summaryrefslogtreecommitdiffstats
path: root/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
blob: bd51365836f0e89eed88c9564aee6c4b44e22d0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.android.inputmethod.latin.makedict;

import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.CharEncoding;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary.PtNode;
import com.android.inputmethod.latin.makedict.FusionDictionary.PtNodeArray;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map.Entry;

/**
 * Encodes binary files for a FusionDictionary.
 *
 * All the methods in this class are static.
 *
 * TODO: Rename this class to DictEncoderUtils.
 */
public class BinaryDictEncoderUtils {

    private static final boolean DBG = MakedictLog.DBG;

    private BinaryDictEncoderUtils() {
        // This utility class is not publicly instantiable.
    }

    // Arbitrary limit to how much passes we consider address size compression should
    // terminate in. At the time of this writing, our largest dictionary completes
    // compression in five passes.
    // If the number of passes exceeds this number, makedict bails with an exception on
    // suspicion that a bug might be causing an infinite loop.
    private static final int MAX_PASSES = 24;

    /**
     * Compute the binary size of the character array.
     *
     * If only one character, this is the size of this character. If many, it's the sum of their
     * sizes + 1 byte for the terminator.
     *
     * @param characters the character array
     * @return the size of the char array, including the terminator if any
     */
    static int getPtNodeCharactersSize(final int[] characters,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        int size = CharEncoding.getCharArraySize(characters, codePointToOneByteCodeMap);
        if (characters.length > 1) size += FormatSpec.PTNODE_TERMINATOR_SIZE;
        return size;
    }

    /**
     * Compute the binary size of the character array in a PtNode
     *
     * If only one character, this is the size of this character. If many, it's the sum of their
     * sizes + 1 byte for the terminator.
     *
     * @param ptNode the PtNode
     * @return the size of the char array, including the terminator if any
     */
    private static int getPtNodeCharactersSize(final PtNode ptNode,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        return getPtNodeCharactersSize(ptNode.mChars, codePointToOneByteCodeMap);
    }

    /**
     * Compute the binary size of the PtNode count for a node array.
     * @param nodeArray the nodeArray
     * @return the size of the PtNode count, either 1 or 2 bytes.
     */
    private static int getPtNodeCountSize(final PtNodeArray nodeArray) {
        return BinaryDictIOUtils.getPtNodeCountSize(nodeArray.mData.size());
    }

    /**
     * Compute the maximum size of a PtNode, assuming 3-byte addresses for everything.
     *
     * @param ptNode the PtNode to compute the size of.
     * @return the maximum size of the PtNode.
     */
    private static int getPtNodeMaximumSize(final PtNode ptNode,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        int size = getNodeHeaderSize(ptNode, codePointToOneByteCodeMap);
        if (ptNode.isTerminal()) {
            // If terminal, one byte for the frequency.
            size += FormatSpec.PTNODE_FREQUENCY_SIZE;
        }
        size += FormatSpec.PTNODE_MAX_ADDRESS_SIZE; // For children address
        if (null != ptNode.mBigrams) {
            size += (FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE
                    + FormatSpec.PTNODE_ATTRIBUTE_MAX_ADDRESS_SIZE)
                    * ptNode.mBigrams.size();
        }
        return size;
    }

    /**
     * Compute the maximum size of each PtNode of a PtNode array, assuming 3-byte addresses for
     * everything, and caches it in the `mCachedSize' member of the nodes; deduce the size of
     * the containing node array, and cache it it its 'mCachedSize' member.
     *
     * @param ptNodeArray the node array to compute the maximum size of.
     */
    private static void calculatePtNodeArrayMaximumSize(final PtNodeArray ptNodeArray,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        int size = getPtNodeCountSize(ptNodeArray);
        for (PtNode node : ptNodeArray.mData) {
            final int nodeSize = getPtNodeMaximumSize(node, codePointToOneByteCodeMap);
            node.mCachedSize = nodeSize;
            size += nodeSize;
        }
        ptNodeArray.mCachedSize = size;
    }

    /**
     * Compute the size of the header (flag + [parent address] + characters size) of a PtNode.
     *
     * @param ptNode the PtNode of which to compute the size of the header
     */
    private static int getNodeHeaderSize(final PtNode ptNode,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        return FormatSpec.PTNODE_FLAGS_SIZE + getPtNodeCharactersSize(ptNode,
                codePointToOneByteCodeMap);
    }

    /**
     * Compute the size, in bytes, that an address will occupy.
     *
     * This can be used either for children addresses (which are always positive) or for
     * attribute, which may be positive or negative but
     * store their sign bit separately.
     *
     * @param address the address
     * @return the byte size.
     */
    static int getByteSize(final int address) {
        assert(address <= FormatSpec.UINT24_MAX);
        if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
            return 0;
        } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) {
            return 1;
        } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) {
            return 2;
        } else {
            return 3;
        }
    }

    static int writeUIntToBuffer(final byte[] buffer, final int fromPosition, final int value,
            final int size) {
        int position = fromPosition;
        switch(size) {
            case 4:
                buffer[position++] = (byte) ((value >> 24) & 0xFF);
                /* fall through */
            case 3:
                buffer[position++] = (byte) ((value >> 16) & 0xFF);
                /* fall through */
            case 2:
                buffer[position++] = (byte) ((value >> 8) & 0xFF);
                /* fall through */
            case 1:
                buffer[position++] = (byte) (value & 0xFF);
                break;
            default:
                /* nop */
        }
        return position;
    }

    static void writeUIntToStream(final OutputStream stream, final int value, final int size)
            throws IOException {
        switch(size) {
            case 4:
                stream.write((value >> 24) & 0xFF);
                /* fall through */
            case 3:
                stream.write((value >> 16) & 0xFF);
                /* fall through */
            case 2:
                stream.write((value >> 8) & 0xFF);
                /* fall through */
            case 1:
                stream.write(value & 0xFF);
                break;
            default:
                /* nop */
        }
    }

    // End utility methods

    // This method is responsible for finding a nice ordering of the nodes that favors run-time
    // cache performance and dictionary size.
    /* package for tests */ static ArrayList<PtNodeArray> flattenTree(
            final PtNodeArray rootNodeArray) {
        final int treeSize = FusionDictionary.countPtNodes(rootNodeArray);
        MakedictLog.i("Counted nodes : " + treeSize);
        final ArrayList<PtNodeArray> flatTree = new ArrayList<>(treeSize);
        return flattenTreeInner(flatTree, rootNodeArray);
    }

    private static ArrayList<PtNodeArray> flattenTreeInner(final ArrayList<PtNodeArray> list,
            final PtNodeArray ptNodeArray) {
        // Removing the node is necessary if the tails are merged, because we would then
        // add the same node several times when we only want it once. A number of places in
        // the code also depends on any node being only once in the list.
        // Merging tails can only be done if there are no attributes. Searching for attributes
        // in LatinIME code depends on a total breadth-first ordering, which merging tails
        // breaks. If there are no attributes, it should be fine (and reduce the file size)
        // to merge tails, and removing the node from the list would be necessary. However,
        // we don't merge tails because breaking the breadth-first ordering would result in
        // extreme overhead at bigram lookup time (it would make the search function O(n) instead
        // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
        // high).
        // If no nodes are ever merged, we can't have the same node twice in the list, hence
        // searching for duplicates in unnecessary. It is also very performance consuming,
        // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
        // this simple list.remove operation O(n*n) overall. On Android this overhead is very
        // high.
        // For future reference, the code to remove duplicate is a simple : list.remove(node);
        list.add(ptNodeArray);
        final ArrayList<PtNode> branches = ptNodeArray.mData;
        for (PtNode ptNode : branches) {
            if (null != ptNode.mChildren) flattenTreeInner(list, ptNode.mChildren);
        }
        return list;
    }

    /**
     * Get the offset from a position inside a current node array to a target node array, during
     * update.
     *
     * If the current node array is before the target node array, the target node array has not
     * been updated yet, so we should return the offset from the old position of the current node
     * array to the old position of the target node array. If on the other hand the target is
     * before the current node array, it already has been updated, so we should return the offset
     * from the new position in the current node array to the new position in the target node
     * array.
     *
     * @param currentNodeArray node array containing the PtNode where the offset will be written
     * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
     * @param targetNodeArray the target node array to get the offset to
     * @return the offset to the target node array
     */
    private static int getOffsetToTargetNodeArrayDuringUpdate(final PtNodeArray currentNodeArray,
            final int offsetFromStartOfCurrentNodeArray, final PtNodeArray targetNodeArray) {
        final boolean isTargetBeforeCurrent = (targetNodeArray.mCachedAddressBeforeUpdate
                < currentNodeArray.mCachedAddressBeforeUpdate);
        if (isTargetBeforeCurrent) {
            return targetNodeArray.mCachedAddressAfterUpdate
                    - (currentNodeArray.mCachedAddressAfterUpdate
                            + offsetFromStartOfCurrentNodeArray);
        }
        return targetNodeArray.mCachedAddressBeforeUpdate
                - (currentNodeArray.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNodeArray);
    }

    /**
     * Get the offset from a position inside a current node array to a target PtNode, during
     * update.
     *
     * @param currentNodeArray node array containing the PtNode where the offset will be written
     * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
     * @param targetPtNode the target PtNode to get the offset to
     * @return the offset to the target PtNode
     */
    // TODO: is there any way to factorize this method with the one above?
    private static int getOffsetToTargetPtNodeDuringUpdate(final PtNodeArray currentNodeArray,
            final int offsetFromStartOfCurrentNodeArray, final PtNode targetPtNode) {
        final int oldOffsetBasePoint = currentNodeArray.mCachedAddressBeforeUpdate
                + offsetFromStartOfCurrentNodeArray;
        final boolean isTargetBeforeCurrent = (targetPtNode.mCachedAddressBeforeUpdate
                < oldOffsetBasePoint);
        // If the target is before the current node array, then its address has already been
        // updated. We can use the AfterUpdate member, and compare it to our own member after
        // update. Otherwise, the AfterUpdate member is not updated yet, so we need to use the
        // BeforeUpdate member, and of course we have to compare this to our own address before
        // update.
        if (isTargetBeforeCurrent) {
            final int newOffsetBasePoint = currentNodeArray.mCachedAddressAfterUpdate
                    + offsetFromStartOfCurrentNodeArray;
            return targetPtNode.mCachedAddressAfterUpdate - newOffsetBasePoint;
        }
        return targetPtNode.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
    }

    /**
     * Computes the actual node array size, based on the cached addresses of the children nodes.
     *
     * Each node array stores its tentative address. During dictionary address computing, these
     * are not final, but they can be used to compute the node array size (the node array size
     * depends on the address of the children because the number of bytes necessary to store an
     * address depends on its numeric value. The return value indicates whether the node array
     * contents (as in, any of the addresses stored in the cache fields) have changed with
     * respect to their previous value.
     *
     * @param ptNodeArray the node array to compute the size of.
     * @param dict the dictionary in which the word/attributes are to be found.
     * @return false if none of the cached addresses inside the node array changed, true otherwise.
     */
    private static boolean computeActualPtNodeArraySize(final PtNodeArray ptNodeArray,
            final FusionDictionary dict,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        boolean changed = false;
        int size = getPtNodeCountSize(ptNodeArray);
        for (PtNode ptNode : ptNodeArray.mData) {
            ptNode.mCachedAddressAfterUpdate = ptNodeArray.mCachedAddressAfterUpdate + size;
            if (ptNode.mCachedAddressAfterUpdate != ptNode.mCachedAddressBeforeUpdate) {
                changed = true;
            }
            int nodeSize = getNodeHeaderSize(ptNode, codePointToOneByteCodeMap);
            if (ptNode.isTerminal()) {
                nodeSize += FormatSpec.PTNODE_FREQUENCY_SIZE;
            }
            if (null != ptNode.mChildren) {
                nodeSize += getByteSize(getOffsetToTargetNodeArrayDuringUpdate(ptNodeArray,
                        nodeSize + size, ptNode.mChildren));
            }
            if (null != ptNode.mBigrams) {
                for (WeightedString bigram : ptNode.mBigrams) {
                    final int offset = getOffsetToTargetPtNodeDuringUpdate(ptNodeArray,
                            nodeSize + size + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE,
                            FusionDictionary.findWordInTree(dict.mRootNodeArray, bigram.mWord));
                    nodeSize += getByteSize(offset) + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE;
                }
            }
            ptNode.mCachedSize = nodeSize;
            size += nodeSize;
        }
        if (ptNodeArray.mCachedSize != size) {
            ptNodeArray.mCachedSize = size;
            changed = true;
        }
        return changed;
    }

    /**
     * Initializes the cached addresses of node arrays and their containing nodes from their size.
     *
     * @param flatNodes the list of node arrays.
     * @return the byte size of the entire stack.
     */
    private static int initializePtNodeArraysCachedAddresses(
            final ArrayList<PtNodeArray> flatNodes) {
        int nodeArrayOffset = 0;
        for (final PtNodeArray nodeArray : flatNodes) {
            nodeArray.mCachedAddressBeforeUpdate = nodeArrayOffset;
            int nodeCountSize = getPtNodeCountSize(nodeArray);
            int nodeffset = 0;
            for (final PtNode ptNode : nodeArray.mData) {
                ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate =
                        nodeCountSize + nodeArrayOffset + nodeffset;
                nodeffset += ptNode.mCachedSize;
            }
            nodeArrayOffset += nodeArray.mCachedSize;
        }
        return nodeArrayOffset;
    }

    /**
     * Updates the cached addresses of node arrays after recomputing their new positions.
     *
     * @param flatNodes the list of node arrays.
     */
    private static void updatePtNodeArraysCachedAddresses(final ArrayList<PtNodeArray> flatNodes) {
        for (final PtNodeArray nodeArray : flatNodes) {
            nodeArray.mCachedAddressBeforeUpdate = nodeArray.mCachedAddressAfterUpdate;
            for (final PtNode ptNode : nodeArray.mData) {
                ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate;
            }
        }
    }

    /**
     * Compute the addresses and sizes of an ordered list of PtNode arrays.
     *
     * This method takes a list of PtNode arrays and will update their cached address and size
     * values so that they can be written into a file. It determines the smallest size each of the
     * PtNode arrays can be given the addresses of its children and attributes, and store that into
     * each PtNode.
     * The order of the PtNode is given by the order of the array. This method makes no effort
     * to find a good order; it only mechanically computes the size this order results in.
     *
     * @param dict the dictionary
     * @param flatNodes the ordered list of PtNode arrays
     * @return the same array it was passed. The nodes have been updated for address and size.
     */
    /* package */ static ArrayList<PtNodeArray> computeAddresses(final FusionDictionary dict,
            final ArrayList<PtNodeArray> flatNodes,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        // First get the worst possible sizes and offsets
        for (final PtNodeArray n : flatNodes) {
            calculatePtNodeArrayMaximumSize(n, codePointToOneByteCodeMap);
        }
        final int offset = initializePtNodeArraysCachedAddresses(flatNodes);

        MakedictLog.i("Compressing the array addresses. Original size : " + offset);
        MakedictLog.i("(Recursively seen size : " + offset + ")");

        int passes = 0;
        boolean changesDone = false;
        do {
            changesDone = false;
            int ptNodeArrayStartOffset = 0;
            for (final PtNodeArray ptNodeArray : flatNodes) {
                ptNodeArray.mCachedAddressAfterUpdate = ptNodeArrayStartOffset;
                final int oldNodeArraySize = ptNodeArray.mCachedSize;
                final boolean changed = computeActualPtNodeArraySize(ptNodeArray, dict,
                        codePointToOneByteCodeMap);
                final int newNodeArraySize = ptNodeArray.mCachedSize;
                if (oldNodeArraySize < newNodeArraySize) {
                    throw new RuntimeException("Increased size ?!");
                }
                ptNodeArrayStartOffset += newNodeArraySize;
                changesDone |= changed;
            }
            updatePtNodeArraysCachedAddresses(flatNodes);
            ++passes;
            if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
        } while (changesDone);

        final PtNodeArray lastPtNodeArray = flatNodes.get(flatNodes.size() - 1);
        MakedictLog.i("Compression complete in " + passes + " passes.");
        MakedictLog.i("After address compression : "
                + (lastPtNodeArray.mCachedAddressAfterUpdate + lastPtNodeArray.mCachedSize));

        return flatNodes;
    }

    /**
     * Sanity-checking method.
     *
     * This method checks a list of PtNode arrays for juxtaposition, that is, it will do
     * nothing if each node array's cached address is actually the previous node array's address
     * plus the previous node's size.
     * If this is not the case, it will throw an exception.
     *
     * @param arrays the list of node arrays to check
     */
    /* package */ static void checkFlatPtNodeArrayList(final ArrayList<PtNodeArray> arrays) {
        int offset = 0;
        int index = 0;
        for (final PtNodeArray ptNodeArray : arrays) {
            // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter
            // which we use.
            if (ptNodeArray.mCachedAddressAfterUpdate != offset) {
                throw new RuntimeException("Wrong address for node " + index
                        + " : expected " + offset + ", got " +
                        ptNodeArray.mCachedAddressAfterUpdate);
            }
            ++index;
            offset += ptNodeArray.mCachedSize;
        }
    }

    /**
     * Helper method to write a children position to a file.
     *
     * @param buffer the buffer to write to.
     * @param fromIndex the index in the buffer to write the address to.
     * @param position the position to write.
     * @return the size in bytes the address actually took.
     */
    /* package */ static int writeChildrenPosition(final byte[] buffer, final int fromIndex,
            final int position) {
        int index = fromIndex;
        switch (getByteSize(position)) {
        case 1:
            buffer[index++] = (byte)position;
            return 1;
        case 2:
            buffer[index++] = (byte)(0xFF & (position >> 8));
            buffer[index++] = (byte)(0xFF & position);
            return 2;
        case 3:
            buffer[index++] = (byte)(0xFF & (position >> 16));
            buffer[index++] = (byte)(0xFF & (position >> 8));
            buffer[index++] = (byte)(0xFF & position);
            return 3;
        case 0:
            return 0;
        default:
            throw new RuntimeException("Position " + position + " has a strange size");
        }
    }

    /**
     * Makes the flag value for a PtNode.
     *
     * @param hasMultipleChars whether the PtNode has multiple chars.
     * @param isTerminal whether the PtNode is terminal.
     * @param childrenAddressSize the size of a children address.
     * @param hasBigrams whether the PtNode has bigrams.
     * @param isNotAWord whether the PtNode is not a word.
     * @param isPossiblyOffensive whether the PtNode is a possibly offensive entry.
     * @return the flags
     */
    static int makePtNodeFlags(final boolean hasMultipleChars, final boolean isTerminal,
            final int childrenAddressSize, final boolean hasBigrams,
            final boolean isNotAWord, final boolean isPossiblyOffensive) {
        byte flags = 0;
        if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
        if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL;
        switch (childrenAddressSize) {
            case 1:
                flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE;
                break;
            case 2:
                flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES;
                break;
            case 3:
                flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES;
                break;
            case 0:
                flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS;
                break;
            default:
                throw new RuntimeException("Node with a strange address");
        }
        if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS;
        if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
        if (isPossiblyOffensive) flags |= FormatSpec.FLAG_IS_POSSIBLY_OFFENSIVE;
        return flags;
    }

    /* package */ static byte makePtNodeFlags(final PtNode node, final int childrenOffset) {
        return (byte) makePtNodeFlags(node.mChars.length > 1, node.isTerminal(),
                getByteSize(childrenOffset),
                node.mBigrams != null && !node.mBigrams.isEmpty(),
                node.mIsNotAWord, node.mIsPossiblyOffensive);
    }

    /**
     * Makes the flag value for a bigram.
     *
     * @param more whether there are more bigrams after this one.
     * @param offset the offset of the bigram.
     * @param bigramFrequency the frequency of the bigram, 0..255.
     * @param unigramFrequency the unigram frequency of the same word, 0..255.
     * @param word the second bigram, for debugging purposes
     * @return the flags
     */
    /* package */ static int makeBigramFlags(final boolean more, final int offset,
            final int bigramFrequency, final int unigramFrequency, final String word) {
        int bigramFlags = (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0)
                + (offset < 0 ? FormatSpec.FLAG_BIGRAM_ATTR_OFFSET_NEGATIVE : 0);
        switch (getByteSize(offset)) {
        case 1:
            bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_ONEBYTE;
            break;
        case 2:
            bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_TWOBYTES;
            break;
        case 3:
            bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_THREEBYTES;
            break;
        default:
            throw new RuntimeException("Strange offset size");
        }
        final int frequency;
        if (unigramFrequency > bigramFrequency) {
            MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
                    + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
                    + word + " is " + unigramFrequency);
            frequency = unigramFrequency;
        } else {
            frequency = bigramFrequency;
        }
        bigramFlags += getBigramFrequencyDiff(unigramFrequency, frequency)
                & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY;
        return bigramFlags;
    }

    public static int getBigramFrequencyDiff(final int unigramFrequency,
            final int bigramFrequency) {
        // We compute the difference between 255 (which means probability = 1) and the
        // unigram score. We split this into a number of discrete steps.
        // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
        // represents an increase of 16 steps: a value of 15 will be interpreted as the median
        // value of the 16th step. In all justice, if the bigram frequency is low enough to be
        // rounded below the first step (which means it is less than half a step higher than the
        // unigram frequency) then the unigram frequency itself is the best approximation of the
        // bigram freq that we could possibly supply, hence we should *not* include this bigram
        // in the file at all.
        // until this is done, we'll write 0 and slightly overestimate this case.
        // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
        // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
        // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
        // step size. Then we compute the start of the first step (the one where value 0 starts)
        // by adding half-a-step to the unigramFrequency. From there, we compute the integer
        // number of steps to the bigramFrequency. One last thing: we want our steps to include
        // their lower bound and exclude their higher bound so we need to have the first step
        // start at exactly 1 unit higher than floor(unigramFreq + half a step).
        // Note : to reconstruct the score, the dictionary reader will need to divide
        // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
        // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
        // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
        // step pointed by the discretized frequency.
        final float stepSize =
                (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
                / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
        final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
        final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
        // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
        // here. The best approximation would be the unigram freq itself, so we should not
        // include this bigram in the dictionary. For now, register as 0, and live with the
        // small over-estimation that we get in this case. TODO: actually remove this bigram
        // if discretizedFrequency < 0.
        return discretizedFrequency > 0 ? discretizedFrequency : 0;
    }

    /* package */ static int getChildrenPosition(final PtNode ptNode,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        int positionOfChildrenPosField = ptNode.mCachedAddressAfterUpdate
                + getNodeHeaderSize(ptNode, codePointToOneByteCodeMap);
        if (ptNode.isTerminal()) {
            // A terminal node has the frequency.
            // If positionOfChildrenPosField is incorrect, we may crash when jumping to the children
            // position.
            positionOfChildrenPosField += FormatSpec.PTNODE_FREQUENCY_SIZE;
        }
        return null == ptNode.mChildren ? FormatSpec.NO_CHILDREN_ADDRESS
                : ptNode.mChildren.mCachedAddressAfterUpdate - positionOfChildrenPosField;
    }

    /**
     * Write a PtNodeArray. The PtNodeArray is expected to have its final position cached.
     *
     * @param dict the dictionary the node array is a part of (for relative offsets).
     * @param dictEncoder the dictionary encoder.
     * @param ptNodeArray the node array to write.
     * @param codePointToOneByteCodeMap the map to convert the code points.
     */
    /* package */ static void writePlacedPtNodeArray(final FusionDictionary dict,
            final DictEncoder dictEncoder, final PtNodeArray ptNodeArray,
            final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
        // TODO: Make the code in common with BinaryDictIOUtils#writePtNode
        dictEncoder.setPosition(ptNodeArray.mCachedAddressAfterUpdate);

        final int ptNodeCount = ptNodeArray.mData.size();
        dictEncoder.writePtNodeCount(ptNodeCount);
        for (int i = 0; i < ptNodeCount; ++i) {
            final PtNode ptNode = ptNodeArray.mData.get(i);
            if (dictEncoder.getPosition() != ptNode.mCachedAddressAfterUpdate) {
                throw new RuntimeException("Bug: write index is not the same as the cached address "
                        + "of the node : " + dictEncoder.getPosition() + " <> "
                        + ptNode.mCachedAddressAfterUpdate);
            }
            // Sanity checks.
            if (DBG && ptNode.getProbability() > FormatSpec.MAX_TERMINAL_FREQUENCY) {
                throw new RuntimeException("A node has a frequency > "
                        + FormatSpec.MAX_TERMINAL_FREQUENCY
                        + " : " + ptNode.mProbabilityInfo.toString());
            }
            dictEncoder.writePtNode(ptNode, dict, codePointToOneByteCodeMap);
        }
        if (dictEncoder.getPosition() != ptNodeArray.mCachedAddressAfterUpdate
                + ptNodeArray.mCachedSize) {
            throw new RuntimeException("Not the same size : written "
                     + (dictEncoder.getPosition() - ptNodeArray.mCachedAddressAfterUpdate)
                     + " bytes from a node that should have " + ptNodeArray.mCachedSize + " bytes");
        }
    }

    /**
     * Dumps a collection of useful statistics about a list of PtNode arrays.
     *
     * This prints purely informative stuff, like the total estimated file size, the
     * number of PtNode arrays, of PtNodes, the repartition of each address size, etc
     *
     * @param ptNodeArrays the list of PtNode arrays.
     */
    /* package */ static void showStatistics(ArrayList<PtNodeArray> ptNodeArrays) {
        int firstTerminalAddress = Integer.MAX_VALUE;
        int lastTerminalAddress = Integer.MIN_VALUE;
        int size = 0;
        int ptNodes = 0;
        int maxNodes = 0;
        int maxRuns = 0;
        for (final PtNodeArray ptNodeArray : ptNodeArrays) {
            if (maxNodes < ptNodeArray.mData.size()) maxNodes = ptNodeArray.mData.size();
            for (final PtNode ptNode : ptNodeArray.mData) {
                ++ptNodes;
                if (ptNode.mChars.length > maxRuns) maxRuns = ptNode.mChars.length;
                if (ptNode.isTerminal()) {
                    if (ptNodeArray.mCachedAddressAfterUpdate < firstTerminalAddress)
                        firstTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
                    if (ptNodeArray.mCachedAddressAfterUpdate > lastTerminalAddress)
                        lastTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
                }
            }
            if (ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize > size) {
                size = ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize;
            }
        }
        final int[] ptNodeCounts = new int[maxNodes + 1];
        final int[] runCounts = new int[maxRuns + 1];
        for (final PtNodeArray ptNodeArray : ptNodeArrays) {
            ++ptNodeCounts[ptNodeArray.mData.size()];
            for (final PtNode ptNode : ptNodeArray.mData) {
                ++runCounts[ptNode.mChars.length];
            }
        }

        MakedictLog.i("Statistics:\n"
                + "  Total file size " + size + "\n"
                + "  " + ptNodeArrays.size() + " node arrays\n"
                + "  " + ptNodes + " PtNodes (" + ((float)ptNodes / ptNodeArrays.size())
                        + " PtNodes per node)\n"
                + "  First terminal at " + firstTerminalAddress + "\n"
                + "  Last terminal at " + lastTerminalAddress + "\n"
                + "  PtNode stats : max = " + maxNodes);
    }

    /**
     * Writes a file header to an output stream.
     *
     * @param destination the stream to write the file header to.
     * @param dict the dictionary to write.
     * @param formatOptions file format options.
     * @param codePointOccurrenceArray code points ordered by occurrence count.
     * @return the size of the header.
     */
    /* package */ static int writeDictionaryHeader(final OutputStream destination,
            final FusionDictionary dict, final FormatOptions formatOptions,
            final ArrayList<Entry<Integer, Integer>> codePointOccurrenceArray)
                    throws IOException, UnsupportedFormatException {
        final int version = formatOptions.mVersion;
        if ((version >= FormatSpec.MINIMUM_SUPPORTED_STATIC_VERSION &&
                version <= FormatSpec.MAXIMUM_SUPPORTED_STATIC_VERSION) || (
                version >= FormatSpec.MINIMUM_SUPPORTED_DYNAMIC_VERSION &&
                version <= FormatSpec.MAXIMUM_SUPPORTED_DYNAMIC_VERSION)) {
            // Dictionary is valid
        } else {
            throw new UnsupportedFormatException("Requested file format version " + version
                    + ", but this implementation only supports static versions "
                    + FormatSpec.MINIMUM_SUPPORTED_STATIC_VERSION + " through "
                    + FormatSpec.MAXIMUM_SUPPORTED_STATIC_VERSION + " and dynamic versions "
                    + FormatSpec.MINIMUM_SUPPORTED_DYNAMIC_VERSION + " through "
                    + FormatSpec.MAXIMUM_SUPPORTED_DYNAMIC_VERSION);
        }

        ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);

        // The magic number in big-endian order.
        // Magic number for all versions.
        headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24)));
        headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16)));
        headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8)));
        headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER));
        // Dictionary version.
        headerBuffer.write((byte) (0xFF & (version >> 8)));
        headerBuffer.write((byte) (0xFF & version));

        // Options flags
        // TODO: Remove this field.
        final int options = 0;
        headerBuffer.write((byte) (0xFF & (options >> 8)));
        headerBuffer.write((byte) (0xFF & options));
        final int headerSizeOffset = headerBuffer.size();
        // Placeholder to be written later with header size.
        for (int i = 0; i < 4; ++i) {
            headerBuffer.write(0);
        }
        // Write out the options.
        for (final String key : dict.mOptions.mAttributes.keySet()) {
            final String value = dict.mOptions.mAttributes.get(key);
            CharEncoding.writeString(headerBuffer, key, null);
            CharEncoding.writeString(headerBuffer, value, null);
        }
        // Write out the codePointTable if there is codePointOccurrenceArray.
        if (codePointOccurrenceArray != null) {
            final String codePointTableString =
                    encodeCodePointTable(codePointOccurrenceArray);
            CharEncoding.writeString(headerBuffer, DictionaryHeader.CODE_POINT_TABLE_KEY, null);
            CharEncoding.writeString(headerBuffer, codePointTableString, null);
        }
        final int size = headerBuffer.size();
        final byte[] bytes = headerBuffer.toByteArray();
        // Write out the header size.
        bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
        bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
        bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
        bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
        destination.write(bytes);

        headerBuffer.close();
        return size;
    }

    static final class CodePointTable {
        final HashMap<Integer, Integer> mCodePointToOneByteCodeMap;
        final ArrayList<Entry<Integer, Integer>> mCodePointOccurrenceArray;

        // Let code point table empty for version 200 dictionary which used in test
        CodePointTable() {
            mCodePointToOneByteCodeMap = null;
            mCodePointOccurrenceArray = null;
        }

        CodePointTable(final HashMap<Integer, Integer> codePointToOneByteCodeMap,
                final ArrayList<Entry<Integer, Integer>> codePointOccurrenceArray) {
            mCodePointToOneByteCodeMap = codePointToOneByteCodeMap;
            mCodePointOccurrenceArray = codePointOccurrenceArray;
        }
    }

    private static String encodeCodePointTable(
            final ArrayList<Entry<Integer, Integer>> codePointOccurrenceArray) {
        final StringBuilder codePointTableString = new StringBuilder();
        int currentCodePointTableIndex = FormatSpec.MINIMAL_ONE_BYTE_CHARACTER_VALUE;
        for (final Entry<Integer, Integer> entry : codePointOccurrenceArray) {
            // Native reads the table as a string
            codePointTableString.appendCodePoint(entry.getKey());
            if (FormatSpec.MAXIMAL_ONE_BYTE_CHARACTER_VALUE < ++currentCodePointTableIndex) {
                break;
            }
        }
        return codePointTableString.toString();
    }
}