/* * Copyright 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "keymaster1_engine.h" #include #include #include #define LOG_TAG "Keymaster1Engine" #include #include "keymaster/android_keymaster_utils.h" #include #include #include #include "openssl_err.h" #include "openssl_utils.h" using std::shared_ptr; using std::unique_ptr; namespace keymaster { Keymaster1Engine* Keymaster1Engine::instance_ = nullptr; Keymaster1Engine::Keymaster1Engine(const keymaster1_device_t* keymaster1_device) : keymaster1_device_(keymaster1_device), engine_(ENGINE_new()), rsa_index_(RSA_get_ex_new_index(0 /* argl */, NULL /* argp */, NULL /* new_func */, Keymaster1Engine::duplicate_key_data, Keymaster1Engine::free_key_data)), ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, NULL /* argp */, NULL /* new_func */, Keymaster1Engine::duplicate_key_data, Keymaster1Engine::free_key_data)), rsa_method_(BuildRsaMethod()), ecdsa_method_(BuildEcdsaMethod()) { assert(rsa_index_ != -1); assert(ec_key_index_ != -1); assert(keymaster1_device); assert(!instance_); instance_ = this; ENGINE_set_RSA_method(engine_.get(), &rsa_method_, sizeof(rsa_method_)); ENGINE_set_ECDSA_method(engine_.get(), &ecdsa_method_, sizeof(ecdsa_method_)); } Keymaster1Engine::~Keymaster1Engine() { keymaster1_device_->common.close( reinterpret_cast(const_cast(keymaster1_device_))); instance_ = nullptr; } static void ConvertCharacteristics(keymaster_key_characteristics_t* characteristics, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) { unique_ptr characteristics_deleter( characteristics); if (hw_enforced) hw_enforced->Reinitialize(characteristics->hw_enforced); if (sw_enforced) sw_enforced->Reinitialize(characteristics->sw_enforced); } keymaster_error_t Keymaster1Engine::GenerateKey(const AuthorizationSet& key_description, KeymasterKeyBlob* key_blob, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) const { assert(key_blob); keymaster_key_characteristics_t* characteristics; keymaster_key_blob_t blob; keymaster_error_t error = keymaster1_device_->generate_key(keymaster1_device_, &key_description, &blob, &characteristics); if (error != KM_ERROR_OK) return error; unique_ptr blob_deleter(const_cast(blob.key_material)); key_blob->key_material = dup_buffer(blob.key_material, blob.key_material_size); key_blob->key_material_size = blob.key_material_size; ConvertCharacteristics(characteristics, hw_enforced, sw_enforced); return error; } keymaster_error_t Keymaster1Engine::ImportKey(const AuthorizationSet& key_description, keymaster_key_format_t input_key_material_format, const KeymasterKeyBlob& input_key_material, KeymasterKeyBlob* output_key_blob, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) const { assert(output_key_blob); keymaster_key_characteristics_t* characteristics; const keymaster_blob_t input_key = {input_key_material.key_material, input_key_material.key_material_size}; keymaster_key_blob_t blob; keymaster_error_t error = keymaster1_device_->import_key(keymaster1_device_, &key_description, input_key_material_format, &input_key, &blob, &characteristics); if (error != KM_ERROR_OK) return error; unique_ptr blob_deleter(const_cast(blob.key_material)); output_key_blob->key_material = dup_buffer(blob.key_material, blob.key_material_size); output_key_blob->key_material_size = blob.key_material_size; ConvertCharacteristics(characteristics, hw_enforced, sw_enforced); return error; } RSA* Keymaster1Engine::BuildRsaKey(const KeymasterKeyBlob& blob, const AuthorizationSet& additional_params, keymaster_error_t* error) const { // Create new RSA key (with engine methods) and add metadata unique_ptr rsa(RSA_new_method(engine_.get())); if (!rsa) { *error = TranslateLastOpenSslError(); return nullptr; } KeyData* key_data = new KeyData(blob, additional_params); if (!RSA_set_ex_data(rsa.get(), rsa_index_, key_data)) { *error = TranslateLastOpenSslError(); delete key_data; return nullptr; } // Copy public key into new RSA key unique_ptr pkey( GetKeymaster1PublicKey(key_data->key_material, key_data->begin_params, error)); if (!pkey) { *error = TranslateLastOpenSslError(); return nullptr; } unique_ptr public_rsa(EVP_PKEY_get1_RSA(pkey.get())); if (!public_rsa) { *error = TranslateLastOpenSslError(); return nullptr; } rsa->n = BN_dup(public_rsa->n); rsa->e = BN_dup(public_rsa->e); if (!rsa->n || !rsa->e) { *error = TranslateLastOpenSslError(); return nullptr; } *error = KM_ERROR_OK; return rsa.release(); } EC_KEY* Keymaster1Engine::BuildEcKey(const KeymasterKeyBlob& blob, const AuthorizationSet& additional_params, keymaster_error_t* error) const { // Create new EC key (with engine methods) and insert blob unique_ptr ec_key(EC_KEY_new_method(engine_.get())); if (!ec_key) { *error = TranslateLastOpenSslError(); return nullptr; } KeyData* key_data = new KeyData(blob, additional_params); if (!EC_KEY_set_ex_data(ec_key.get(), ec_key_index_, key_data)) { *error = TranslateLastOpenSslError(); delete key_data; return nullptr; } // Copy public key into new EC key unique_ptr pkey( GetKeymaster1PublicKey(blob, additional_params, error)); if (!pkey) { *error = TranslateLastOpenSslError(); return nullptr; } unique_ptr public_ec_key(EVP_PKEY_get1_EC_KEY(pkey.get())); if (!public_ec_key) { *error = TranslateLastOpenSslError(); return nullptr; } if (!EC_KEY_set_group(ec_key.get(), EC_KEY_get0_group(public_ec_key.get())) || !EC_KEY_set_public_key(ec_key.get(), EC_KEY_get0_public_key(public_ec_key.get()))) { *error = TranslateLastOpenSslError(); return nullptr; } *error = KM_ERROR_OK; return ec_key.release(); } Keymaster1Engine::KeyData* Keymaster1Engine::GetData(EVP_PKEY* key) const { switch (EVP_PKEY_type(key->type)) { case EVP_PKEY_RSA: { unique_ptr rsa(EVP_PKEY_get1_RSA(key)); return GetData(rsa.get()); } case EVP_PKEY_EC: { unique_ptr ec_key(EVP_PKEY_get1_EC_KEY(key)); return GetData(ec_key.get()); } default: return nullptr; }; } Keymaster1Engine::KeyData* Keymaster1Engine::GetData(const RSA* rsa) const { if (!rsa) return nullptr; return reinterpret_cast(RSA_get_ex_data(rsa, rsa_index_)); } Keymaster1Engine::KeyData* Keymaster1Engine::GetData(const EC_KEY* ec_key) const { if (!ec_key) return nullptr; return reinterpret_cast(EC_KEY_get_ex_data(ec_key, ec_key_index_)); } /* static */ int Keymaster1Engine::duplicate_key_data(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, void** from_d, int /* index */, long /* argl */, void* /* argp */) { KeyData* data = reinterpret_cast(*from_d); if (!data) return 1; // Default copy ctor is good. *from_d = new KeyData(*data); if (*from_d) return 1; return 0; } /* static */ void Keymaster1Engine::free_key_data(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* data */, int /* index*/, long /* argl */, void* /* argp */) { delete reinterpret_cast(ptr); } keymaster_error_t Keymaster1Engine::Keymaster1Finish(const KeyData* key_data, const keymaster_blob_t& input, keymaster_blob_t* output) { if (key_data->op_handle == 0) return KM_ERROR_UNKNOWN_ERROR; size_t input_consumed; // Note: devices are required to consume all input in a single update call for undigested // signing operations and encryption operations. No need to loop here. keymaster_error_t error = device()->update(device(), key_data->op_handle, &key_data->finish_params, &input, &input_consumed, nullptr /* out_params */, nullptr /* output */); if (error != KM_ERROR_OK) return error; return device()->finish(device(), key_data->op_handle, &key_data->finish_params, nullptr /* signature */, nullptr /* out_params */, output); } /* static */ int Keymaster1Engine::rsa_sign_raw(RSA* rsa, size_t* out_len, uint8_t* out, size_t max_out, const uint8_t* in, size_t in_len, int padding) { KeyData* key_data = instance_->GetData(rsa); if (!key_data) return 0; if (padding != key_data->expected_openssl_padding) { LOG_E("Expected sign_raw with padding %d but got padding %d", key_data->expected_openssl_padding, padding); return KM_ERROR_UNKNOWN_ERROR; } keymaster_blob_t input = {in, in_len}; keymaster_blob_t output; key_data->error = instance_->Keymaster1Finish(key_data, input, &output); if (key_data->error != KM_ERROR_OK) return 0; unique_ptr output_deleter(const_cast(output.data)); *out_len = std::min(output.data_length, max_out); memcpy(out, output.data, *out_len); return 1; } /* static */ int Keymaster1Engine::rsa_decrypt(RSA* rsa, size_t* out_len, uint8_t* out, size_t max_out, const uint8_t* in, size_t in_len, int padding) { KeyData* key_data = instance_->GetData(rsa); if (!key_data) return 0; if (padding != key_data->expected_openssl_padding) { LOG_E("Expected sign_raw with padding %d but got padding %d", key_data->expected_openssl_padding, padding); return KM_ERROR_UNKNOWN_ERROR; } keymaster_blob_t input = {in, in_len}; keymaster_blob_t output; key_data->error = instance_->Keymaster1Finish(key_data, input, &output); if (key_data->error != KM_ERROR_OK) return 0; unique_ptr output_deleter(const_cast(output.data)); *out_len = std::min(output.data_length, max_out); memcpy(out, output.data, *out_len); return 1; } /* static */ int Keymaster1Engine::ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, unsigned int* sig_len, EC_KEY* ec_key) { KeyData* key_data = instance_->GetData(ec_key); if (!key_data) return 0; // Truncate digest if it's too long size_t max_input_len = (ec_group_size_bits(ec_key) + 7) / 8; if (digest_len > max_input_len) digest_len = max_input_len; keymaster_blob_t input = {digest, digest_len}; keymaster_blob_t output; key_data->error = instance_->Keymaster1Finish(key_data, input, &output); if (key_data->error != KM_ERROR_OK) return 0; unique_ptr output_deleter(const_cast(output.data)); *sig_len = std::min(output.data_length, ECDSA_size(ec_key)); memcpy(sig, output.data, *sig_len); return 1; } EVP_PKEY* Keymaster1Engine::GetKeymaster1PublicKey(const KeymasterKeyBlob& blob, const AuthorizationSet& additional_params, keymaster_error_t* error) const { keymaster_blob_t client_id = {nullptr, 0}; keymaster_blob_t app_data = {nullptr, 0}; keymaster_blob_t* client_id_ptr = nullptr; keymaster_blob_t* app_data_ptr = nullptr; if (additional_params.GetTagValue(TAG_APPLICATION_ID, &client_id)) client_id_ptr = &client_id; if (additional_params.GetTagValue(TAG_APPLICATION_DATA, &app_data)) app_data_ptr = &app_data; keymaster_blob_t export_data = {nullptr, 0}; *error = keymaster1_device_->export_key(keymaster1_device_, KM_KEY_FORMAT_X509, &blob, client_id_ptr, app_data_ptr, &export_data); if (*error != KM_ERROR_OK) return nullptr; unique_ptr pub_key(const_cast(export_data.data)); const uint8_t* p = export_data.data; return d2i_PUBKEY(nullptr /* allocate new struct */, &p, export_data.data_length); } RSA_METHOD Keymaster1Engine::BuildRsaMethod() { RSA_METHOD method; method.common.references = 0; method.common.is_static = 1; method.app_data = nullptr; method.init = nullptr; method.finish = nullptr; method.size = nullptr; method.sign = nullptr; method.verify = nullptr; method.encrypt = nullptr; method.sign_raw = Keymaster1Engine::rsa_sign_raw; method.decrypt = Keymaster1Engine::rsa_decrypt; method.verify_raw = nullptr; method.private_transform = nullptr; method.mod_exp = nullptr; method.bn_mod_exp = BN_mod_exp_mont; method.flags = RSA_FLAG_OPAQUE; method.keygen = nullptr; method.supports_digest = nullptr; return method; } ECDSA_METHOD Keymaster1Engine::BuildEcdsaMethod() { ECDSA_METHOD method; method.common.references = 0; method.common.is_static = 1; method.app_data = nullptr; method.init = nullptr; method.finish = nullptr; method.group_order_size = nullptr; method.sign = Keymaster1Engine::ecdsa_sign; method.verify = nullptr; method.flags = ECDSA_FLAG_OPAQUE; return method; } } // namespace keymaster