != 0; } #define swap_if_le(b) (b) /* Using endian-neutral int8x16_t */ /* KtopStr is reg correct by 64 bits, return mem correct */ block gen_offset(uint64_t KtopStr[3], unsigned bot) { const union { unsigned x; unsigned char endian; } little = {1}; const int64x2_t k64 = {-64, -64}; uint64x2_t hi = *(uint64x2_t*)(KtopStr + 0); /* hi = A B */ uint64x2_t lo = *(uint64x2_t*)(KtopStr + 1); /* hi = B C */ int64x2_t ls = vdupq_n_s64(bot); int64x2_t rs = vqaddq_s64(k64, ls); block rval = (block)veorq_u64(vshlq_u64(hi, ls), vshlq_u64(lo, rs)); if (little.endian) rval = vrev64q_s8(rval); return rval; } static inline block double_block(block b) { const block mask = {135, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; block tmp = vshrq_n_s8(b, 7); tmp = vandq_s8(tmp, mask); tmp = vextq_s8(tmp, tmp, 1); /* Rotate high byte to end */ b = vshlq_n_s8(b, 1); return veorq_s8(tmp, b); } #else typedef struct { uint64_t l, r; } block; static inline block xor_block(block x, block y) { x.l ^= y.l; x.r ^= y.r; return x; } static inline block zero_block(void) { const block t = {0, 0}; return t; } #define unequal_blocks(x, y) ((((x).l ^ (y).l) | ((x).r ^ (y).r)) != 0) static inline block swap_if_le(block b) { const union { unsigned x; unsigned char endian; } little = {1}; if (little.endian) { block r; r.l = bswap64(b.l); r.r = bswap64(b.r); return r; } else return b; } /* KtopStr is reg correct by 64 bits, return mem correct */ block gen_offset(uint64_t KtopStr[3], unsigned bot) { block rval; if (bot != 0) { rval.l = (KtopStr[0] << bot) | (KtopStr[1] >> (64 - bot)); rval.r = (KtopStr[1] << bot) | (KtopStr[2] >> (64 - bot)); } else { rval.l = KtopStr[0]; rval.r = KtopStr[1]; } return swap_if_le(rval); } #if __GNUC__ && __arm__ static inline block double_block(block b) { __asm__("adds %1,%1,%1\n\t" "adcs %H1,%H1,%H1\n\t" "adcs %0,%0,%0\n\t" "adcs %H0,%H0,%H0\n\t" "it cs\n\t" "eorcs %1,%1,#135" : "+r"(b.l), "+r"(b.r) : : "cc"); return b; } #else static inline block double_block(block b) { uint64_t t = (uint64_t)((int64_t)b.l >> 63); b.l = (b.l + b.l) ^ (b.r >> 63); b.r = (b.r + b.r) ^ (t & 135); return b; } #endif #endif /* ----------------------------------------------------------------------- */ /* AES - Code uses OpenSSL API. Other implementations get mapped to it. */ /* ----------------------------------------------------------------------- */ /*---------------*/ #if USE_OPENSSL_AES /*---------------*/ #include /* http://openssl.org/ */ /* How to ECB encrypt an array of blocks, in place */ static inline void AES_ecb_encrypt_blks(block* blks, unsigned nblks, AES_KEY* key) { while (nblks) { --nblks; AES_encrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key); } } static inline void AES_ecb_decrypt_blks(block* blks, unsigned nblks, AES_KEY* key) { while (nblks) { --nblks; AES_decrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key); } } #define BPI 4 /* Number of blocks in buffer per ECB call */ /*-------------------*/ #elif USE_REFERENCE_AES /*-------------------*/ #include "rijndael-alg-fst.h" /* Barreto's Public-Domain Code */ #if (OCB_KEY_LEN == 0) typedef struct { uint32_t rd_key[60]; int rounds; } AES_KEY; #define ROUNDS(ctx) ((ctx)->rounds) #define AES_set_encrypt_key(x, y, z) \ do { \ rijndaelKeySetupEnc((z)->rd_key, x, y); \ (z)->rounds = y / 32 + 6; \ } while (0) #define AES_set_decrypt_key(x, y, z) \ do { \ rijndaelKeySetupDec((z)->rd_key, x, y); \ (z)->rounds = y / 32 + 6; \ } while (0) #else typedef struct { uint32_t rd_key[OCB_KEY_LEN + 28]; } AES_KEY; #define ROUNDS(ctx) (6 + OCB_KEY_LEN / 4) #define AES_set_encrypt_key(x, y, z) rijndaelKeySetupEnc((z)->rd_key, x, y) #define AES_set_decrypt_key(x, y, z) rijndaelKeySetupDec((z)->rd_key, x, y) #endif #define AES_encrypt(x, y, z) rijndaelEncrypt((z)->rd_key, ROUNDS(z), x, y) #define AES_decrypt(x, y, z) rijndaelDecrypt((z)->rd_key, ROUNDS(z), x, y) static void AES_ecb_encrypt_blks(block* blks, unsigned nblks, AES_KEY* key) { while (nblks) { --nblks; AES_encrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key); } } void AES_ecb_decrypt_blks(block* blks, unsigned nblks, AES_KEY* key) { while (nblks) { --nblks; AES_decrypt((unsigned char*)(blks + nblks), (unsigned char*)(blks + nblks), key); } } #define BPI 4 /* Number of blocks in buffer per ECB call */ /*----------*/ #elif USE_AES_NI /*----------*/ #include #if (OCB_KEY_LEN == 0) typedef struct { __m128i rd_key[15]; int rounds; } AES_KEY; #define ROUNDS(ctx) ((ctx)->rounds) #else typedef struct { __m128i rd_key[7 + OCB_KEY_LEN / 4]; } AES_KEY; #define ROUNDS(ctx) (6 + OCB_KEY_LEN / 4) #endif #define EXPAND_ASSIST(v1, v2, v3, v4, shuff_const, aes_const) \ v2 = _mm_aeskeygenassist_si128(v4, aes_const); \ v3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v3), _mm_castsi128_ps(v1), 16)); \ v1 = _mm_xor_si128(v1, v3); \ v3 = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v3), _mm_castsi128_ps(v1), 140)); \ v1 = _mm_xor_si128(v1, v3); \ v2 = _mm_shuffle_epi32(v2, shuff_const); \ v1 = _mm_xor_si128(v1, v2) #define EXPAND192_STEP(idx, aes_const) \ EXPAND_ASSIST(x0, x1, x2, x3, 85, aes_const); \ x3 = _mm_xor_si128(x3, _mm_slli_si128(x3, 4)); \ x3 = _mm_xor_si128(x3, _mm_shuffle_epi32(x0, 255)); \ kp[idx] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(x0), 68)); \ kp[idx + 1] = \ _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(x0), _mm_castsi128_ps(x3), 78)); \ EXPAND_ASSIST(x0, x1, x2, x3, 85, (aes_const * 2)); \ x3 = _mm_xor_si128(x3, _mm_slli_si128(x3, 4)); \ x3 = _mm_xor_si128(x3, _mm_shuffle_epi32(x0, 255)); \ kp[idx + 2] = x0; \ tmp = x3 static void AES_128_Key_Expansion(const unsigned char* userkey, void* key) { __m128i x0, x1, x2; __m128i* kp = (__m128i*)key; kp[0] = x0 = _mm_loadu_si128((__m128i*)userkey); x2 = _mm_setzero_si128(); EXPAND_ASSIST(x0, x1, x2, x0, 255, 1); kp[1] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 2); kp[2] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 4); kp[3] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 8); kp[4] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 16); kp[5] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 32); kp[6] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 64); kp[7] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 128); kp[8] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 27); kp[9] = x0; EXPAND_ASSIST(x0, x1, x2, x0, 255, 54); kp[10] = x0; } static void AES_192_Key_Expansion(const unsigned char* userkey, void* key) { __m128i x0, x1, x2, x3, tmp, *kp = (__m128i*)key; kp[0] = x0 = _mm_loadu_si128((__m128i*)userkey); tmp = x3 = _mm_loadu_si128((__m128i*)(userkey + 16)); x2 = _mm_setzero_si128(); EXPAND192_STEP(1, 1); EXPAND192_STEP(4, 4); EXPAND192_STEP(7, 16); EXPAND192_STEP(10, 64); } static void AES_256_Key_Expansion(const unsigned char* userkey, void* key) { __m128i x0, x1, x2, x3, *kp = (__m128i*)key; kp[0] = x0 = _mm_loadu_si128((__m128i*)userkey); kp[1] = x3 = _mm_loadu_si128((__m128i*)(userkey + 16)); x2 = _mm_setzero_si128(); EXPAND_ASSIST(x0, x1, x2, x3, 255, 1); kp[2] = x0; EXPAND_ASSIST(x3, x1, x2, x0, 170, 1); kp[3] = x3; EXPAND_ASSIST(x0, x1, x2, x3, 255, 2); kp[4] = x0; EXPAND_ASSIST(x3, x1, x2, x0, 170, 2); kp[5] = x3; EXPAND_ASSIST(x0, x1, x2, x3, 255, 4); kp[6] = x0; EXPAND_ASSIST(x3, x1, x2, x0, 170, 4); kp[7] = x3; EXPAND_ASSIST(x0, x1, x2, x3, 255, 8); kp[8] = x0; EXPAND_ASSIST(x3, x1, x2, x0, 170, 8); kp[9] = x3; EXPAND_ASSIST(x0, x1, x2, x3, 255, 16); kp[10] = x0; EXPAND_ASSIST(x3, x1, x2, x0, 170, 16); kp[11] = x3; EXPAND_ASSIST(x0, x1, x2, x3, 255, 32); kp[12] = x0; EXPAND_ASSIST(x3, x1, x2, x0, 170, 32); kp[13] = x3; EXPAND_ASSIST(x0, x1, x2, x3, 255, 64); kp[14] = x0; } static int AES_set_encrypt_key(const unsigned char* userKey, const int bits, AES_KEY* key) { if (bits == 128) { AES_128_Key_Expansion(userKey, key); } else if (bits == 192) { AES_192_Key_Expansion(userKey, key); } else if (bits == 256) { AES_256_Key_Expansion(userKey, key); } #if (OCB_KEY_LEN == 0) key->rounds = 6 + bits / 32; #endif return 0; } static void AES_set_decrypt_key_fast(AES_KEY* dkey, const AES_KEY* ekey) { int j = 0; int i = ROUNDS(ekey); #if (OCB_KEY_LEN == 0) dkey->rounds = i; #endif dkey->rd_key[i--] = ekey->rd_key[j++]; while (i) dkey->rd_key[i--] = _mm_aesimc_si128(ekey->rd_key[j++]); dkey->rd_key[i] = ekey->rd_key[j]; } static int AES_set_decrypt_key(const unsigned char* userKey, const int bits, AES_KEY* key) { AES_KEY temp_key; AES_set_encrypt_key(userKey, bits, &temp_key); AES_set_decrypt_key_fast(key, &temp_key); return 0; } static inline void AES_encrypt(const unsigned char* in, unsigned char* out, const AES_KEY* key) { int j, rnds = ROUNDS(key); const __m128i* sched = ((__m128i*)(key->rd_key)); __m128i tmp = _mm_load_si128((__m128i*)in); tmp = _mm_xor_si128(tmp, sched[0]); for (j = 1; j < rnds; j++) tmp = _mm_aesenc_si128(tmp, sched[j]); tmp = _mm_aesenclast_si128(tmp, sched[j]); _mm_store_si128((__m128i*)out, tmp); } static inline void AES_decrypt(const unsigned char* in, unsigned char* out, const AES_KEY* key) { int j, rnds = ROUNDS(key); const __m128i* sched = ((__m128i*)(key->rd_key)); __m128i tmp = _mm_load_si128((__m128i*)in); tmp = _mm_xor_si128(tmp, sched[0]); for (j = 1; j < rnds; j++) tmp = _mm_aesdec_si128(tmp, sched[j]); tmp = _mm_aesdeclast_si128(tmp, sched[j]); _mm_store_si128((__m128i*)out, tmp); } static inline void AES_ecb_encrypt_blks(block* blks, unsigned nblks, AES_KEY* key) { unsigned i, j, rnds = ROUNDS(key); const __m128i* sched = ((__m128i*)(key->rd_key)); for (i = 0; i < nblks; ++i) blks[i] = _mm_xor_si128(blks[i], sched[0]); for (j = 1; j < rnds; ++j) for (i = 0; i < nblks; ++i) blks[i] = _mm_aesenc_si128(blks[i], sched[j]); for (i = 0; i < nblks; ++i) blks[i] = _mm_aesenclast_si128(blks[i], sched[j]); } static inline void AES_ecb_decrypt_blks(block* blks, unsigned nblks, AES_KEY* key) { unsigned i, j, rnds = ROUNDS(key); const __m128i* sched = ((__m128i*)(key->rd_key)); for (i = 0; i < nblks; ++i) blks[i] = _mm_xor_si128(blks[i], sched[0]); for (j = 1; j < rnds; ++j) for (i = 0; i < nblks; ++i) blks[i] = _mm_aesdec_si128(blks[i], sched[j]); for (i = 0; i < nblks; ++i) blks[i] = _mm_aesdeclast_si128(blks[i], sched[j]); } #define BPI 8 /* Number of blocks in buffer per ECB call */ /* Set to 4 for Westmere, 8 for Sandy Bridge */ #endif /* ----------------------------------------------------------------------- */ /* Define OCB context structure. */ /* ----------------------------------------------------------------------- */ /*------------------------------------------------------------------------ / Each item in the OCB context is stored either "memory correct" or / "register correct". On big-endian machines, this is identical. On / little-endian machines, one must choose whether the byte-string / is in the correct order when it resides in memory or in registers. / It must be register correct whenever it is to be manipulated / arithmetically, but must be memory correct whenever it interacts / with the plaintext or ciphertext. /------------------------------------------------------------------------- */ struct _ae_ctx { block offset; /* Memory correct */ block checksum; /* Memory correct */ block Lstar; /* Memory correct */ block Ldollar; /* Memory correct */ block L[L_TABLE_SZ]; /* Memory correct */ block ad_checksum; /* Memory correct */ block ad_offset; /* Memory correct */ block cached_Top; /* Memory correct */ uint64_t KtopStr[3]; /* Register correct, each item */ uint32_t ad_blocks_processed; uint32_t blocks_processed; AES_KEY decrypt_key; AES_KEY encrypt_key; #if (OCB_TAG_LEN == 0) unsigned tag_len; #endif }; /* ----------------------------------------------------------------------- */ /* L table lookup (or on-the-fly generation) */ /* ----------------------------------------------------------------------- */ #if L_TABLE_SZ_IS_ENOUGH #define getL(_ctx, _tz) ((_ctx)->L[_tz]) #else static block getL(const ae_ctx* ctx, unsigned tz) { if (tz < L_TABLE_SZ) return ctx->L[tz]; else { unsigned i; /* Bring L[MAX] into registers, make it register correct */ block rval = swap_if_le(ctx->L[L_TABLE_SZ - 1]); rval = double_block(rval); for (i = L_TABLE_SZ; i < tz; i++) rval = double_block(rval); return swap_if_le(rval); /* To memory correct */ } } #endif /* ----------------------------------------------------------------------- */ /* Public functions */ /* ----------------------------------------------------------------------- */ /* 32-bit SSE2 and Altivec systems need to be forced to allocate memory on 16-byte alignments. (I believe all major 64-bit systems do already.) */ ae_ctx* ae_allocate(void* misc) { void* p; (void)misc; /* misc unused in this implementation */ #if (__SSE2__ && !_M_X64 && !_M_AMD64 && !__amd64__) p = _mm_malloc(sizeof(ae_ctx), 16); #elif(__ALTIVEC__ && !__PPC64__) if (posix_memalign(&p, 16, sizeof(ae_ctx)) != 0) p = NULL; #else p = malloc(sizeof(ae_ctx)); #endif return (ae_ctx*)p; } void ae_free(ae_ctx* ctx) { #if (__SSE2__ && !_M_X64 && !_M_AMD64 && !__amd64__) _mm_free(ctx); #else free(ctx); #endif } /* ----------------------------------------------------------------------- */ int ae_clear(ae_ctx* ctx) /* Zero ae_ctx and undo initialization */ { memset(ctx, 0, sizeof(ae_ctx)); return AE_SUCCESS; } int ae_ctx_sizeof(void) { return (int)sizeof(ae_ctx); } /* ----------------------------------------------------------------------- */ int ae_init(ae_ctx* ctx, const void* key, int key_len, int nonce_len, int tag_len) { unsigned i; block tmp_blk; if (nonce_len != 12) return AE_NOT_SUPPORTED; /* Initialize encryption & decryption keys */ #if (OCB_KEY_LEN > 0) key_len = OCB_KEY_LEN; #endif AES_set_encrypt_key((unsigned char*)key, key_len * 8, &ctx->encrypt_key); #if USE_AES_NI AES_set_decrypt_key_fast(&ctx->decrypt_key, &ctx->encrypt_key); #else AES_set_decrypt_key((unsigned char*)key, (int)(key_len * 8), &ctx->decrypt_key); #endif /* Zero things that need zeroing */ ctx->cached_Top = ctx->ad_checksum = zero_block(); ctx->ad_blocks_processed = 0; /* Compute key-dependent values */ AES_encrypt((unsigned char*)&ctx->cached_Top, (unsigned char*)&ctx->Lstar, &ctx->encrypt_key); tmp_blk = swap_if_le(ctx->Lstar); tmp_blk = double_block(tmp_blk); ctx->Ldollar = swap_if_le(tmp_blk); tmp_blk = double_block(tmp_blk); ctx->L[0] = swap_if_le(tmp_blk); for (i = 1; i < L_TABLE_SZ; i++) { tmp_blk = double_block(tmp_blk); ctx->L[i] = swap_if_le(tmp_blk); } #if (OCB_TAG_LEN == 0) ctx->tag_len = tag_len; #else (void)tag_len; /* Suppress var not used error */ #endif return AE_SUCCESS; } /* ----------------------------------------------------------------------- */ static block gen_offset_from_nonce(ae_ctx* ctx, const void* nonce) { const union { unsigned x; unsigned char endian; } little = {1}; union { uint32_t u32[4]; uint8_t u8[16]; block bl; } tmp; unsigned idx; /* Replace cached nonce Top if needed */ #if (OCB_TAG_LEN > 0) if (little.endian) tmp.u32[0] = 0x01000000 + ((OCB_TAG_LEN * 8 % 128) << 1); else tmp.u32[0] = 0x00000001 + ((OCB_TAG_LEN * 8 % 128) << 25); #else if (little.endian) tmp.u32[0] = 0x01000000 + ((ctx->tag_len * 8 % 128) << 1); else tmp.u32[0] = 0x00000001 + ((ctx->tag_len * 8 % 128) << 25); #endif tmp.u32[1] = ((uint32_t*)nonce)[0]; tmp.u32[2] = ((uint32_t*)nonce)[1]; tmp.u32[3] = ((uint32_t*)nonce)[2]; idx = (unsigned)(tmp.u8[15] & 0x3f); /* Get low 6 bits of nonce */ tmp.u8[15] = tmp.u8[15] & 0xc0; /* Zero low 6 bits of nonce */ if (unequal_blocks(tmp.bl, ctx->cached_Top)) { /* Cached? */ ctx->cached_Top = tmp.bl; /* Update cache, KtopStr */ AES_encrypt(tmp.u8, (unsigned char*)&ctx->KtopStr, &ctx->encrypt_key); if (little.endian) { /* Make Register Correct */ ctx->KtopStr[0] = bswap64(ctx->KtopStr[0]); ctx->KtopStr[1] = bswap64(ctx->KtopStr[1]); } ctx->KtopStr[2] = ctx->KtopStr[0] ^ (ctx->KtopStr[0] << 8) ^ (ctx->KtopStr[1] >> 56); } return gen_offset(ctx->KtopStr, idx); } static void process_ad(ae_ctx* ctx, const void* ad, int ad_len, int final) { union { uint32_t u32[4]; uint8_t u8[16]; block bl; } tmp; block ad_offset, ad_checksum; const block* adp = (block*)ad; unsigned i, k, tz, remaining; ad_offset = ctx->ad_offset; ad_checksum = ctx->ad_checksum; i = ad_len / (BPI * 16); if (i) { unsigned ad_block_num = ctx->ad_blocks_processed; do { block ta[BPI], oa[BPI]; ad_block_num += BPI; tz = ntz(ad_block_num); oa[0] = xor_block(ad_offset, ctx->L[0]); ta[0] = xor_block(oa[0], adp[0]); oa[1] = xor_block(oa[0], ctx->L[1]); ta[1] = xor_block(oa[1], adp[1]); oa[2] = xor_block(ad_offset, ctx->L[1]); ta[2] = xor_block(oa[2], adp[2]); #if BPI == 4 ad_offset = xor_block(oa[2], getL(ctx, tz)); ta[3] = xor_block(ad_offset, adp[3]); #elif BPI == 8 oa[3] = xor_block(oa[2], ctx->L[2]); ta[3] = xor_block(oa[3], adp[3]); oa[4] = xor_block(oa[1], ctx->L[2]); ta[4] = xor_block(oa[4], adp[4]); oa[5] = xor_block(oa[0], ctx->L[2]); ta[5] = xor_block(oa[5], adp[5]); oa[6] = xor_block(ad_offset, ctx->L[2]); ta[6] = xor_block(oa[6], adp[6]); ad_offset = xor_block(oa[6], getL(ctx, tz)); ta[7] = xor_block(ad_offset, adp[7]); #endif AES_ecb_encrypt_blks(ta, BPI, &ctx->encrypt_key); ad_checksum = xor_block(ad_checksum, ta[0]); ad_checksum = xor_block(ad_checksum, ta[1]); ad_checksum = xor_block(ad_checksum, ta[2]); ad_checksum = xor_block(ad_checksum, ta[3]); #if (BPI == 8) ad_checksum = xor_block(ad_checksum, ta[4]); ad_checksum = xor_block(ad_checksum, ta[5]); ad_checksum = xor_block(ad_checksum, ta[6]); ad_checksum = xor_block(ad_checksum, ta[7]); #endif adp += BPI; } while (--i); ctx->ad_blocks_processed = ad_block_num; ctx->ad_offset = ad_offset; ctx->ad_checksum = ad_checksum; } if (final) { block ta[BPI]; /* Process remaining associated data, compute its tag contribution */ remaining = ((unsigned)ad_len) % (BPI * 16); if (remaining) { k = 0; #if (BPI == 8) if (remaining >= 64) { tmp.bl = xor_block(ad_offset, ctx->L[0]); ta[0] = xor_block(tmp.bl, adp[0]); tmp.bl = xor_block(tmp.bl, ctx->L[1]); ta[1] = xor_block(tmp.bl, adp[1]); ad_offset = xor_block(ad_offset, ctx->L[1]); ta[2] = xor_block(ad_offset, adp[2]); ad_offset = xor_block(ad_offset, ctx->L[2]); ta[3] = xor_block(ad_offset, adp[3]); remaining -= 64; k = 4; } #endif if (remaining >= 32) { ad_offset = xor_block(ad_offset, ctx->L[0]); ta[k] = xor_block(ad_offset, adp[k]); ad_offset = xor_block(ad_offset, getL(ctx, ntz(k + 2))); ta[k + 1] = xor_block(ad_offset, adp[k + 1]); remaining -= 32; k += 2; } if (remaining >= 16) { ad_offset = xor_block(ad_offset, ctx->L[0]); ta[k] = xor_block(ad_offset, adp[k]); remaining = remaining - 16; ++k; } if (remaining) { ad_offset = xor_block(ad_offset, ctx->Lstar); tmp.bl = zero_block(); memcpy(tmp.u8, adp + k, remaining); tmp.u8[remaining] = (unsigned char)0x80u; ta[k] = xor_block(ad_offset, tmp.bl); ++k; } AES_ecb_encrypt_blks(ta, k, &ctx->encrypt_key); switch (k) { #if (BPI == 8) case 8: ad_checksum = xor_block(ad_checksum, ta[7]); case 7: ad_checksum = xor_block(ad_checksum, ta[6]); case 6: ad_checksum = xor_block(ad_checksum, ta[5]); case 5: ad_checksum = xor_block(ad_checksum, ta[4]); #endif case 4: ad_checksum = xor_block(ad_checksum, ta[3]); case 3: ad_checksum = xor_block(ad_checksum, ta[2]); case 2: ad_checksum = xor_block(ad_checksum, ta[1]); case 1: ad_checksum = xor_block(ad_checksum, ta[0]); } ctx->ad_checksum = ad_checksum; } } } /* ----------------------------------------------------------------------- */ int ae_encrypt(ae_ctx* ctx, const void* nonce, const void* pt, int pt_len, const void* ad, int ad_len, void* ct, void* tag, int final) { union { uint32_t u32[4]; uint8_t u8[16]; block bl; } tmp; block offset, checksum; unsigned i, k; block* ctp = (block*)ct; const block* ptp = (block*)pt; /* Non-null nonce means start of new message, init per-message values */ if (nonce) { ctx->offset = gen_offset_from_nonce(ctx, nonce); ctx->ad_offset = ctx->checksum = zero_block(); ctx->ad_blocks_processed = ctx->blocks_processed = 0; if (ad_len >= 0) ctx->ad_checksum = zero_block(); } /* Process associated data */ if (ad_len > 0) process_ad(ctx, ad, ad_len, final); /* Encrypt plaintext data BPI blocks at a time */ offset = ctx->offset; checksum = ctx->checksum; i = pt_len / (BPI * 16); if (i) { block oa[BPI]; unsigned block_num = ctx->blocks_processed; oa[BPI - 1] = offset; do { block ta[BPI]; block_num += BPI; oa[0] = xor_block(oa[BPI - 1], ctx->L[0]); ta[0] = xor_block(oa[0], ptp[0]); checksum = xor_block(checksum, ptp[0]); oa[1] = xor_block(oa[0], ctx->L[1]); ta[1] = xor_block(oa[1], ptp[1]); checksum = xor_block(checksum, ptp[1]); oa[2] = xor_block(oa[1], ctx->L[0]); ta[2] = xor_block(oa[2], ptp[2]); checksum = xor_block(checksum, ptp[2]); #if BPI == 4 oa[3] = xor_block(oa[2], getL(ctx, ntz(block_num))); ta[3] = xor_block(oa[3], ptp[3]); checksum = xor_block(checksum, ptp[3]); #elif BPI == 8 oa[3] = xor_block(oa[2], ctx->L[2]); ta[3] = xor_block(oa[3], ptp[3]); checksum = xor_block(checksum, ptp[3]); oa[4] = xor_block(oa[1], ctx->L[2]); ta[4] = xor_block(oa[4], ptp[4]); checksum = xor_block(checksum, ptp[4]); oa[5] = xor_block(oa[0], ctx->L[2]); ta[5] = xor_block(oa[5], ptp[5]); checksum = xor_block(checksum, ptp[5]); oa[6] = xor_block(oa[7], ctx->L[2]); ta[6] = xor_block(oa[6], ptp[6]); checksum = xor_block(checksum, ptp[6]); oa[7] = xor_block(oa[6], getL(ctx, ntz(block_num))); ta[7] = xor_block(oa[7], ptp[7]); checksum = xor_block(checksum, ptp[7]); #endif AES_ecb_encrypt_blks(ta, BPI, &ctx->encrypt_key); ctp[0] = xor_block(ta[0], oa[0]); ctp[1] = xor_block(ta[1], oa[1]); ctp[2] = xor_block(ta[2], oa[2]); ctp[3] = xor_block(ta[3], oa[3]); #if (BPI == 8) ctp[4] = xor_block(ta[4], oa[4]); ctp[5] = xor_block(ta[5], oa[5]); ctp[6] = xor_block(ta[6], oa[6]); ctp[7] = xor_block(ta[7], oa[7]); #endif ptp += BPI; ctp += BPI; } while (--i); ctx->offset = offset = oa[BPI - 1]; ctx->blocks_processed = block_num; ctx->checksum = checksum; } if (final) { block ta[BPI + 1], oa[BPI]; /* Process remaining plaintext and compute its tag contribution */ unsigned remaining = ((unsigned)pt_len) % (BPI * 16); k = 0; /* How many blocks in ta[] need ECBing */ if (remaining) { #if (BPI == 8) if (remaining >= 64) { oa[0] = xor_block(offset, ctx->L[0]); ta[0] = xor_block(oa[0], ptp[0]); checksum = xor_block(checksum, ptp[0]); oa[1] = xor_block(oa[0], ctx->L[1]); ta[1] = xor_block(oa[1], ptp[1]); checksum = xor_block(checksum, ptp[1]); oa[2] = xor_block(oa[1], ctx->L[0]); ta[2] = xor_block(oa[2], ptp[2]); checksum = xor_block(checksum, ptp[2]); offset = oa[3] = xor_block(oa[2], ctx->L[2]); ta[3] = xor_block(offset, ptp[3]); checksum = xor_block(checksum, ptp[3]); remaining -= 64; k = 4; } #endif if (remaining >= 32) { oa[k] = xor_block(offset, ctx->L[0]); ta[k] = xor_block(oa[k], ptp[k]); checksum = xor_block(checksum, ptp[k]); offset = oa[k + 1] = xor_block(oa[k], ctx->L[1]); ta[k + 1] = xor_block(offset, ptp[k + 1]); checksum = xor_block(checksum, ptp[k + 1]); remaining -= 32; k += 2; } if (remaining >= 16) { offset = oa[k] = xor_block(offset, ctx->L[0]); ta[k] = xor_block(offset, ptp[k]); checksum = xor_block(checksum, ptp[k]); remaining -= 16; ++k; } if (remaining) { tmp.bl = zero_block(); memcpy(tmp.u8, ptp + k, remaining); tmp.u8[remaining] = (unsigned char)0x80u; checksum = xor_block(checksum, tmp.bl); ta[k] = offset = xor_block(offset, ctx->Lstar); ++k; } } offset = xor_block(offset, ctx->Ldollar); /* Part of tag gen */ ta[k] = xor_block(offset, checksum); /* Part of tag gen */ AES_ecb_encrypt_blks(ta, k + 1, &ctx->encrypt_key); offset = xor_block(ta[k], ctx->ad_checksum); /* Part of tag gen */ if (remaining) { --k; tmp.bl = xor_block(tmp.bl, ta[k]); memcpy(ctp + k, tmp.u8, remaining); } switch (k) { #if (BPI == 8) case 7: ctp[6] = xor_block(ta[6], oa[6]); case 6: ctp[5] = xor_block(ta[5], oa[5]); case 5: ctp[4] = xor_block(ta[4], oa[4]); case 4: ctp[3] = xor_block(ta[3], oa[3]); #endif case 3: ctp[2] = xor_block(ta[2], oa[2]); case 2: ctp[1] = xor_block(ta[1], oa[1]); case 1: ctp[0] = xor_block(ta[0], oa[0]); } /* Tag is placed at the correct location */ if (tag) { #if (OCB_TAG_LEN == 16) *(block*)tag = offset; #elif(OCB_TAG_LEN > 0) memcpy((char*)tag, &offset, OCB_TAG_LEN); #else memcpy((char*)tag, &offset, ctx->tag_len); #endif } else { #if (OCB_TAG_LEN > 0) memcpy((char*)ct + pt_len, &offset, OCB_TAG_LEN); pt_len += OCB_TAG_LEN; #else memcpy((char*)ct + pt_len, &offset, ctx->tag_len); pt_len += ctx->tag_len; #endif } } return (int)pt_len; } /* ----------------------------------------------------------------------- */ /* Compare two regions of memory, taking a constant amount of time for a given buffer size -- under certain assumptions about the compiler and machine, of course. Use this to avoid timing side-channel attacks. Returns 0 for memory regions with equal contents; non-zero otherwise. */ static int constant_time_memcmp(const void* av, const void* bv, size_t n) { const uint8_t* a = (const uint8_t*)av; const uint8_t* b = (const uint8_t*)bv; uint8_t result = 0; size_t i; for (i = 0; i < n; i++) { result |= *a ^ *b; a++; b++; } return (int)result; } int ae_decrypt(ae_ctx* ctx, const void* nonce, const void* ct, int ct_len, const void* ad, int ad_len, void* pt, const void* tag, int final) { union { uint32_t u32[4]; uint8_t u8[16]; block bl; } tmp; block offset, checksum; unsigned i, k; block* ctp = (block*)ct; block* ptp = (block*)pt; /* Reduce ct_len tag bundled in ct */ if ((final) && (!tag)) #if (OCB_TAG_LEN > 0) ct_len -= OCB_TAG_LEN; #else ct_len -= ctx->tag_len; #endif /* Non-null nonce means start of new message, init per-message values */ if (nonce) { ctx->offset = gen_offset_from_nonce(ctx, nonce); ctx->ad_offset = ctx->checksum = zero_block(); ctx->ad_blocks_processed = ctx->blocks_processed = 0; if (ad_len >= 0) ctx->ad_checksum = zero_block(); } /* Process associated data */ if (ad_len > 0) process_ad(ctx, ad, ad_len, final); /* Encrypt plaintext data BPI blocks at a time */ offset = ctx->offset; checksum = ctx->checksum; i = ct_len / (BPI * 16); if (i) { block oa[BPI]; unsigned block_num = ctx->blocks_processed; oa[BPI - 1] = offset; do { block ta[BPI]; block_num += BPI; oa[0] = xor_block(oa[BPI - 1], ctx->L[0]); ta[0] = xor_block(oa[0], ctp[0]); oa[1] = xor_block(oa[0], ctx->L[1]); ta[1] = xor_block(oa[1], ctp[1]); oa[2] = xor_block(oa[1], ctx->L[0]); ta[2] = xor_block(oa[2], ctp[2]); #if BPI == 4 oa[3] = xor_block(oa[2], getL(ctx, ntz(block_num))); ta[3] = xor_block(oa[3], ctp[3]); #elif BPI == 8 oa[3] = xor_block(oa[2], ctx->L[2]); ta[3] = xor_block(oa[3], ctp[3]); oa[4] = xor_block(oa[1], ctx->L[2]); ta[4] = xor_block(oa[4], ctp[4]); oa[5] = xor_block(oa[0], ctx->L[2]); ta[5] = xor_block(oa[5], ctp[5]); oa[6] = xor_block(oa[7], ctx->L[2]); ta[6] = xor_block(oa[6], ctp[6]); oa[7] = xor_block(oa[6], getL(ctx, ntz(block_num))); ta[7] = xor_block(oa[7], ctp[7]); #endif AES_ecb_decrypt_blks(ta, BPI, &ctx->decrypt_key); ptp[0] = xor_block(ta[0], oa[0]); checksum = xor_block(checksum, ptp[0]); ptp[1] = xor_block(ta[1], oa[1]); checksum = xor_block(checksum, ptp[1]); ptp[2] = xor_block(ta[2], oa[2]); checksum = xor_block(checksum, ptp[2]); ptp[3] = xor_block(ta[3], oa[3]); checksum = xor_block(checksum, ptp[3]); #if (BPI == 8) ptp[4] = xor_block(ta[4], oa[4]); checksum = xor_block(checksum, ptp[4]); ptp[5] = xor_block(ta[5], oa[5]); checksum = xor_block(checksum, ptp[5]); ptp[6] = xor_block(ta[6], oa[6]); checksum = xor_block(checksum, ptp[6]); ptp[7] = xor_block(ta[7], oa[7]); checksum = xor_block(checksum, ptp[7]); #endif ptp += BPI; ctp += BPI; } while (--i); ctx->offset = offset = oa[BPI - 1]; ctx->blocks_processed = block_num; ctx->checksum = checksum; } if (final) { block ta[BPI + 1], oa[BPI]; /* Process remaining plaintext and compute its tag contribution */ unsigned remaining = ((unsigned)ct_len) % (BPI * 16); k = 0; /* How many blocks in ta[] need ECBing */ if (remaining) { #if (BPI == 8) if (remaining >= 64) { oa[0] = xor_block(offset, ctx->L[0]); ta[0] = xor_block(oa[0], ctp[0]); oa[1] = xor_block(oa[0], ctx->L[1]); ta[1] = xor_block(oa[1], ctp[1]); oa[2] = xor_block(oa[1], ctx->L[0]); ta[2] = xor_block(oa[2], ctp[2]); offset = oa[3] = xor_block(oa[2], ctx->L[2]); ta[3] = xor_block(offset, ctp[3]); remaining -= 64; k = 4; } #endif if (remaining >= 32) { oa[k] = xor_block(offset, ctx->L[0]); ta[k] = xor_block(oa[k], ctp[k]); offset = oa[k + 1] = xor_block(oa[k], ctx->L[1]); ta[k + 1] = xor_block(offset, ctp[k + 1]); remaining -= 32; k += 2; } if (remaining >= 16) { offset = oa[k] = xor_block(offset, ctx->L[0]); ta[k] = xor_block(offset, ctp[k]); remaining -= 16; ++k; } if (remaining) { block pad; offset = xor_block(offset, ctx->Lstar); AES_encrypt((unsigned char*)&offset, tmp.u8, &ctx->encrypt_key); pad = tmp.bl; memcpy(tmp.u8, ctp + k, remaining); tmp.bl = xor_block(tmp.bl, pad); tmp.u8[remaining] = (unsigned char)0x80u; memcpy(ptp + k, tmp.u8, remaining); checksum = xor_block(checksum, tmp.bl); } } AES_ecb_decrypt_blks(ta, k, &ctx->decrypt_key); switch (k) { #if (BPI == 8) case 7: ptp[6] = xor_block(ta[6], oa[6]); checksum = xor_block(checksum, ptp[6]); case 6: ptp[5] = xor_block(ta[5], oa[5]); checksum = xor_block(checksum, ptp[5]); case 5: ptp[4] = xor_block(ta[4], oa[4]); checksum = xor_block(checksum, ptp[4]); case 4: ptp[3] = xor_block(ta[3], oa[3]); checksum = xor_block(checksum, ptp[3]); #endif case 3: ptp[2] = xor_block(ta[2], oa[2]); checksum = xor_block(checksum, ptp[2]); case 2: ptp[1] = xor_block(ta[1], oa[1]); checksum = xor_block(checksum, ptp[1]); case 1: ptp[0] = xor_block(ta[0], oa[0]); checksum = xor_block(checksum, ptp[0]); } /* Calculate expected tag */ offset = xor_block(offset, ctx->Ldollar); tmp.bl = xor_block(offset, checksum); AES_encrypt(tmp.u8, tmp.u8, &ctx->encrypt_key); tmp.bl = xor_block(tmp.bl, ctx->ad_checksum); /* Full tag */ /* Compare with proposed tag, change ct_len if invalid */ if ((OCB_TAG_LEN == 16) && tag) { if (unequal_blocks(tmp.bl, *(block*)tag)) ct_len = AE_INVALID; } else { #if (OCB_TAG_LEN > 0) int len = OCB_TAG_LEN; #else int len = ctx->tag_len; #endif if (tag) { if (constant_time_memcmp(tag, tmp.u8, len) != 0) ct_len = AE_INVALID; } else { if (constant_time_memcmp((char*)ct + ct_len, tmp.u8, len) != 0) ct_len = AE_INVALID; } } } return ct_len; } /* ----------------------------------------------------------------------- */ /* Simple test program */ /* ----------------------------------------------------------------------- */ #if 0 #include #include #if __GNUC__ #define ALIGN(n) __attribute__((aligned(n))) #elif _MSC_VER #define ALIGN(n) __declspec(align(n)) #else /* Not GNU/Microsoft: delete alignment uses. */ #define ALIGN(n) #endif static void pbuf(void *p, unsigned len, const void *s) { unsigned i; if (s) printf("%s", (char *)s); for (i = 0; i < len; i++) printf("%02X", (unsigned)(((unsigned char *)p)[i])); printf("\n"); } static void vectors(ae_ctx *ctx, int len) { ALIGN(16) char pt[128]; ALIGN(16) char ct[144]; ALIGN(16) char nonce[] = {0,1,2,3,4,5,6,7,8,9,10,11}; int i; for (i=0; i < 128; i++) pt[i] = i; i = ae_encrypt(ctx,nonce,pt,len,pt,len,ct,NULL,AE_FINALIZE); printf("P=%d,A=%d: ",len,len); pbuf(ct, i, NULL); i = ae_encrypt(ctx,nonce,pt,0,pt,len,ct,NULL,AE_FINALIZE); printf("P=%d,A=%d: ",0,len); pbuf(ct, i, NULL); i = ae_encrypt(ctx,nonce,pt,len,pt,0,ct,NULL,AE_FINALIZE); printf("P=%d,A=%d: ",len,0); pbuf(ct, i, NULL); } void validate() { ALIGN(16) char pt[1024]; ALIGN(16) char ct[1024]; ALIGN(16) char tag[16]; ALIGN(16) char nonce[12] = {0,}; ALIGN(16) char key[32] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}; ae_ctx ctx; char *val_buf, *next; int i, len; val_buf = (char *)malloc(22400 + 16); next = val_buf = (char *)(((size_t)val_buf + 16) & ~((size_t)15)); if (0) { ae_init(&ctx, key, 16, 12, 16); /* pbuf(&ctx, sizeof(ctx), "CTX: "); */ vectors(&ctx,0); vectors(&ctx,8); vectors(&ctx,16); vectors(&ctx,24); vectors(&ctx,32); vectors(&ctx,40); } memset(key,0,32); memset(pt,0,128); ae_init(&ctx, key, OCB_KEY_LEN, 12, OCB_TAG_LEN); /* RFC Vector test */ for (i = 0; i < 128; i++) { int first = ((i/3)/(BPI*16))*(BPI*16); int second = first; int third = i - (first + second); nonce[11] = i; if (0) { ae_encrypt(&ctx,nonce,pt,i,pt,i,ct,NULL,AE_FINALIZE); memcpy(next,ct,(size_t)i+OCB_TAG_LEN); next = next+i+OCB_TAG_LEN; ae_encrypt(&ctx,nonce,pt,i,pt,0,ct,NULL,AE_FINALIZE); memcpy(next,ct,(size_t)i+OCB_TAG_LEN); next = next+i+OCB_TAG_LEN; ae_encrypt(&ctx,nonce,pt,0,pt,i,ct,NULL,AE_FINALIZE); memcpy(next,ct,OCB_TAG_LEN); next = next+OCB_TAG_LEN; } else { ae_encrypt(&ctx,nonce,pt,first,pt,first,ct,NULL,AE_PENDING); ae_encrypt(&ctx,NULL,pt+first,second,pt+first,second,ct+first,NULL,AE_PENDING); ae_encrypt(&ctx,NULL,pt+first+second,third,pt+first+second,third,ct+first+second,NULL,AE_FINALIZE); memcpy(next,ct,(size_t)i+OCB_TAG_LEN); next = next+i+OCB_TAG_LEN; ae_encrypt(&ctx,nonce,pt,first,pt,0,ct,NULL,AE_PENDING); ae_encrypt(&ctx,NULL,pt+first,second,pt,0,ct+first,NULL,AE_PENDING); ae_encrypt(&ctx,NULL,pt+first+second,third,pt,0,ct+first+second,NULL,AE_FINALIZE); memcpy(next,ct,(size_t)i+OCB_TAG_LEN); next = next+i+OCB_TAG_LEN; ae_encrypt(&ctx,nonce,pt,0,pt,first,ct,NULL,AE_PENDING); ae_encrypt(&ctx,NULL,pt,0,pt+first,second,ct,NULL,AE_PENDING); ae_encrypt(&ctx,NULL,pt,0,pt+first+second,third,ct,NULL,AE_FINALIZE); memcpy(next,ct,OCB_TAG_LEN); next = next+OCB_TAG_LEN; } } nonce[11] = 0; ae_encrypt(&ctx,nonce,NULL,0,val_buf,next-val_buf,ct,tag,AE_FINALIZE); pbuf(tag,OCB_TAG_LEN,0); /* Encrypt/Decrypt test */ for (i = 0; i < 128; i++) { int first = ((i/3)/(BPI*16))*(BPI*16); int second = first; int third = i - (first + second); nonce[11] = i%128; if (1) { len = ae_encrypt(&ctx,nonce,val_buf,i,val_buf,i,ct,tag,AE_FINALIZE); len = ae_encrypt(&ctx,nonce,val_buf,i,val_buf,-1,ct,tag,AE_FINALIZE); len = ae_decrypt(&ctx,nonce,ct,len,val_buf,-1,pt,tag,AE_FINALIZE); if (len == -1) { printf("Authentication error: %d\n", i); return; } if (len != i) { printf("Length error: %d\n", i); return; } if (memcmp(val_buf,pt,i)) { printf("Decrypt error: %d\n", i); return; } } else { len = ae_encrypt(&ctx,nonce,val_buf,i,val_buf,i,ct,NULL,AE_FINALIZE); ae_decrypt(&ctx,nonce,ct,first,val_buf,first,pt,NULL,AE_PENDING); ae_decrypt(&ctx,NULL,ct+first,second,val_buf+first,second,pt+first,NULL,AE_PENDING); len = ae_decrypt(&ctx,NULL,ct+first+second,len-(first+second),val_buf+first+second,third,pt+first+second,NULL,AE_FINALIZE); if (len == -1) { printf("Authentication error: %d\n", i); return; } if (memcmp(val_buf,pt,i)) { printf("Decrypt error: %d\n", i); return; } } } printf("Decrypt: PASS\n"); } int main() { validate(); return 0; } #endif #if USE_AES_NI char infoString[] = "OCB3 (AES-NI)"; #elif USE_REFERENCE_AES char infoString[] = "OCB3 (Reference)"; #elif USE_OPENSSL_AES char infoString[] = "OCB3 (OpenSSL)"; #endif