/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.launcher2; import android.animation.Animator; import android.animation.AnimatorListenerAdapter; import android.animation.ObjectAnimator; import android.animation.PropertyValuesHolder; import android.animation.TimeInterpolator; import android.animation.ValueAnimator; import android.animation.ValueAnimator.AnimatorUpdateListener; import android.content.Context; import android.content.res.Resources; import android.content.res.TypedArray; import android.graphics.Bitmap; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.graphics.Point; import android.graphics.PointF; import android.graphics.PorterDuff; import android.graphics.PorterDuffXfermode; import android.graphics.Rect; import android.graphics.drawable.ColorDrawable; import android.graphics.drawable.Drawable; import android.graphics.drawable.NinePatchDrawable; import android.util.AttributeSet; import android.util.Log; import android.view.MotionEvent; import android.view.View; import android.view.ViewDebug; import android.view.ViewGroup; import android.view.animation.Animation; import android.view.animation.DecelerateInterpolator; import android.view.animation.LayoutAnimationController; import com.android.launcher.R; import com.android.launcher2.FolderIcon.FolderRingAnimator; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Stack; public class CellLayout extends ViewGroup { static final String TAG = "CellLayout"; private int mOriginalCellWidth; private int mOriginalCellHeight; private int mCellWidth; private int mCellHeight; private int mCountX; private int mCountY; private int mOriginalWidthGap; private int mOriginalHeightGap; private int mWidthGap; private int mHeightGap; private int mMaxGap; private boolean mScrollingTransformsDirty = false; private final Rect mRect = new Rect(); private final CellInfo mCellInfo = new CellInfo(); // These are temporary variables to prevent having to allocate a new object just to // return an (x, y) value from helper functions. Do NOT use them to maintain other state. private final int[] mTmpXY = new int[2]; private final int[] mTmpPoint = new int[2]; private final PointF mTmpPointF = new PointF(); int[] mTempLocation = new int[2]; boolean[][] mOccupied; boolean[][] mTmpOccupied; private boolean mLastDownOnOccupiedCell = false; private OnTouchListener mInterceptTouchListener; private ArrayList mFolderOuterRings = new ArrayList(); private int[] mFolderLeaveBehindCell = {-1, -1}; private int mForegroundAlpha = 0; private float mBackgroundAlpha; private float mBackgroundAlphaMultiplier = 1.0f; private Drawable mNormalBackground; private Drawable mActiveGlowBackground; private Drawable mOverScrollForegroundDrawable; private Drawable mOverScrollLeft; private Drawable mOverScrollRight; private Rect mBackgroundRect; private Rect mForegroundRect; private int mForegroundPadding; // If we're actively dragging something over this screen, mIsDragOverlapping is true private boolean mIsDragOverlapping = false; private final Point mDragCenter = new Point(); // These arrays are used to implement the drag visualization on x-large screens. // They are used as circular arrays, indexed by mDragOutlineCurrent. private Rect[] mDragOutlines = new Rect[4]; private float[] mDragOutlineAlphas = new float[mDragOutlines.length]; private InterruptibleInOutAnimator[] mDragOutlineAnims = new InterruptibleInOutAnimator[mDragOutlines.length]; // Used as an index into the above 3 arrays; indicates which is the most current value. private int mDragOutlineCurrent = 0; private final Paint mDragOutlinePaint = new Paint(); private BubbleTextView mPressedOrFocusedIcon; private Drawable mCrosshairsDrawable = null; private InterruptibleInOutAnimator mCrosshairsAnimator = null; private float mCrosshairsVisibility = 0.0f; private HashMap mReorderAnimators = new HashMap(); // When a drag operation is in progress, holds the nearest cell to the touch point private final int[] mDragCell = new int[2]; private boolean mDragging = false; private boolean mItemLocationsDirty = false; private TimeInterpolator mEaseOutInterpolator; private ShortcutAndWidgetContainer mShortcutsAndWidgets; private boolean mIsHotseat = false; private float mChildScale = 1f; private float mHotseatChildScale = 1f; public static final int MODE_DRAG_OVER = 0; public static final int MODE_ON_DROP = 1; public static final int MODE_ON_DROP_EXTERNAL = 2; public static final int MODE_ACCEPT_DROP = 3; private static final boolean DESTRUCTIVE_REORDER = true; private static final boolean DEBUG_VISUALIZE_OCCUPIED = false; private ArrayList mIntersectingViews = new ArrayList(); private Rect mOccupiedRect = new Rect(); private int[] mDirectionVector = new int[2]; public CellLayout(Context context) { this(context, null); } public CellLayout(Context context, AttributeSet attrs) { this(context, attrs, 0); } public CellLayout(Context context, AttributeSet attrs, int defStyle) { super(context, attrs, defStyle); // A ViewGroup usually does not draw, but CellLayout needs to draw a rectangle to show // the user where a dragged item will land when dropped. setWillNotDraw(false); TypedArray a = context.obtainStyledAttributes(attrs, R.styleable.CellLayout, defStyle, 0); mOriginalCellWidth = mCellWidth = a.getDimensionPixelSize(R.styleable.CellLayout_cellWidth, 10); mOriginalCellHeight = mCellHeight = a.getDimensionPixelSize(R.styleable.CellLayout_cellHeight, 10); mWidthGap = mOriginalWidthGap = a.getDimensionPixelSize(R.styleable.CellLayout_widthGap, 0); mHeightGap = mOriginalHeightGap = a.getDimensionPixelSize(R.styleable.CellLayout_heightGap, 0); mMaxGap = a.getDimensionPixelSize(R.styleable.CellLayout_maxGap, 0); mCountX = LauncherModel.getCellCountX(); mCountY = LauncherModel.getCellCountY(); mOccupied = new boolean[mCountX][mCountY]; mTmpOccupied = new boolean[mCountX][mCountY]; a.recycle(); setAlwaysDrawnWithCacheEnabled(false); final Resources res = getResources(); mNormalBackground = res.getDrawable(R.drawable.homescreen_blue_normal_holo); mActiveGlowBackground = res.getDrawable(R.drawable.homescreen_blue_strong_holo); mOverScrollLeft = res.getDrawable(R.drawable.overscroll_glow_left); mOverScrollRight = res.getDrawable(R.drawable.overscroll_glow_right); mForegroundPadding = res.getDimensionPixelSize(R.dimen.workspace_overscroll_drawable_padding); mNormalBackground.setFilterBitmap(true); mActiveGlowBackground.setFilterBitmap(true); int iconScale = res.getInteger(R.integer.app_icon_scale_percent); if (iconScale >= 0) { mChildScale = iconScale / 100f; } int hotseatIconScale = res.getInteger(R.integer.app_icon_hotseat_scale_percent); if (hotseatIconScale >= 0) { mHotseatChildScale = hotseatIconScale / 100f; } // Initialize the data structures used for the drag visualization. mCrosshairsDrawable = res.getDrawable(R.drawable.gardening_crosshairs); mEaseOutInterpolator = new DecelerateInterpolator(2.5f); // Quint ease out // Set up the animation for fading the crosshairs in and out int animDuration = res.getInteger(R.integer.config_crosshairsFadeInTime); mCrosshairsAnimator = new InterruptibleInOutAnimator(animDuration, 0.0f, 1.0f); mCrosshairsAnimator.getAnimator().addUpdateListener(new AnimatorUpdateListener() { public void onAnimationUpdate(ValueAnimator animation) { mCrosshairsVisibility = ((Float) animation.getAnimatedValue()).floatValue(); invalidate(); } }); mCrosshairsAnimator.getAnimator().setInterpolator(mEaseOutInterpolator); mDragCell[0] = mDragCell[1] = -1; for (int i = 0; i < mDragOutlines.length; i++) { mDragOutlines[i] = new Rect(-1, -1, -1, -1); } // When dragging things around the home screens, we show a green outline of // where the item will land. The outlines gradually fade out, leaving a trail // behind the drag path. // Set up all the animations that are used to implement this fading. final int duration = res.getInteger(R.integer.config_dragOutlineFadeTime); final float fromAlphaValue = 0; final float toAlphaValue = (float)res.getInteger(R.integer.config_dragOutlineMaxAlpha); Arrays.fill(mDragOutlineAlphas, fromAlphaValue); for (int i = 0; i < mDragOutlineAnims.length; i++) { final InterruptibleInOutAnimator anim = new InterruptibleInOutAnimator(duration, fromAlphaValue, toAlphaValue); anim.getAnimator().setInterpolator(mEaseOutInterpolator); final int thisIndex = i; anim.getAnimator().addUpdateListener(new AnimatorUpdateListener() { public void onAnimationUpdate(ValueAnimator animation) { final Bitmap outline = (Bitmap)anim.getTag(); // If an animation is started and then stopped very quickly, we can still // get spurious updates we've cleared the tag. Guard against this. if (outline == null) { if (false) { Object val = animation.getAnimatedValue(); Log.d(TAG, "anim " + thisIndex + " update: " + val + ", isStopped " + anim.isStopped()); } // Try to prevent it from continuing to run animation.cancel(); } else { mDragOutlineAlphas[thisIndex] = (Float) animation.getAnimatedValue(); CellLayout.this.invalidate(mDragOutlines[thisIndex]); } } }); // The animation holds a reference to the drag outline bitmap as long is it's // running. This way the bitmap can be GCed when the animations are complete. anim.getAnimator().addListener(new AnimatorListenerAdapter() { @Override public void onAnimationEnd(Animator animation) { if ((Float) ((ValueAnimator) animation).getAnimatedValue() == 0f) { anim.setTag(null); } } }); mDragOutlineAnims[i] = anim; } mBackgroundRect = new Rect(); mForegroundRect = new Rect(); mShortcutsAndWidgets = new ShortcutAndWidgetContainer(context); mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap); addView(mShortcutsAndWidgets); } static int widthInPortrait(Resources r, int numCells) { // We use this method from Workspace to figure out how many rows/columns Launcher should // have. We ignore the left/right padding on CellLayout because it turns out in our design // the padding extends outside the visible screen size, but it looked fine anyway. int cellWidth = r.getDimensionPixelSize(R.dimen.workspace_cell_width); int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap), r.getDimensionPixelSize(R.dimen.workspace_height_gap)); return minGap * (numCells - 1) + cellWidth * numCells; } static int heightInLandscape(Resources r, int numCells) { // We use this method from Workspace to figure out how many rows/columns Launcher should // have. We ignore the left/right padding on CellLayout because it turns out in our design // the padding extends outside the visible screen size, but it looked fine anyway. int cellHeight = r.getDimensionPixelSize(R.dimen.workspace_cell_height); int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap), r.getDimensionPixelSize(R.dimen.workspace_height_gap)); return minGap * (numCells - 1) + cellHeight * numCells; } public void enableHardwareLayers() { mShortcutsAndWidgets.enableHardwareLayers(); } public void setGridSize(int x, int y) { mCountX = x; mCountY = y; mOccupied = new boolean[mCountX][mCountY]; mTmpOccupied = new boolean[mCountX][mCountY]; requestLayout(); } private void invalidateBubbleTextView(BubbleTextView icon) { final int padding = icon.getPressedOrFocusedBackgroundPadding(); invalidate(icon.getLeft() + getPaddingLeft() - padding, icon.getTop() + getPaddingTop() - padding, icon.getRight() + getPaddingLeft() + padding, icon.getBottom() + getPaddingTop() + padding); } void setOverScrollAmount(float r, boolean left) { if (left && mOverScrollForegroundDrawable != mOverScrollLeft) { mOverScrollForegroundDrawable = mOverScrollLeft; } else if (!left && mOverScrollForegroundDrawable != mOverScrollRight) { mOverScrollForegroundDrawable = mOverScrollRight; } mForegroundAlpha = (int) Math.round((r * 255)); mOverScrollForegroundDrawable.setAlpha(mForegroundAlpha); invalidate(); } void setPressedOrFocusedIcon(BubbleTextView icon) { // We draw the pressed or focused BubbleTextView's background in CellLayout because it // requires an expanded clip rect (due to the glow's blur radius) BubbleTextView oldIcon = mPressedOrFocusedIcon; mPressedOrFocusedIcon = icon; if (oldIcon != null) { invalidateBubbleTextView(oldIcon); } if (mPressedOrFocusedIcon != null) { invalidateBubbleTextView(mPressedOrFocusedIcon); } } void setIsDragOverlapping(boolean isDragOverlapping) { if (mIsDragOverlapping != isDragOverlapping) { mIsDragOverlapping = isDragOverlapping; invalidate(); } } boolean getIsDragOverlapping() { return mIsDragOverlapping; } protected void setOverscrollTransformsDirty(boolean dirty) { mScrollingTransformsDirty = dirty; } protected void resetOverscrollTransforms() { if (mScrollingTransformsDirty) { setOverscrollTransformsDirty(false); setTranslationX(0); setRotationY(0); // It doesn't matter if we pass true or false here, the important thing is that we // pass 0, which results in the overscroll drawable not being drawn any more. setOverScrollAmount(0, false); setPivotX(getMeasuredWidth() / 2); setPivotY(getMeasuredHeight() / 2); } } @Override protected void onDraw(Canvas canvas) { // When we're large, we are either drawn in a "hover" state (ie when dragging an item to // a neighboring page) or with just a normal background (if backgroundAlpha > 0.0f) // When we're small, we are either drawn normally or in the "accepts drops" state (during // a drag). However, we also drag the mini hover background *over* one of those two // backgrounds if (mBackgroundAlpha > 0.0f) { Drawable bg; if (mIsDragOverlapping) { // In the mini case, we draw the active_glow bg *over* the active background bg = mActiveGlowBackground; } else { bg = mNormalBackground; } bg.setAlpha((int) (mBackgroundAlpha * mBackgroundAlphaMultiplier * 255)); bg.setBounds(mBackgroundRect); bg.draw(canvas); } if (mCrosshairsVisibility > 0.0f) { final int countX = mCountX; final int countY = mCountY; final float MAX_ALPHA = 0.4f; final int MAX_VISIBLE_DISTANCE = 600; final float DISTANCE_MULTIPLIER = 0.002f; final Drawable d = mCrosshairsDrawable; final int width = d.getIntrinsicWidth(); final int height = d.getIntrinsicHeight(); int x = getPaddingLeft() - (mWidthGap / 2) - (width / 2); for (int col = 0; col <= countX; col++) { int y = getPaddingTop() - (mHeightGap / 2) - (height / 2); for (int row = 0; row <= countY; row++) { mTmpPointF.set(x - mDragCenter.x, y - mDragCenter.y); float dist = mTmpPointF.length(); // Crosshairs further from the drag point are more faint float alpha = Math.min(MAX_ALPHA, DISTANCE_MULTIPLIER * (MAX_VISIBLE_DISTANCE - dist)); if (alpha > 0.0f) { d.setBounds(x, y, x + width, y + height); d.setAlpha((int) (alpha * 255 * mCrosshairsVisibility)); d.draw(canvas); } y += mCellHeight + mHeightGap; } x += mCellWidth + mWidthGap; } } final Paint paint = mDragOutlinePaint; for (int i = 0; i < mDragOutlines.length; i++) { final float alpha = mDragOutlineAlphas[i]; if (alpha > 0) { final Rect r = mDragOutlines[i]; final Bitmap b = (Bitmap) mDragOutlineAnims[i].getTag(); paint.setAlpha((int)(alpha + .5f)); canvas.drawBitmap(b, null, r, paint); } } // We draw the pressed or focused BubbleTextView's background in CellLayout because it // requires an expanded clip rect (due to the glow's blur radius) if (mPressedOrFocusedIcon != null) { final int padding = mPressedOrFocusedIcon.getPressedOrFocusedBackgroundPadding(); final Bitmap b = mPressedOrFocusedIcon.getPressedOrFocusedBackground(); if (b != null) { canvas.drawBitmap(b, mPressedOrFocusedIcon.getLeft() + getPaddingLeft() - padding, mPressedOrFocusedIcon.getTop() + getPaddingTop() - padding, null); } } if (DEBUG_VISUALIZE_OCCUPIED) { int[] pt = new int[2]; ColorDrawable cd = new ColorDrawable(Color.RED); cd.setBounds(0, 0, 80, 80); for (int i = 0; i < mCountX; i++) { for (int j = 0; j < mCountY; j++) { if (mOccupied[i][j]) { cellToPoint(i, j, pt); canvas.save(); canvas.translate(pt[0], pt[1]); cd.draw(canvas); canvas.restore(); } } } } // The folder outer / inner ring image(s) for (int i = 0; i < mFolderOuterRings.size(); i++) { FolderRingAnimator fra = mFolderOuterRings.get(i); // Draw outer ring Drawable d = FolderRingAnimator.sSharedOuterRingDrawable; int width = (int) fra.getOuterRingSize(); int height = width; cellToPoint(fra.mCellX, fra.mCellY, mTempLocation); int centerX = mTempLocation[0] + mCellWidth / 2; int centerY = mTempLocation[1] + FolderRingAnimator.sPreviewSize / 2; canvas.save(); canvas.translate(centerX - width / 2, centerY - height / 2); d.setBounds(0, 0, width, height); d.draw(canvas); canvas.restore(); // Draw inner ring d = FolderRingAnimator.sSharedInnerRingDrawable; width = (int) fra.getInnerRingSize(); height = width; cellToPoint(fra.mCellX, fra.mCellY, mTempLocation); centerX = mTempLocation[0] + mCellWidth / 2; centerY = mTempLocation[1] + FolderRingAnimator.sPreviewSize / 2; canvas.save(); canvas.translate(centerX - width / 2, centerY - width / 2); d.setBounds(0, 0, width, height); d.draw(canvas); canvas.restore(); } if (mFolderLeaveBehindCell[0] >= 0 && mFolderLeaveBehindCell[1] >= 0) { Drawable d = FolderIcon.sSharedFolderLeaveBehind; int width = d.getIntrinsicWidth(); int height = d.getIntrinsicHeight(); cellToPoint(mFolderLeaveBehindCell[0], mFolderLeaveBehindCell[1], mTempLocation); int centerX = mTempLocation[0] + mCellWidth / 2; int centerY = mTempLocation[1] + FolderRingAnimator.sPreviewSize / 2; canvas.save(); canvas.translate(centerX - width / 2, centerY - width / 2); d.setBounds(0, 0, width, height); d.draw(canvas); canvas.restore(); } } @Override protected void dispatchDraw(Canvas canvas) { super.dispatchDraw(canvas); if (mForegroundAlpha > 0) { mOverScrollForegroundDrawable.setBounds(mForegroundRect); Paint p = ((NinePatchDrawable) mOverScrollForegroundDrawable).getPaint(); p.setXfermode(new PorterDuffXfermode(PorterDuff.Mode.ADD)); mOverScrollForegroundDrawable.draw(canvas); p.setXfermode(null); } } public void showFolderAccept(FolderRingAnimator fra) { mFolderOuterRings.add(fra); } public void hideFolderAccept(FolderRingAnimator fra) { if (mFolderOuterRings.contains(fra)) { mFolderOuterRings.remove(fra); } invalidate(); } public void setFolderLeaveBehindCell(int x, int y) { mFolderLeaveBehindCell[0] = x; mFolderLeaveBehindCell[1] = y; invalidate(); } public void clearFolderLeaveBehind() { mFolderLeaveBehindCell[0] = -1; mFolderLeaveBehindCell[1] = -1; invalidate(); } @Override public boolean shouldDelayChildPressedState() { return false; } @Override public void cancelLongPress() { super.cancelLongPress(); // Cancel long press for all children final int count = getChildCount(); for (int i = 0; i < count; i++) { final View child = getChildAt(i); child.cancelLongPress(); } } public void setOnInterceptTouchListener(View.OnTouchListener listener) { mInterceptTouchListener = listener; } int getCountX() { return mCountX; } int getCountY() { return mCountY; } public void setIsHotseat(boolean isHotseat) { mIsHotseat = isHotseat; } public float getChildrenScale() { return mIsHotseat ? mHotseatChildScale : mChildScale; } public boolean addViewToCellLayout( View child, int index, int childId, LayoutParams params, boolean markCells) { return addViewToCellLayout(child, index, childId, params, markCells, false); } private void scaleChild(BubbleTextView bubbleChild, float pivot, float scale) { // If we haven't measured the child yet, do it now // (this happens if we're being dropped from all-apps if (bubbleChild.getLayoutParams() instanceof LayoutParams && (bubbleChild.getMeasuredWidth() | bubbleChild.getMeasuredHeight()) == 0) { getShortcutsAndWidgets().measureChild(bubbleChild); } int measuredWidth = bubbleChild.getMeasuredWidth(); int measuredHeight = bubbleChild.getMeasuredHeight(); bubbleChild.setScaleX(scale); bubbleChild.setScaleY(scale); } private void resetChild(BubbleTextView bubbleChild) { bubbleChild.setScaleX(1f); bubbleChild.setScaleY(1f); bubbleChild.setTextColor(getResources().getColor(R.color.workspace_icon_text_color)); } public boolean addViewToCellLayout(View child, int index, int childId, LayoutParams params, boolean markCells, boolean allApps) { final LayoutParams lp = params; // Hotseat icons - scale down and remove text // Don't scale the all apps button // scale percent set to -1 means do not scale // Only scale BubbleTextViews if (child instanceof BubbleTextView) { BubbleTextView bubbleChild = (BubbleTextView) child; // Start the child with 100% scale and visible text resetChild(bubbleChild); if (mIsHotseat && !allApps && mHotseatChildScale >= 0) { // Scale/make transparent for a hotseat scaleChild(bubbleChild, 0f, mHotseatChildScale); bubbleChild.setTextColor(getResources().getColor(android.R.color.transparent)); } else if (mChildScale >= 0) { // Else possibly still scale it if we need to for smaller icons scaleChild(bubbleChild, 0f, mChildScale); } } // Generate an id for each view, this assumes we have at most 256x256 cells // per workspace screen if (lp.cellX >= 0 && lp.cellX <= mCountX - 1 && lp.cellY >= 0 && lp.cellY <= mCountY - 1) { // If the horizontal or vertical span is set to -1, it is taken to // mean that it spans the extent of the CellLayout if (lp.cellHSpan < 0) lp.cellHSpan = mCountX; if (lp.cellVSpan < 0) lp.cellVSpan = mCountY; child.setId(childId); mShortcutsAndWidgets.addView(child, index, lp); if (markCells) markCellsAsOccupiedForView(child); return true; } return false; } @Override public void removeAllViews() { clearOccupiedCells(); mShortcutsAndWidgets.removeAllViews(); } @Override public void removeAllViewsInLayout() { if (mShortcutsAndWidgets.getChildCount() > 0) { clearOccupiedCells(); mShortcutsAndWidgets.removeAllViewsInLayout(); } } public void removeViewWithoutMarkingCells(View view) { mShortcutsAndWidgets.removeView(view); } @Override public void removeView(View view) { markCellsAsUnoccupiedForView(view); mShortcutsAndWidgets.removeView(view); } @Override public void removeViewAt(int index) { markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(index)); mShortcutsAndWidgets.removeViewAt(index); } @Override public void removeViewInLayout(View view) { markCellsAsUnoccupiedForView(view); mShortcutsAndWidgets.removeViewInLayout(view); } @Override public void removeViews(int start, int count) { for (int i = start; i < start + count; i++) { markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i)); } mShortcutsAndWidgets.removeViews(start, count); } @Override public void removeViewsInLayout(int start, int count) { for (int i = start; i < start + count; i++) { markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i)); } mShortcutsAndWidgets.removeViewsInLayout(start, count); } @Override protected void onAttachedToWindow() { super.onAttachedToWindow(); mCellInfo.screen = ((ViewGroup) getParent()).indexOfChild(this); } public void setTagToCellInfoForPoint(int touchX, int touchY) { final CellInfo cellInfo = mCellInfo; Rect frame = mRect; final int x = touchX + mScrollX; final int y = touchY + mScrollY; final int count = mShortcutsAndWidgets.getChildCount(); boolean found = false; for (int i = count - 1; i >= 0; i--) { final View child = mShortcutsAndWidgets.getChildAt(i); final LayoutParams lp = (LayoutParams) child.getLayoutParams(); if ((child.getVisibility() == VISIBLE || child.getAnimation() != null) && lp.isLockedToGrid) { child.getHitRect(frame); float scale = child.getScaleX(); frame = new Rect(child.getLeft(), child.getTop(), child.getRight(), child.getBottom()); // The child hit rect is relative to the CellLayoutChildren parent, so we need to // offset that by this CellLayout's padding to test an (x,y) point that is relative // to this view. frame.offset(mPaddingLeft, mPaddingTop); frame.inset((int) (frame.width() * (1f - scale) / 2), (int) (frame.height() * (1f - scale) / 2)); if (frame.contains(x, y)) { cellInfo.cell = child; cellInfo.cellX = lp.cellX; cellInfo.cellY = lp.cellY; cellInfo.spanX = lp.cellHSpan; cellInfo.spanY = lp.cellVSpan; found = true; break; } } } mLastDownOnOccupiedCell = found; if (!found) { final int cellXY[] = mTmpXY; pointToCellExact(x, y, cellXY); cellInfo.cell = null; cellInfo.cellX = cellXY[0]; cellInfo.cellY = cellXY[1]; cellInfo.spanX = 1; cellInfo.spanY = 1; } setTag(cellInfo); } @Override public boolean onInterceptTouchEvent(MotionEvent ev) { // First we clear the tag to ensure that on every touch down we start with a fresh slate, // even in the case where we return early. Not clearing here was causing bugs whereby on // long-press we'd end up picking up an item from a previous drag operation. final int action = ev.getAction(); if (action == MotionEvent.ACTION_DOWN) { clearTagCellInfo(); } if (mInterceptTouchListener != null && mInterceptTouchListener.onTouch(this, ev)) { return true; } if (action == MotionEvent.ACTION_DOWN) { setTagToCellInfoForPoint((int) ev.getX(), (int) ev.getY()); } return false; } private void clearTagCellInfo() { final CellInfo cellInfo = mCellInfo; cellInfo.cell = null; cellInfo.cellX = -1; cellInfo.cellY = -1; cellInfo.spanX = 0; cellInfo.spanY = 0; setTag(cellInfo); } public CellInfo getTag() { return (CellInfo) super.getTag(); } /** * Given a point, return the cell that strictly encloses that point * @param x X coordinate of the point * @param y Y coordinate of the point * @param result Array of 2 ints to hold the x and y coordinate of the cell */ void pointToCellExact(int x, int y, int[] result) { final int hStartPadding = getPaddingLeft(); final int vStartPadding = getPaddingTop(); result[0] = (x - hStartPadding) / (mCellWidth + mWidthGap); result[1] = (y - vStartPadding) / (mCellHeight + mHeightGap); final int xAxis = mCountX; final int yAxis = mCountY; if (result[0] < 0) result[0] = 0; if (result[0] >= xAxis) result[0] = xAxis - 1; if (result[1] < 0) result[1] = 0; if (result[1] >= yAxis) result[1] = yAxis - 1; } /** * Given a point, return the cell that most closely encloses that point * @param x X coordinate of the point * @param y Y coordinate of the point * @param result Array of 2 ints to hold the x and y coordinate of the cell */ void pointToCellRounded(int x, int y, int[] result) { pointToCellExact(x + (mCellWidth / 2), y + (mCellHeight / 2), result); } /** * Given a cell coordinate, return the point that represents the upper left corner of that cell * * @param cellX X coordinate of the cell * @param cellY Y coordinate of the cell * * @param result Array of 2 ints to hold the x and y coordinate of the point */ void cellToPoint(int cellX, int cellY, int[] result) { final int hStartPadding = getPaddingLeft(); final int vStartPadding = getPaddingTop(); result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap); result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap); } /** * Given a cell coordinate, return the point that represents the center of the cell * * @param cellX X coordinate of the cell * @param cellY Y coordinate of the cell * * @param result Array of 2 ints to hold the x and y coordinate of the point */ void cellToCenterPoint(int cellX, int cellY, int[] result) { regionToCenterPoint(cellX, cellY, 1, 1, result); } /** * Given a cell coordinate and span return the point that represents the center of the regio * * @param cellX X coordinate of the cell * @param cellY Y coordinate of the cell * * @param result Array of 2 ints to hold the x and y coordinate of the point */ void regionToCenterPoint(int cellX, int cellY, int spanX, int spanY, int[] result) { final int hStartPadding = getPaddingLeft(); final int vStartPadding = getPaddingTop(); result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap) + (spanX * mCellWidth + (spanX - 1) * mWidthGap) / 2; result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap) + (spanY * mCellHeight + (spanY - 1) * mHeightGap) / 2; } public float getDistanceFromCell(float x, float y, int[] cell) { cellToCenterPoint(cell[0], cell[1], mTmpPoint); float distance = (float) Math.sqrt( Math.pow(x - mTmpPoint[0], 2) + Math.pow(y - mTmpPoint[1], 2)); return distance; } int getCellWidth() { return mCellWidth; } int getCellHeight() { return mCellHeight; } int getWidthGap() { return mWidthGap; } int getHeightGap() { return mHeightGap; } Rect getContentRect(Rect r) { if (r == null) { r = new Rect(); } int left = getPaddingLeft(); int top = getPaddingTop(); int right = left + getWidth() - mPaddingLeft - mPaddingRight; int bottom = top + getHeight() - mPaddingTop - mPaddingBottom; r.set(left, top, right, bottom); return r; } @Override protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { // TODO: currently ignoring padding int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec); int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec); int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec); int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec); if (widthSpecMode == MeasureSpec.UNSPECIFIED || heightSpecMode == MeasureSpec.UNSPECIFIED) { throw new RuntimeException("CellLayout cannot have UNSPECIFIED dimensions"); } int numWidthGaps = mCountX - 1; int numHeightGaps = mCountY - 1; if (mOriginalWidthGap < 0 || mOriginalHeightGap < 0) { int hSpace = widthSpecSize - mPaddingLeft - mPaddingRight; int vSpace = heightSpecSize - mPaddingTop - mPaddingBottom; int hFreeSpace = hSpace - (mCountX * mOriginalCellWidth); int vFreeSpace = vSpace - (mCountY * mOriginalCellHeight); mWidthGap = Math.min(mMaxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0); mHeightGap = Math.min(mMaxGap,numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0); mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap); } else { mWidthGap = mOriginalWidthGap; mHeightGap = mOriginalHeightGap; } // Initial values correspond to widthSpecMode == MeasureSpec.EXACTLY int newWidth = widthSpecSize; int newHeight = heightSpecSize; if (widthSpecMode == MeasureSpec.AT_MOST) { newWidth = mPaddingLeft + mPaddingRight + (mCountX * mCellWidth) + ((mCountX - 1) * mWidthGap); newHeight = mPaddingTop + mPaddingBottom + (mCountY * mCellHeight) + ((mCountY - 1) * mHeightGap); setMeasuredDimension(newWidth, newHeight); } int count = getChildCount(); for (int i = 0; i < count; i++) { View child = getChildAt(i); int childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(newWidth - mPaddingLeft - mPaddingRight, MeasureSpec.EXACTLY); int childheightMeasureSpec = MeasureSpec.makeMeasureSpec(newHeight - mPaddingTop - mPaddingBottom, MeasureSpec.EXACTLY); child.measure(childWidthMeasureSpec, childheightMeasureSpec); } setMeasuredDimension(newWidth, newHeight); } @Override protected void onLayout(boolean changed, int l, int t, int r, int b) { int count = getChildCount(); for (int i = 0; i < count; i++) { View child = getChildAt(i); child.layout(mPaddingLeft, mPaddingTop, r - l - mPaddingRight, b - t - mPaddingBottom); } } @Override protected void onSizeChanged(int w, int h, int oldw, int oldh) { super.onSizeChanged(w, h, oldw, oldh); mBackgroundRect.set(0, 0, w, h); mForegroundRect.set(mForegroundPadding, mForegroundPadding, w - 2 * mForegroundPadding, h - 2 * mForegroundPadding); } @Override protected void setChildrenDrawingCacheEnabled(boolean enabled) { mShortcutsAndWidgets.setChildrenDrawingCacheEnabled(enabled); } @Override protected void setChildrenDrawnWithCacheEnabled(boolean enabled) { mShortcutsAndWidgets.setChildrenDrawnWithCacheEnabled(enabled); } public float getBackgroundAlpha() { return mBackgroundAlpha; } public void setBackgroundAlphaMultiplier(float multiplier) { mBackgroundAlphaMultiplier = multiplier; } public float getBackgroundAlphaMultiplier() { return mBackgroundAlphaMultiplier; } public void setBackgroundAlpha(float alpha) { if (mBackgroundAlpha != alpha) { mBackgroundAlpha = alpha; invalidate(); } } public void setShortcutAndWidgetAlpha(float alpha) { final int childCount = getChildCount(); for (int i = 0; i < childCount; i++) { getChildAt(i).setAlpha(alpha); } } public ShortcutAndWidgetContainer getShortcutsAndWidgets() { if (getChildCount() > 0) { return (ShortcutAndWidgetContainer) getChildAt(0); } return null; } public View getChildAt(int x, int y) { return mShortcutsAndWidgets.getChildAt(x, y); } public boolean animateChildToPosition(final View child, int cellX, int cellY, int duration, int delay, boolean permanent, boolean adjustOccupied) { ShortcutAndWidgetContainer clc = getShortcutsAndWidgets(); boolean[][] occupied = mOccupied; if (!permanent) { occupied = mTmpOccupied; } if (clc.indexOfChild(child) != -1 && !occupied[cellX][cellY]) { final LayoutParams lp = (LayoutParams) child.getLayoutParams(); final ItemInfo info = (ItemInfo) child.getTag(); // We cancel any existing animations if (mReorderAnimators.containsKey(lp)) { mReorderAnimators.get(lp).cancel(); mReorderAnimators.remove(lp); } final int oldX = lp.x; final int oldY = lp.y; if (adjustOccupied) { occupied[lp.cellX][lp.cellY] = false; occupied[cellX][cellY] = true; } lp.isLockedToGrid = true; if (permanent) { lp.cellX = info.cellX = cellX; lp.cellY = info.cellY = cellY; } else { lp.tmpCellX = cellX; lp.tmpCellY = cellY; } clc.setupLp(lp); lp.isLockedToGrid = false; final int newX = lp.x; final int newY = lp.y; lp.x = oldX; lp.y = oldY; // Exit early if we're not actually moving the view if (oldX == newX && oldY == newY) { lp.isLockedToGrid = true; return true; } ValueAnimator va = ValueAnimator.ofFloat(0f, 1f); va.setDuration(duration); mReorderAnimators.put(lp, va); va.addUpdateListener(new AnimatorUpdateListener() { @Override public void onAnimationUpdate(ValueAnimator animation) { float r = ((Float) animation.getAnimatedValue()).floatValue(); child.setTranslationX(r * (newX - oldX)); child.setTranslationY(r * (newY - oldY)); } }); va.addListener(new AnimatorListenerAdapter() { boolean cancelled = false; public void onAnimationEnd(Animator animation) { // If the animation was cancelled, it means that another animation // has interrupted this one, and we don't want to lock the item into // place just yet. if (!cancelled) { child.setTranslationX(0); child.setTranslationY(0); lp.isLockedToGrid = true; child.requestLayout(); } if (mReorderAnimators.containsKey(lp)) { mReorderAnimators.remove(lp); } } public void onAnimationCancel(Animator animation) { cancelled = true; } }); va.setStartDelay(delay); va.start(); return true; } return false; } /** * Estimate where the top left cell of the dragged item will land if it is dropped. * * @param originX The X value of the top left corner of the item * @param originY The Y value of the top left corner of the item * @param spanX The number of horizontal cells that the item spans * @param spanY The number of vertical cells that the item spans * @param result The estimated drop cell X and Y. */ void estimateDropCell(int originX, int originY, int spanX, int spanY, int[] result) { final int countX = mCountX; final int countY = mCountY; // pointToCellRounded takes the top left of a cell but will pad that with // cellWidth/2 and cellHeight/2 when finding the matching cell pointToCellRounded(originX, originY, result); // If the item isn't fully on this screen, snap to the edges int rightOverhang = result[0] + spanX - countX; if (rightOverhang > 0) { result[0] -= rightOverhang; // Snap to right } result[0] = Math.max(0, result[0]); // Snap to left int bottomOverhang = result[1] + spanY - countY; if (bottomOverhang > 0) { result[1] -= bottomOverhang; // Snap to bottom } result[1] = Math.max(0, result[1]); // Snap to top } void visualizeDropLocation(View v, Bitmap dragOutline, int originX, int originY, int cellX, int cellY, int spanX, int spanY, boolean resize, Point dragOffset, Rect dragRegion) { final int oldDragCellX = mDragCell[0]; final int oldDragCellY = mDragCell[1]; if (v != null && dragOffset == null) { mDragCenter.set(originX + (v.getWidth() / 2), originY + (v.getHeight() / 2)); } else { mDragCenter.set(originX, originY); } if (dragOutline == null && v == null) { if (mCrosshairsDrawable != null) { invalidate(); } return; } if (cellX != oldDragCellX || cellY != oldDragCellY) { mDragCell[0] = cellX; mDragCell[1] = cellY; // Find the top left corner of the rect the object will occupy final int[] topLeft = mTmpPoint; cellToPoint(cellX, cellY, topLeft); int left = topLeft[0]; int top = topLeft[1]; if (v != null && dragOffset == null) { // When drawing the drag outline, it did not account for margin offsets // added by the view's parent. MarginLayoutParams lp = (MarginLayoutParams) v.getLayoutParams(); left += lp.leftMargin; top += lp.topMargin; // Offsets due to the size difference between the View and the dragOutline. // There is a size difference to account for the outer blur, which may lie // outside the bounds of the view. top += (v.getHeight() - dragOutline.getHeight()) / 2; // We center about the x axis left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) - dragOutline.getWidth()) / 2; } else { if (dragOffset != null && dragRegion != null) { // Center the drag region *horizontally* in the cell and apply a drag // outline offset left += dragOffset.x + ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) - dragRegion.width()) / 2; top += dragOffset.y; } else { // Center the drag outline in the cell left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) - dragOutline.getWidth()) / 2; top += ((mCellHeight * spanY) + ((spanY - 1) * mHeightGap) - dragOutline.getHeight()) / 2; } } final int oldIndex = mDragOutlineCurrent; mDragOutlineAnims[oldIndex].animateOut(); mDragOutlineCurrent = (oldIndex + 1) % mDragOutlines.length; Rect r = mDragOutlines[mDragOutlineCurrent]; r.set(left, top, left + dragOutline.getWidth(), top + dragOutline.getHeight()); if (resize) { cellToRect(cellX, cellY, spanX, spanY, r); } mDragOutlineAnims[mDragOutlineCurrent].setTag(dragOutline); mDragOutlineAnims[mDragOutlineCurrent].animateIn(); } // If we are drawing crosshairs, the entire CellLayout needs to be invalidated if (mCrosshairsDrawable != null) { invalidate(); } } public void clearDragOutlines() { final int oldIndex = mDragOutlineCurrent; mDragOutlineAnims[oldIndex].animateOut(); mDragCell[0] = mDragCell[1] = -1; } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param result Array in which to place the result, or null (in which case a new array will * be allocated) * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestVacantArea(int pixelX, int pixelY, int spanX, int spanY, int[] result) { return findNearestVacantArea(pixelX, pixelY, spanX, spanY, null, result); } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param minSpanX The minimum horizontal span required * @param minSpanY The minimum vertical span required * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param result Array in which to place the result, or null (in which case a new array will * be allocated) * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, int[] result, int[] resultSpan) { return findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, result, resultSpan); } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param ignoreOccupied If true, the result can be an occupied cell * @param result Array in which to place the result, or null (in which case a new array will * be allocated) * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestArea(int pixelX, int pixelY, int spanX, int spanY, View ignoreView, boolean ignoreOccupied, int[] result) { return findNearestArea(pixelX, pixelY, spanX, spanY, spanX, spanY, ignoreView, ignoreOccupied, result, null, mOccupied); } private final Stack mTempRectStack = new Stack(); private void lazyInitTempRectStack() { if (mTempRectStack.isEmpty()) { for (int i = 0; i < mCountX * mCountY; i++) { mTempRectStack.push(new Rect()); } } } private void recycleTempRects(Stack used) { while (!used.isEmpty()) { mTempRectStack.push(used.pop()); } } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param minSpanX The minimum horizontal span required * @param minSpanY The minimum vertical span required * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param ignoreOccupied If true, the result can be an occupied cell * @param result Array in which to place the result, or null (in which case a new array will * be allocated) * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, View ignoreView, boolean ignoreOccupied, int[] result, int[] resultSpan, boolean[][] occupied) { lazyInitTempRectStack(); // mark space take by ignoreView as available (method checks if ignoreView is null) markCellsAsUnoccupiedForView(ignoreView, occupied); // For items with a spanX / spanY > 1, the passed in point (pixelX, pixelY) corresponds // to the center of the item, but we are searching based on the top-left cell, so // we translate the point over to correspond to the top-left. pixelX -= (mCellWidth + mWidthGap) * (spanX - 1) / 2f; pixelY -= (mCellHeight + mHeightGap) * (spanY - 1) / 2f; // Keep track of best-scoring drop area final int[] bestXY = result != null ? result : new int[2]; double bestDistance = Double.MAX_VALUE; final Rect bestRect = new Rect(-1, -1, -1, -1); final Stack validRegions = new Stack(); final int countX = mCountX; final int countY = mCountY; if (minSpanX <= 0 || minSpanY <= 0 || spanX <= 0 || spanY <= 0 || spanX < minSpanX || spanY < minSpanY) { return bestXY; } for (int y = 0; y < countY - (minSpanY - 1); y++) { inner: for (int x = 0; x < countX - (minSpanX - 1); x++) { int ySize = -1; int xSize = -1; if (ignoreOccupied) { // First, let's see if this thing fits anywhere for (int i = 0; i < minSpanX; i++) { for (int j = 0; j < minSpanY; j++) { if (occupied[x + i][y + j]) { continue inner; } } } xSize = minSpanX; ySize = minSpanY; // We know that the item will fit at _some_ acceptable size, now let's see // how big we can make it. We'll alternate between incrementing x and y spans // until we hit a limit. boolean incX = true; boolean hitMaxX = xSize >= spanX; boolean hitMaxY = ySize >= spanY; while (!(hitMaxX && hitMaxY)) { if (incX && !hitMaxX) { for (int j = 0; j < ySize; j++) { if (x + xSize > countX -1 || occupied[x + xSize][y + j]) { // We can't move out horizontally hitMaxX = true; } } if (!hitMaxX) { xSize++; } } else if (!hitMaxY) { for (int i = 0; i < xSize; i++) { if (y + ySize > countY - 1 || occupied[x + i][y + ySize]) { // We can't move out vertically hitMaxY = true; } } if (!hitMaxY) { ySize++; } } hitMaxX |= xSize >= spanX; hitMaxY |= ySize >= spanY; incX = !incX; } incX = true; hitMaxX = xSize >= spanX; hitMaxY = ySize >= spanY; } final int[] cellXY = mTmpXY; cellToCenterPoint(x, y, cellXY); // We verify that the current rect is not a sub-rect of any of our previous // candidates. In this case, the current rect is disqualified in favour of the // containing rect. Rect currentRect = mTempRectStack.pop(); currentRect.set(x, y, x + xSize, y + ySize); boolean contained = false; for (Rect r : validRegions) { if (r.contains(currentRect)) { contained = true; break; } } validRegions.push(currentRect); double distance = Math.sqrt(Math.pow(cellXY[0] - pixelX, 2) + Math.pow(cellXY[1] - pixelY, 2)); if ((distance <= bestDistance && !contained) || currentRect.contains(bestRect)) { bestDistance = distance; bestXY[0] = x; bestXY[1] = y; if (resultSpan != null) { resultSpan[0] = xSize; resultSpan[1] = ySize; } bestRect.set(currentRect); } } } // re-mark space taken by ignoreView as occupied markCellsAsOccupiedForView(ignoreView, occupied); // Return -1, -1 if no suitable location found if (bestDistance == Double.MAX_VALUE) { bestXY[0] = -1; bestXY[1] = -1; } recycleTempRects(validRegions); return bestXY; } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location, and will also weigh in a suggested direction vector of the * desired location. This method computers distance based on unit grid distances, * not pixel distances. * * @param cellX The X cell nearest to which you want to search for a vacant area. * @param cellY The Y cell nearest which you want to search for a vacant area. * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param direction The favored direction in which the views should move from x, y * @param exactDirectionOnly If this parameter is true, then only solutions where the direction * matches exactly. Otherwise we find the best matching direction. * @param occoupied The array which represents which cells in the CellLayout are occupied * @param blockOccupied The array which represents which cells in the specified block (cellX, * cellY, spanX, spanY) are occupied. This is used when try to move a group of views. * @param result Array in which to place the result, or null (in which case a new array will * be allocated) * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ private int[] findNearestArea(int cellX, int cellY, int spanX, int spanY, int[] direction, boolean[][] occupied, boolean blockOccupied[][], int[] result) { // Keep track of best-scoring drop area final int[] bestXY = result != null ? result : new int[2]; float bestDistance = Float.MAX_VALUE; int bestDirectionScore = Integer.MIN_VALUE; final int countX = mCountX; final int countY = mCountY; for (int y = 0; y < countY - (spanY - 1); y++) { inner: for (int x = 0; x < countX - (spanX - 1); x++) { // First, let's see if this thing fits anywhere for (int i = 0; i < spanX; i++) { for (int j = 0; j < spanY; j++) { if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) { continue inner; } } } float distance = (float) Math.sqrt((x - cellX) * (x - cellX) + (y - cellY) * (y - cellY)); int[] curDirection = mTmpPoint; computeDirectionVector(x - cellX, y - cellY, curDirection); // The direction score is just the dot product of the two candidate direction // and that passed in. int curDirectionScore = direction[0] * curDirection[0] + direction[1] * curDirection[1]; boolean exactDirectionOnly = false; boolean directionMatches = direction[0] == curDirection[0] && direction[0] == curDirection[0]; if ((directionMatches || !exactDirectionOnly) && Float.compare(distance, bestDistance) < 0 || (Float.compare(distance, bestDistance) == 0 && curDirectionScore > bestDirectionScore)) { bestDistance = distance; bestDirectionScore = curDirectionScore; bestXY[0] = x; bestXY[1] = y; } } } // Return -1, -1 if no suitable location found if (bestDistance == Float.MAX_VALUE) { bestXY[0] = -1; bestXY[1] = -1; } return bestXY; } private int[] findNearestAreaInDirection(int cellX, int cellY, int spanX, int spanY, int[] direction,boolean[][] occupied, boolean blockOccupied[][], int[] result) { // Keep track of best-scoring drop area final int[] bestXY = result != null ? result : new int[2]; bestXY[0] = -1; bestXY[1] = -1; float bestDistance = Float.MAX_VALUE; // We use this to march in a single direction if (direction[0] != 0 && direction[1] != 0) { return bestXY; } // This will only incrememnet one of x or y based on the assertion above int x = cellX + direction[0]; int y = cellY + direction[1]; while (x >= 0 && x + spanX <= mCountX && y >= 0 && y + spanY <= mCountY) { boolean fail = false; for (int i = 0; i < spanX; i++) { for (int j = 0; j < spanY; j++) { if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) { fail = true; } } } if (!fail) { float distance = (float) Math.sqrt((x - cellX) * (x - cellX) + (y - cellY) * (y - cellY)); if (Float.compare(distance, bestDistance) < 0) { bestDistance = distance; bestXY[0] = x; bestXY[1] = y; } } x += direction[0]; y += direction[1]; } return bestXY; } private boolean addViewToTempLocation(View v, Rect rectOccupiedByPotentialDrop, int[] direction) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); boolean success = false; markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, false); markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); findNearestArea(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, direction, mTmpOccupied, null, mTempLocation); if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { lp.tmpCellX = mTempLocation[0]; lp.tmpCellY = mTempLocation[1]; success = true; } markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, true); return success; } // This method looks in the specified direction to see if there is an additional view // immediately adjecent in that direction private boolean addViewInDirection(ArrayList views, Rect boundingRect, int[] direction, boolean[][] occupied) { boolean found = false; int childCount = mShortcutsAndWidgets.getChildCount(); Rect r0 = new Rect(boundingRect); Rect r1 = new Rect(); int deltaX = 0; int deltaY = 0; if (direction[1] < 0) { r0.set(r0.left, r0.top - 1, r0.right, r0.bottom); deltaY = -1; } else if (direction[1] > 0) { r0.set(r0.left, r0.top, r0.right, r0.bottom + 1); deltaY = 1; } else if (direction[0] < 0) { r0.set(r0.left - 1, r0.top, r0.right, r0.bottom); deltaX = -1; } else if (direction[0] > 0) { r0.set(r0.left, r0.top, r0.right + 1, r0.bottom); deltaX = 1; } for (int i = 0; i < childCount; i++) { View child = mShortcutsAndWidgets.getChildAt(i); if (views.contains(child)) continue; LayoutParams lp = (LayoutParams) child.getLayoutParams(); r1.set(lp.tmpCellX, lp.tmpCellY, lp.tmpCellX + lp.cellHSpan, lp.tmpCellY + lp.cellVSpan); if (Rect.intersects(r0, r1)) { if (!lp.canReorder) { return false; } boolean pushed = false; for (int x = lp.tmpCellX; x < lp.tmpCellX + lp.cellHSpan; x++) { for (int y = lp.tmpCellY; y < lp.tmpCellY + lp.cellVSpan; y++) { boolean inBounds = x - deltaX >= 0 && x -deltaX < mCountX && y - deltaY >= 0 && y - deltaY < mCountY; if (inBounds && occupied[x - deltaX][y - deltaY]) { pushed = true; } } } if (pushed) { views.add(child); boundingRect.union(lp.tmpCellX, lp.tmpCellY, lp.tmpCellX + lp.cellHSpan, lp.tmpCellY + lp.cellVSpan); found = true; } } } return found; } private boolean pushViewsToTempLocation(ArrayList views, Rect rectOccupiedByPotentialDrop, int[] direction) { if (views.size() == 0) return true; boolean success = false; // We construct a rect which represents the entire group of views Rect boundingRect = null; for (View v: views) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); if (boundingRect == null) { boundingRect = new Rect(lp.tmpCellX, lp.tmpCellY, lp.tmpCellX + lp.cellHSpan, lp.tmpCellY + lp.cellVSpan); } else { boundingRect.union(lp.tmpCellX, lp.tmpCellY, lp.tmpCellX + lp.cellHSpan, lp.tmpCellY + lp.cellVSpan); } } ArrayList dup = (ArrayList) views.clone(); while (addViewInDirection(dup, boundingRect, direction, mTmpOccupied)) { } for (View v: dup) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, false); } boolean[][] blockOccupied = new boolean[boundingRect.width()][boundingRect.height()]; int top = boundingRect.top; int left = boundingRect.left; for (View v: dup) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); markCellsForView(lp.tmpCellX - left, lp.tmpCellY - top, lp.cellHSpan, lp.cellVSpan, blockOccupied, true); } markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); findNearestAreaInDirection(boundingRect.left, boundingRect.top, boundingRect.width(), boundingRect.height(), direction, mTmpOccupied, blockOccupied, mTempLocation); int deltaX = mTempLocation[0] - boundingRect.left; int deltaY = mTempLocation[1] - boundingRect.top; if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { for (View v: dup) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); lp.tmpCellX += deltaX; lp.tmpCellY += deltaY; } success = true; } for (View v: dup) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, true); } return success; } private boolean addViewsToTempLocation(ArrayList views, Rect rectOccupiedByPotentialDrop, int[] direction) { if (views.size() == 0) return true; boolean success = false; // We construct a rect which represents the entire group of views Rect boundingRect = null; for (View v: views) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, false); if (boundingRect == null) { boundingRect = new Rect(lp.tmpCellX, lp.tmpCellY, lp.tmpCellX + lp.cellHSpan, lp.tmpCellY + lp.cellVSpan); } else { boundingRect.union(lp.tmpCellX, lp.tmpCellY, lp.tmpCellX + lp.cellHSpan, lp.tmpCellY + lp.cellVSpan); } } boolean[][] blockOccupied = new boolean[boundingRect.width()][boundingRect.height()]; int top = boundingRect.top; int left = boundingRect.left; for (View v: views) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); markCellsForView(lp.tmpCellX - left, lp.tmpCellY - top, lp.cellHSpan, lp.cellVSpan, blockOccupied, true); } markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); // TODO: this bounding rect may not be completely filled, lets be more precise about this // check. findNearestArea(boundingRect.left, boundingRect.top, boundingRect.width(), boundingRect.height(), direction, mTmpOccupied, blockOccupied, mTempLocation); int deltaX = mTempLocation[0] - boundingRect.left; int deltaY = mTempLocation[1] - boundingRect.top; if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { for (View v: views) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); lp.tmpCellX += deltaX; lp.tmpCellY += deltaY; } success = true; } for (View v: views) { LayoutParams lp = (LayoutParams) v.getLayoutParams(); markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, true); } return success; } private void markCellsForRect(Rect r, boolean[][] occupied, boolean value) { markCellsForView(r.left, r.top, r.width(), r.height(), occupied, value); } private boolean rearrangementExists(int cellX, int cellY, int spanX, int spanY, int[] direction, View ignoreView) { mIntersectingViews.clear(); mOccupiedRect.set(cellX, cellY, cellX + spanX, cellY + spanY); if (ignoreView != null) { LayoutParams lp = (LayoutParams) ignoreView.getLayoutParams(); lp.tmpCellX = cellX; lp.tmpCellY = cellY; } int childCount = mShortcutsAndWidgets.getChildCount(); Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY); Rect r1 = new Rect(); for (int i = 0; i < childCount; i++) { View child = mShortcutsAndWidgets.getChildAt(i); if (child == ignoreView) continue; LayoutParams lp = (LayoutParams) child.getLayoutParams(); r1.set(lp.cellX, lp.cellY, lp.cellX + lp.cellHSpan, lp.cellY + lp.cellVSpan); if (Rect.intersects(r0, r1)) { if (!lp.canReorder) { return false; } mIntersectingViews.add(child); } } if (pushViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction)) { return true; } // Try the opposite direction direction[0] *= -1; direction[1] *= -1; if (pushViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction)) { return true; } // Switch the direction back direction[0] *= -1; direction[1] *= -1; // First we try moving the views as a block if (addViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction)) { return true; } // Ok, they couldn't move as a block, let's move them individually for (View v : mIntersectingViews) { if (!addViewToTempLocation(v, mOccupiedRect, direction)) { return false; } } return true; } /* * Returns a pair (x, y), where x,y are in {-1, 0, 1} corresponding to vector between * the provided point and the provided cell */ private void computeDirectionVector(float deltaX, float deltaY, int[] result) { double angle = Math.atan(((float) deltaY) / deltaX); result[0] = 0; result[1] = 0; if (Math.abs(Math.cos(angle)) > 0.5f) { result[0] = (int) Math.signum(deltaX); } if (Math.abs(Math.sin(angle)) > 0.5f) { result[1] = (int) Math.signum(deltaY); } } ItemConfiguration simpleSwap(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, int[] direction, View dragView, boolean decX, ItemConfiguration solution) { // This creates a copy of the current occupied array, omitting the current view being // dragged resetTempLayoutToCurrent(dragView); // We find the nearest cell into which we would place the dragged item, assuming there's // nothing in its way. int result[] = new int[2]; result = findNearestArea(pixelX, pixelY, spanX, spanY, result); boolean success = false; // First we try the exact nearest position of the item being dragged, // we will then want to try to move this around to other neighbouring positions success = rearrangementExists(result[0], result[1], spanX, spanY, direction, dragView); if (!success) { // We try shrinking the widget down to size in an alternating pattern, shrink 1 in // x, then 1 in y etc. if (spanX > minSpanX && (minSpanY == spanY || decX)) { return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX - 1, spanY, direction, dragView, false, solution); } else if (spanY > minSpanY) { return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY - 1, direction, dragView, true, solution); } solution.isSolution = false; } else { solution.isSolution = true; solution.dragViewX = result[0]; solution.dragViewY = result[1]; solution.dragViewSpanX = spanX; solution.dragViewSpanY = spanY; copyCurrentStateToSolution(solution, true); } return solution; } private void copyCurrentStateToSolution(ItemConfiguration solution, boolean temp) { int childCount = mShortcutsAndWidgets.getChildCount(); for (int i = 0; i < childCount; i++) { View child = mShortcutsAndWidgets.getChildAt(i); LayoutParams lp = (LayoutParams) child.getLayoutParams(); Point p; if (temp) { p = new Point(lp.tmpCellX, lp.tmpCellY); } else { p = new Point(lp.cellX, lp.cellY); } solution.map.put(child, p); } } private void copySolutionToTempState(ItemConfiguration solution, View dragView) { for (int i = 0; i < mCountX; i++) { for (int j = 0; j < mCountY; j++) { mTmpOccupied[i][j] = false; } } int childCount = mShortcutsAndWidgets.getChildCount(); for (int i = 0; i < childCount; i++) { View child = mShortcutsAndWidgets.getChildAt(i); if (child == dragView) continue; LayoutParams lp = (LayoutParams) child.getLayoutParams(); Point p = solution.map.get(child); if (p != null) { lp.tmpCellX = p.x; lp.tmpCellY = p.y; markCellsForView(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan, mTmpOccupied, true); } } markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX, solution.dragViewSpanY, mTmpOccupied, true); } private void animateItemsToSolution(ItemConfiguration solution, View dragView, boolean commitDragView) { boolean[][] occupied = DESTRUCTIVE_REORDER ? mOccupied : mTmpOccupied; for (int i = 0; i < mCountX; i++) { for (int j = 0; j < mCountY; j++) { occupied[i][j] = false; } } int childCount = mShortcutsAndWidgets.getChildCount(); for (int i = 0; i < childCount; i++) { View child = mShortcutsAndWidgets.getChildAt(i); if (child == dragView) continue; LayoutParams lp = (LayoutParams) child.getLayoutParams(); Point p = solution.map.get(child); if (p != null) { if (lp.cellX != p.x || lp.cellY != p.y) { animateChildToPosition(child, p.x, p.y, 150, 0, DESTRUCTIVE_REORDER, false); } markCellsForView(p.x, p.y, lp.cellHSpan, lp.cellVSpan, occupied, true); } } if (commitDragView) { markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX, solution.dragViewSpanY, occupied, true); } } private void commitTempPlacement() { for (int i = 0; i < mCountX; i++) { for (int j = 0; j < mCountY; j++) { mOccupied[i][j] = mTmpOccupied[i][j]; } } int childCount = mShortcutsAndWidgets.getChildCount(); for (int i = 0; i < childCount; i++) { LayoutParams lp = (LayoutParams) mShortcutsAndWidgets.getChildAt(i).getLayoutParams(); lp.cellX = lp.tmpCellX; lp.cellY = lp.tmpCellY; } } public void setUseTempCoords(boolean useTempCoords) { int childCount = mShortcutsAndWidgets.getChildCount(); for (int i = 0; i < childCount; i++) { LayoutParams lp = (LayoutParams) mShortcutsAndWidgets.getChildAt(i).getLayoutParams(); lp.useTmpCoords = useTempCoords; } } private void resetTempLayoutToCurrent(View ignoreView) { for (int i = 0; i < mCountX; i++) { for (int j = 0; j < mCountY; j++) { mTmpOccupied[i][j] = mOccupied[i][j]; } } int childCount = mShortcutsAndWidgets.getChildCount(); for (int i = 0; i < childCount; i++) { View child = mShortcutsAndWidgets.getChildAt(i); if (child == ignoreView) continue; LayoutParams lp = (LayoutParams) child.getLayoutParams(); lp.tmpCellX = lp.cellX; lp.tmpCellY = lp.cellY; } } ItemConfiguration findConfigurationNoShuffle(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, View dragView, ItemConfiguration solution) { int[] result = new int[2]; int[] resultSpan = new int[2]; findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, result, resultSpan); if (result[0] >= 0 && result[1] >= 0) { copyCurrentStateToSolution(solution, false); solution.dragViewX = result[0]; solution.dragViewY = result[1]; solution.dragViewSpanX = resultSpan[0]; solution.dragViewSpanY = resultSpan[1]; solution.isSolution = true; } else { solution.isSolution = false; } return solution; } public void prepareChildForDrag(View child) { markCellsAsUnoccupiedForView(child); } int[] createArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, View dragView, int[] result, int resultSpan[], int mode) { // First we determine if things have moved enough to cause a different layout result = findNearestArea(pixelX, pixelY, spanX, spanY, result); if (resultSpan == null) { resultSpan = new int[2]; } // We attempt the first algorithm regionToCenterPoint(result[0], result[1], spanX, spanY, mTmpPoint); computeDirectionVector((mTmpPoint[0] - pixelX) / spanX, (mTmpPoint[1] - pixelY) / spanY, mDirectionVector); ItemConfiguration swapSolution = simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, mDirectionVector, dragView, true, new ItemConfiguration()); // We attempt the approach which doesn't shuffle views at all ItemConfiguration noShuffleSolution = findConfigurationNoShuffle(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, dragView, new ItemConfiguration()); ItemConfiguration finalSolution = null; if (swapSolution.isSolution && swapSolution.area() >= noShuffleSolution.area()) { finalSolution = swapSolution; } else if (noShuffleSolution.isSolution) { finalSolution = noShuffleSolution; } boolean foundSolution = true; if (!DESTRUCTIVE_REORDER) { setUseTempCoords(true); } if (finalSolution != null) { result[0] = finalSolution.dragViewX; result[1] = finalSolution.dragViewY; resultSpan[0] = finalSolution.dragViewSpanX; resultSpan[1] = finalSolution.dragViewSpanY; // If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother // committing anything or animating anything as we just want to determine if a solution // exists if (mode == MODE_DRAG_OVER || mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) { if (!DESTRUCTIVE_REORDER) { copySolutionToTempState(finalSolution, dragView); } setItemPlacementDirty(true); animateItemsToSolution(finalSolution, dragView, mode == MODE_ON_DROP); if (!DESTRUCTIVE_REORDER && mode == MODE_ON_DROP) { commitTempPlacement(); } } } else { foundSolution = false; result[0] = result[1] = resultSpan[0] = resultSpan[1] = -1; } if ((mode == MODE_ON_DROP || !foundSolution) && !DESTRUCTIVE_REORDER) { setUseTempCoords(false); } boolean[][] occupied = mOccupied; mShortcutsAndWidgets.requestLayout(); return result; } public boolean isItemPlacementDirty() { return mItemLocationsDirty; } public void setItemPlacementDirty(boolean dirty) { mItemLocationsDirty = dirty; } private class ItemConfiguration { HashMap map = new HashMap(); boolean isSolution = false; int dragViewX, dragViewY, dragViewSpanX, dragViewSpanY; int area() { return dragViewSpanX * dragViewSpanY; } void clear() { map.clear(); isSolution = false; } } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param ignoreView Considers space occupied by this view as unoccupied * @param result Previously returned value to possibly recycle. * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestVacantArea( int pixelX, int pixelY, int spanX, int spanY, View ignoreView, int[] result) { return findNearestArea(pixelX, pixelY, spanX, spanY, ignoreView, true, result); } /** * Find a vacant area that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param minSpanX The minimum horizontal span required * @param minSpanY The minimum vertical span required * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param ignoreView Considers space occupied by this view as unoccupied * @param result Previously returned value to possibly recycle. * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, View ignoreView, int[] result, int[] resultSpan) { return findNearestArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, ignoreView, true, result, resultSpan, mOccupied); } /** * Find a starting cell position that will fit the given bounds nearest the requested * cell location. Uses Euclidean distance to score multiple vacant areas. * * @param pixelX The X location at which you want to search for a vacant area. * @param pixelY The Y location at which you want to search for a vacant area. * @param spanX Horizontal span of the object. * @param spanY Vertical span of the object. * @param ignoreView Considers space occupied by this view as unoccupied * @param result Previously returned value to possibly recycle. * @return The X, Y cell of a vacant area that can contain this object, * nearest the requested location. */ int[] findNearestArea( int pixelX, int pixelY, int spanX, int spanY, int[] result) { return findNearestArea(pixelX, pixelY, spanX, spanY, null, false, result); } boolean existsEmptyCell() { return findCellForSpan(null, 1, 1); } /** * Finds the upper-left coordinate of the first rectangle in the grid that can * hold a cell of the specified dimensions. If intersectX and intersectY are not -1, * then this method will only return coordinates for rectangles that contain the cell * (intersectX, intersectY) * * @param cellXY The array that will contain the position of a vacant cell if such a cell * can be found. * @param spanX The horizontal span of the cell we want to find. * @param spanY The vertical span of the cell we want to find. * * @return True if a vacant cell of the specified dimension was found, false otherwise. */ boolean findCellForSpan(int[] cellXY, int spanX, int spanY) { return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, null, mOccupied); } /** * Like above, but ignores any cells occupied by the item "ignoreView" * * @param cellXY The array that will contain the position of a vacant cell if such a cell * can be found. * @param spanX The horizontal span of the cell we want to find. * @param spanY The vertical span of the cell we want to find. * @param ignoreView The home screen item we should treat as not occupying any space * @return */ boolean findCellForSpanIgnoring(int[] cellXY, int spanX, int spanY, View ignoreView) { return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, ignoreView, mOccupied); } /** * Like above, but if intersectX and intersectY are not -1, then this method will try to * return coordinates for rectangles that contain the cell [intersectX, intersectY] * * @param spanX The horizontal span of the cell we want to find. * @param spanY The vertical span of the cell we want to find. * @param ignoreView The home screen item we should treat as not occupying any space * @param intersectX The X coordinate of the cell that we should try to overlap * @param intersectX The Y coordinate of the cell that we should try to overlap * * @return True if a vacant cell of the specified dimension was found, false otherwise. */ boolean findCellForSpanThatIntersects(int[] cellXY, int spanX, int spanY, int intersectX, int intersectY) { return findCellForSpanThatIntersectsIgnoring( cellXY, spanX, spanY, intersectX, intersectY, null, mOccupied); } /** * The superset of the above two methods */ boolean findCellForSpanThatIntersectsIgnoring(int[] cellXY, int spanX, int spanY, int intersectX, int intersectY, View ignoreView, boolean occupied[][]) { // mark space take by ignoreView as available (method checks if ignoreView is null) markCellsAsUnoccupiedForView(ignoreView, occupied); boolean foundCell = false; while (true) { int startX = 0; if (intersectX >= 0) { startX = Math.max(startX, intersectX - (spanX - 1)); } int endX = mCountX - (spanX - 1); if (intersectX >= 0) { endX = Math.min(endX, intersectX + (spanX - 1) + (spanX == 1 ? 1 : 0)); } int startY = 0; if (intersectY >= 0) { startY = Math.max(startY, intersectY - (spanY - 1)); } int endY = mCountY - (spanY - 1); if (intersectY >= 0) { endY = Math.min(endY, intersectY + (spanY - 1) + (spanY == 1 ? 1 : 0)); } for (int y = startY; y < endY && !foundCell; y++) { inner: for (int x = startX; x < endX; x++) { for (int i = 0; i < spanX; i++) { for (int j = 0; j < spanY; j++) { if (occupied[x + i][y + j]) { // small optimization: we can skip to after the column we just found // an occupied cell x += i; continue inner; } } } if (cellXY != null) { cellXY[0] = x; cellXY[1] = y; } foundCell = true; break; } } if (intersectX == -1 && intersectY == -1) { break; } else { // if we failed to find anything, try again but without any requirements of // intersecting intersectX = -1; intersectY = -1; continue; } } // re-mark space taken by ignoreView as occupied markCellsAsOccupiedForView(ignoreView, occupied); return foundCell; } /** * A drag event has begun over this layout. * It may have begun over this layout (in which case onDragChild is called first), * or it may have begun on another layout. */ void onDragEnter() { if (!mDragging) { // Fade in the drag indicators if (mCrosshairsAnimator != null) { mCrosshairsAnimator.animateIn(); } } mDragging = true; } /** * Called when drag has left this CellLayout or has been completed (successfully or not) */ void onDragExit() { // This can actually be called when we aren't in a drag, e.g. when adding a new // item to this layout via the customize drawer. // Guard against that case. if (mDragging) { mDragging = false; // Fade out the drag indicators if (mCrosshairsAnimator != null) { mCrosshairsAnimator.animateOut(); } } // Invalidate the drag data mDragCell[0] = mDragCell[1] = -1; mDragOutlineAnims[mDragOutlineCurrent].animateOut(); mDragOutlineCurrent = (mDragOutlineCurrent + 1) % mDragOutlineAnims.length; setIsDragOverlapping(false); } /** * Mark a child as having been dropped. * At the beginning of the drag operation, the child may have been on another * screen, but it is re-parented before this method is called. * * @param child The child that is being dropped */ void onDropChild(View child) { if (child != null) { LayoutParams lp = (LayoutParams) child.getLayoutParams(); lp.dropped = true; child.requestLayout(); } } /** * Computes a bounding rectangle for a range of cells * * @param cellX X coordinate of upper left corner expressed as a cell position * @param cellY Y coordinate of upper left corner expressed as a cell position * @param cellHSpan Width in cells * @param cellVSpan Height in cells * @param resultRect Rect into which to put the results */ public void cellToRect(int cellX, int cellY, int cellHSpan, int cellVSpan, Rect resultRect) { final int cellWidth = mCellWidth; final int cellHeight = mCellHeight; final int widthGap = mWidthGap; final int heightGap = mHeightGap; final int hStartPadding = getPaddingLeft(); final int vStartPadding = getPaddingTop(); int width = cellHSpan * cellWidth + ((cellHSpan - 1) * widthGap); int height = cellVSpan * cellHeight + ((cellVSpan - 1) * heightGap); int x = hStartPadding + cellX * (cellWidth + widthGap); int y = vStartPadding + cellY * (cellHeight + heightGap); resultRect.set(x, y, x + width, y + height); } /** * Computes the required horizontal and vertical cell spans to always * fit the given rectangle. * * @param width Width in pixels * @param height Height in pixels * @param result An array of length 2 in which to store the result (may be null). */ public int[] rectToCell(int width, int height, int[] result) { return rectToCell(getResources(), width, height, result); } public static int[] rectToCell(Resources resources, int width, int height, int[] result) { // Always assume we're working with the smallest span to make sure we // reserve enough space in both orientations. int actualWidth = resources.getDimensionPixelSize(R.dimen.workspace_cell_width); int actualHeight = resources.getDimensionPixelSize(R.dimen.workspace_cell_height); int smallerSize = Math.min(actualWidth, actualHeight); // Always round up to next largest cell int spanX = (int) Math.ceil(width / (float) smallerSize); int spanY = (int) Math.ceil(height / (float) smallerSize); if (result == null) { return new int[] { spanX, spanY }; } result[0] = spanX; result[1] = spanY; return result; } public int[] cellSpansToSize(int hSpans, int vSpans) { int[] size = new int[2]; size[0] = hSpans * mCellWidth + (hSpans - 1) * mWidthGap; size[1] = vSpans * mCellHeight + (vSpans - 1) * mHeightGap; return size; } /** * Calculate the grid spans needed to fit given item */ public void calculateSpans(ItemInfo info) { final int minWidth; final int minHeight; if (info instanceof LauncherAppWidgetInfo) { minWidth = ((LauncherAppWidgetInfo) info).minWidth; minHeight = ((LauncherAppWidgetInfo) info).minHeight; } else if (info instanceof PendingAddWidgetInfo) { minWidth = ((PendingAddWidgetInfo) info).minWidth; minHeight = ((PendingAddWidgetInfo) info).minHeight; } else { // It's not a widget, so it must be 1x1 info.spanX = info.spanY = 1; return; } int[] spans = rectToCell(minWidth, minHeight, null); info.spanX = spans[0]; info.spanY = spans[1]; } /** * Find the first vacant cell, if there is one. * * @param vacant Holds the x and y coordinate of the vacant cell * @param spanX Horizontal cell span. * @param spanY Vertical cell span. * * @return True if a vacant cell was found */ public boolean getVacantCell(int[] vacant, int spanX, int spanY) { return findVacantCell(vacant, spanX, spanY, mCountX, mCountY, mOccupied); } static boolean findVacantCell(int[] vacant, int spanX, int spanY, int xCount, int yCount, boolean[][] occupied) { for (int y = 0; y < yCount; y++) { for (int x = 0; x < xCount; x++) { boolean available = !occupied[x][y]; out: for (int i = x; i < x + spanX - 1 && x < xCount; i++) { for (int j = y; j < y + spanY - 1 && y < yCount; j++) { available = available && !occupied[i][j]; if (!available) break out; } } if (available) { vacant[0] = x; vacant[1] = y; return true; } } } return false; } private void clearOccupiedCells() { for (int x = 0; x < mCountX; x++) { for (int y = 0; y < mCountY; y++) { mOccupied[x][y] = false; } } } /** * Given a view, determines how much that view can be expanded in all directions, in terms of * whether or not there are other items occupying adjacent cells. Used by the * AppWidgetResizeFrame to determine how the widget can be resized. */ public void getExpandabilityArrayForView(View view, int[] expandability) { final LayoutParams lp = (LayoutParams) view.getLayoutParams(); boolean flag; expandability[AppWidgetResizeFrame.LEFT] = 0; for (int x = lp.cellX - 1; x >= 0; x--) { flag = false; for (int y = lp.cellY; y < lp.cellY + lp.cellVSpan; y++) { if (mOccupied[x][y]) flag = true; } if (flag) break; expandability[AppWidgetResizeFrame.LEFT]++; } expandability[AppWidgetResizeFrame.TOP] = 0; for (int y = lp.cellY - 1; y >= 0; y--) { flag = false; for (int x = lp.cellX; x < lp.cellX + lp.cellHSpan; x++) { if (mOccupied[x][y]) flag = true; } if (flag) break; expandability[AppWidgetResizeFrame.TOP]++; } expandability[AppWidgetResizeFrame.RIGHT] = 0; for (int x = lp.cellX + lp.cellHSpan; x < mCountX; x++) { flag = false; for (int y = lp.cellY; y < lp.cellY + lp.cellVSpan; y++) { if (mOccupied[x][y]) flag = true; } if (flag) break; expandability[AppWidgetResizeFrame.RIGHT]++; } expandability[AppWidgetResizeFrame.BOTTOM] = 0; for (int y = lp.cellY + lp.cellVSpan; y < mCountY; y++) { flag = false; for (int x = lp.cellX; x < lp.cellX + lp.cellHSpan; x++) { if (mOccupied[x][y]) flag = true; } if (flag) break; expandability[AppWidgetResizeFrame.BOTTOM]++; } } public void onMove(View view, int newCellX, int newCellY, int newSpanX, int newSpanY) { markCellsAsUnoccupiedForView(view); markCellsForView(newCellX, newCellY, newSpanX, newSpanY, mOccupied, true); } public void markCellsAsOccupiedForView(View view) { markCellsAsOccupiedForView(view, mOccupied); } public void markCellsAsOccupiedForView(View view, boolean[][] occupied) { if (view == null || view.getParent() != mShortcutsAndWidgets) return; LayoutParams lp = (LayoutParams) view.getLayoutParams(); markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, true); } public void markCellsAsUnoccupiedForView(View view) { markCellsAsUnoccupiedForView(view, mOccupied); } public void markCellsAsUnoccupiedForView(View view, boolean occupied[][]) { if (view == null || view.getParent() != mShortcutsAndWidgets) return; LayoutParams lp = (LayoutParams) view.getLayoutParams(); markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, false); } private void markCellsForView(int cellX, int cellY, int spanX, int spanY, boolean[][] occupied, boolean value) { if (cellX < 0 || cellY < 0) return; for (int x = cellX; x < cellX + spanX && x < mCountX; x++) { for (int y = cellY; y < cellY + spanY && y < mCountY; y++) { occupied[x][y] = value; } } } public int getDesiredWidth() { return mPaddingLeft + mPaddingRight + (mCountX * mCellWidth) + (Math.max((mCountX - 1), 0) * mWidthGap); } public int getDesiredHeight() { return mPaddingTop + mPaddingBottom + (mCountY * mCellHeight) + (Math.max((mCountY - 1), 0) * mHeightGap); } public boolean isOccupied(int x, int y) { if (x < mCountX && y < mCountY) { return mOccupied[x][y]; } else { throw new RuntimeException("Position exceeds the bound of this CellLayout"); } } @Override public ViewGroup.LayoutParams generateLayoutParams(AttributeSet attrs) { return new CellLayout.LayoutParams(getContext(), attrs); } @Override protected boolean checkLayoutParams(ViewGroup.LayoutParams p) { return p instanceof CellLayout.LayoutParams; } @Override protected ViewGroup.LayoutParams generateLayoutParams(ViewGroup.LayoutParams p) { return new CellLayout.LayoutParams(p); } public static class CellLayoutAnimationController extends LayoutAnimationController { public CellLayoutAnimationController(Animation animation, float delay) { super(animation, delay); } @Override protected long getDelayForView(View view) { return (int) (Math.random() * 150); } } public static class LayoutParams extends ViewGroup.MarginLayoutParams { /** * Horizontal location of the item in the grid. */ @ViewDebug.ExportedProperty public int cellX; /** * Vertical location of the item in the grid. */ @ViewDebug.ExportedProperty public int cellY; /** * Temporary horizontal location of the item in the grid during reorder */ public int tmpCellX; /** * Temporary vertical location of the item in the grid during reorder */ public int tmpCellY; /** * Indicates that the temporary coordinates should be used to layout the items */ public boolean useTmpCoords; /** * Number of cells spanned horizontally by the item. */ @ViewDebug.ExportedProperty public int cellHSpan; /** * Number of cells spanned vertically by the item. */ @ViewDebug.ExportedProperty public int cellVSpan; /** * Indicates whether the item will set its x, y, width and height parameters freely, * or whether these will be computed based on cellX, cellY, cellHSpan and cellVSpan. */ public boolean isLockedToGrid = true; /** * Indicates whether this item can be reordered. Always true except in the case of the * the AllApps button. */ public boolean canReorder = true; // X coordinate of the view in the layout. @ViewDebug.ExportedProperty int x; // Y coordinate of the view in the layout. @ViewDebug.ExportedProperty int y; boolean dropped; public LayoutParams(Context c, AttributeSet attrs) { super(c, attrs); cellHSpan = 1; cellVSpan = 1; } public LayoutParams(ViewGroup.LayoutParams source) { super(source); cellHSpan = 1; cellVSpan = 1; } public LayoutParams(LayoutParams source) { super(source); this.cellX = source.cellX; this.cellY = source.cellY; this.cellHSpan = source.cellHSpan; this.cellVSpan = source.cellVSpan; } public LayoutParams(int cellX, int cellY, int cellHSpan, int cellVSpan) { super(LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT); this.cellX = cellX; this.cellY = cellY; this.cellHSpan = cellHSpan; this.cellVSpan = cellVSpan; } public void setup(int cellWidth, int cellHeight, int widthGap, int heightGap) { if (isLockedToGrid) { final int myCellHSpan = cellHSpan; final int myCellVSpan = cellVSpan; final int myCellX = useTmpCoords ? tmpCellX : cellX; final int myCellY = useTmpCoords ? tmpCellY : cellY; width = myCellHSpan * cellWidth + ((myCellHSpan - 1) * widthGap) - leftMargin - rightMargin; height = myCellVSpan * cellHeight + ((myCellVSpan - 1) * heightGap) - topMargin - bottomMargin; x = (int) (myCellX * (cellWidth + widthGap) + leftMargin); y = (int) (myCellY * (cellHeight + heightGap) + topMargin); } } public String toString() { return "(" + this.cellX + ", " + this.cellY + ")"; } public void setWidth(int width) { this.width = width; } public int getWidth() { return width; } public void setHeight(int height) { this.height = height; } public int getHeight() { return height; } public void setX(int x) { this.x = x; } public int getX() { return x; } public void setY(int y) { this.y = y; } public int getY() { return y; } } // This class stores info for two purposes: // 1. When dragging items (mDragInfo in Workspace), we store the View, its cellX & cellY, // its spanX, spanY, and the screen it is on // 2. When long clicking on an empty cell in a CellLayout, we save information about the // cellX and cellY coordinates and which page was clicked. We then set this as a tag on // the CellLayout that was long clicked static final class CellInfo { View cell; int cellX = -1; int cellY = -1; int spanX; int spanY; int screen; long container; @Override public String toString() { return "Cell[view=" + (cell == null ? "null" : cell.getClass()) + ", x=" + cellX + ", y=" + cellY + "]"; } } public boolean lastDownOnOccupiedCell() { return mLastDownOnOccupiedCell; } }