#pragma version(1) #pragma stateVertex(PV) #pragma stateFragment(PFTexLinear) #pragma stateStore(PSIcons) #define PI 3.14159f int g_SpecialHWWar; // Attraction to center values from page edge to page center. float g_AttractionTable[9]; float g_FrictionTable[9]; float g_PhysicsTableSize; float g_PosPage; float g_PosVelocity; float g_LastPositionX; int g_LastTouchDown; float g_DT; int g_LastTime; int g_PosMax; float g_Zoom; float g_OldPosPage; float g_OldPosVelocity; float g_OldZoom; float g_MoveToTotalTime; float g_MoveToTime; float g_MoveToOldPos; // Drawing constants, should be parameters ====== #define VIEW_ANGLE 1.28700222f int g_DrawLastFrame; int lastFrame(int draw) { // We draw one extra frame to work around the last frame post bug. // We also need to track if we drew the last frame to deal with large DT // in the physics. int ret = g_DrawLastFrame | draw; g_DrawLastFrame = draw; return ret; // should return draw instead. } void updateReadback() { if ((g_OldPosPage != g_PosPage) || (g_OldPosVelocity != g_PosVelocity) || (g_OldZoom != g_Zoom)) { g_OldPosPage = g_PosPage; g_OldPosVelocity = g_PosVelocity; g_OldZoom = g_Zoom; int i[3]; i[0] = g_PosPage * (1 << 16); i[1] = g_PosVelocity * (1 << 16); i[2] = g_OldZoom * (1 << 16); sendToClient(&i[0], 1, 12, 1); } } void setColor(float r, float g, float b, float a) { if (g_SpecialHWWar) { color(0, 0, 0, 0.001f); } else { color(r, g, b, a); } } void init() { g_AttractionTable[0] = 20.0f; g_AttractionTable[1] = 20.0f; g_AttractionTable[2] = 15.0f; g_AttractionTable[3] = 10.0f; g_AttractionTable[4] = -10.0f; g_AttractionTable[5] = -15.0f; g_AttractionTable[6] = -15.0f; g_AttractionTable[7] = -20.0f; g_AttractionTable[8] = -20.0f; // dup 7 to avoid a clamp later g_FrictionTable[0] = 10.0f; g_FrictionTable[1] = 10.0f; g_FrictionTable[2] = 11.0f; g_FrictionTable[3] = 15.0f; g_FrictionTable[4] = 15.0f; g_FrictionTable[5] = 11.0f; g_FrictionTable[6] = 10.0f; g_FrictionTable[7] = 10.0f; g_FrictionTable[8] = 10.0f; // dup 7 to avoid a clamp later g_PhysicsTableSize = 7; g_PosVelocity = 0; g_PosPage = 0; g_LastTouchDown = 0; g_LastPositionX = 0; g_Zoom = 0; g_SpecialHWWar = 1; g_MoveToTime = 0; g_MoveToOldPos = 0; g_MoveToTotalTime = 0.2f; // Duration of scrolling 1 line } void resetHWWar() { g_SpecialHWWar = 1; } void move() { if (g_LastTouchDown) { float dx = -(state->newPositionX - g_LastPositionX); g_PosVelocity = 0; g_PosPage += dx * 4; float pmin = -0.25f; float pmax = g_PosMax + 0.25f; g_PosPage = clampf(g_PosPage, pmin, pmax); } g_LastTouchDown = state->newTouchDown; g_LastPositionX = state->newPositionX; g_MoveToTime = 0; //debugF("Move P", g_PosPage); } void moveTo() { g_MoveToTime = g_MoveToTotalTime; g_PosVelocity = 0; g_MoveToOldPos = g_PosPage; // debugF("======= moveTo", state->targetPos); } void fling() { g_LastTouchDown = 0; g_PosVelocity = -state->flingVelocity * 4; float av = fabsf(g_PosVelocity); float minVel = 3.5f; minVel *= 1.f - (fabsf(fracf(g_PosPage + 0.5f) - 0.5f) * 0.45f); if (av < minVel && av > 0.2f) { if (g_PosVelocity > 0) { g_PosVelocity = minVel; } else { g_PosVelocity = -minVel; } } if (g_PosPage <= 0) { g_PosVelocity = maxf(0, g_PosVelocity); } if (g_PosPage > g_PosMax) { g_PosVelocity = minf(0, g_PosVelocity); } } float modf(float x, float y) { return x-(y*floorf(x/y)); } /* * Interpolates values in the range 0..1 to a curve that eases in * and out. */ float getInterpolation(float input) { return (cosf((input + 1) * PI) / 2.0f) + 0.5f; } void updatePos() { if (g_LastTouchDown) { return; } int outOfRange = 0; float tablePosNorm = fracf(g_PosPage + 0.5f); float tablePosF = tablePosNorm * g_PhysicsTableSize; int tablePosI = tablePosF; float tablePosFrac = tablePosF - tablePosI; float accel = lerpf(g_AttractionTable[tablePosI], g_AttractionTable[tablePosI + 1], tablePosFrac) * g_DT; float friction = lerpf(g_FrictionTable[tablePosI], g_FrictionTable[tablePosI + 1], tablePosFrac) * g_DT; if (g_MoveToTime) { /* float a = 2.f * (state->targetPos - g_MoveToOldPos) / (g_MoveToTotalTime * g_MoveToTotalTime); if (g_MoveToTime > (g_MoveToTotalTime * 0.5f)) { // slowing g_PosPage = state->targetPos - 0.5f * a * (g_MoveToTime * g_MoveToTime); } else { // accelerating. float t = g_MoveToTotalTime - g_MoveToTime; g_PosPage = g_MoveToOldPos + 0.5f * a * (t * t); } */ // New position is old posiition + (total distance) * (interpolated time) g_PosPage = g_MoveToOldPos + (state->targetPos - g_MoveToOldPos) * getInterpolation((g_MoveToTotalTime - g_MoveToTime) / g_MoveToTotalTime); g_MoveToTime -= g_DT; if (g_MoveToTime <= 0) { g_MoveToTime = 0; g_PosPage = state->targetPos; } return; } if (g_PosPage < -0.5f) { accel = g_AttractionTable[0] * g_DT; outOfRange = 1; } if ((g_PosPage - g_PosMax) > 0.5f) { accel = g_AttractionTable[(int)g_PhysicsTableSize] * g_DT; outOfRange = 1; } // If our velocity is low OR acceleration is opposing it, apply it. if (fabsf(g_PosVelocity) < 2.5f || (g_PosVelocity * accel) < 0 || outOfRange) { g_PosVelocity += accel; } if ((friction > fabsf(g_PosVelocity)) && (friction > fabsf(accel)) && !outOfRange) { // Special get back to center and overcome friction physics. float t = tablePosNorm - 0.5f; if (fabsf(t) < (friction * g_DT)) { // really close, just snap g_PosPage = roundf(g_PosPage); g_PosVelocity = 0; } else { if (t > 0) { g_PosVelocity = -friction; } else { g_PosVelocity = friction; } } } else { // Normal physics if (g_PosVelocity > 0) { g_PosVelocity -= friction; g_PosVelocity = maxf(g_PosVelocity, 0); } else { g_PosVelocity += friction; g_PosVelocity = minf(g_PosVelocity, 0); } } g_PosPage += g_PosVelocity * g_DT; // Check for out of boundry conditions. if (g_PosPage < 0 && g_PosVelocity < 0) { g_PosPage = maxf(g_PosPage, -0.49); float damp = 1.0 + (g_PosPage * 4); damp = clampf(damp, 0.f, 0.9f); g_PosVelocity *= damp; } if (g_PosPage > g_PosMax && g_PosVelocity > 0) { g_PosPage = minf(g_PosPage, g_PosMax + 0.49); float damp = 1.0 - ((g_PosPage - g_PosMax) * 4); damp = clampf(damp, 0.f, 0.9f); g_PosVelocity *= damp; } } int positionStrip(float row, float column, int isTop, float p) { float mat1[16]; float x = 0.5f * (column - 1.5f); float scale = 72.f * 3 / getWidth(); if (isTop) { matrixLoadTranslate(mat1, x, 0.8f, 0.f); matrixScale(mat1, scale, scale, 1.f); } else { matrixLoadTranslate(mat1, x, -0.9f, 0.f); matrixScale(mat1, scale, -scale, 1.f); } matrixTranslate(mat1, 0, p * 2, 0.f); matrixRotate(mat1, -p * 50, 1, 0, 0); vpLoadModelMatrix(mat1); float soff = -(row * 1.4); if (isTop) { matrixLoadScale(mat1, 1.f, -0.85f, 1.f); matrixTranslate(mat1, 0, soff - 0.97f, 0); } else { matrixLoadScale(mat1, 1.f, 0.85f, 1.f); matrixTranslate(mat1, 0, soff - 0.45f, 0); } vpLoadTextureMatrix(mat1); return -soff * 10.f; } void draw_home_button() { setColor(1.0f, 1.0f, 1.0f, 1.0f); bindTexture(NAMED_PFTexLinear, 0, state->homeButtonId); float x = (SCREEN_WIDTH_PX - params->homeButtonTextureWidth) / 2; float y = (g_Zoom - 1.f) * params->homeButtonTextureHeight; y -= 36; // move the house to the edge of the screen as it doesn't fill the texture. drawSpriteScreenspace(x, y, 0, params->homeButtonTextureWidth, params->homeButtonTextureHeight); } void drawFrontGrid(float rowOffset, float p) { float h = getHeight(); float w = getWidth(); int intRowOffset = rowOffset; float rowFrac = rowOffset - intRowOffset; float colWidth = getWidth() / 4; float rowHeight = colWidth + 25.f; float yoff = h - ((h - (rowHeight * 4.f)) / 2); yoff -= 110; int row, col; int iconNum = intRowOffset * 4; float ymax = yoff; float ymin = yoff - (3 * rowHeight) - 70; for (row = 0; row < 5; row++) { float y = yoff - ((-rowFrac + row) * rowHeight); for (col=0; col < 4; col++) { if (iconNum >= state->iconCount) { return; } if (iconNum >= 0) { float x = colWidth * col - ((128 - colWidth) / 2); if ((y >= ymin) && (y <= ymax)) { setColor(1.f, 1.f, 1.f, 1.f); if (state->selectedIconIndex == iconNum && !p) { bindTexture(NAMED_PFTexLinear, 0, state->selectedIconTexture); drawSpriteScreenspace(x, y, 0, 128, 128); } bindTexture(NAMED_PFTexLinear, 0, loadI32(ALLOC_ICON_IDS, iconNum)); if (!p) { drawSpriteScreenspace(x, y, 0, 128, 128); } else { float px = ((x + 64) - (getWidth() / 2)) / (getWidth() / 2); float py = ((y + 64) - (getHeight() / 2)) / (getWidth() / 2); float d = 64.f / (getWidth() / 2); px *= p + 1; py *= p + 1; drawQuadTexCoords(px - d, py - d, -p, 0, 1, px - d, py + d, -p, 0, 0, px + d, py + d, -p, 1, 0, px + d, py - d, -p, 1, 1); } } float y2 = y - 44; float a = 1.f; if (y2 < ymin) { a = 1.f - (ymin - y2) * 0.02f; } if (y > (ymax + 40)) { a = 1.f - (y - (ymax + 40)) * 0.02f; } a = clampf(a, 0, 1); a *= maxf(0, 1.f - p * 5.f); setColor(1, 1, 1, a); bindTexture(NAMED_PFTexLinear, 0, loadI32(ALLOC_LABEL_IDS, iconNum)); drawSpriteScreenspace(x, y - 44, 0, params->bubbleBitmapWidth, params->bubbleBitmapHeight); } iconNum++; } } } void drawStrip(float row, float column, int isTop, int iconNum, float p) { if (iconNum < 0) return; int offset = positionStrip(row, column, isTop, p); bindTexture(NAMED_PFTexLinear, 0, loadI32(ALLOC_ICON_IDS, iconNum)); if (offset < -20) return; offset = clamp(offset, 0, 199 - 20); drawSimpleMeshRange(NAMED_SMMesh, offset * 6, 20 * 6); } void drawTop(float rowOffset, float p) { int row, col; int iconNum = 0; for (row = 0; row < rowOffset; row++) { for (col=0; col < 4; col++) { if (iconNum >= state->iconCount) { return; } drawStrip(rowOffset - row, col, 1, iconNum, p); iconNum++; } } } void drawBottom(float rowOffset, float p) { float pos = -1.f; int intRowOffset = rowOffset; pos -= rowOffset - intRowOffset; int row, col; int iconNum = (intRowOffset + 3) * 4; while (1) { for (col=0; col < 4; col++) { if (iconNum >= state->iconCount) { return; } if (pos > -1) { drawStrip(pos, col, 0, iconNum, p); } iconNum++; } pos += 1.f; } } int main(int launchID) { // Compute dt in seconds. int newTime = uptimeMillis(); g_DT = (newTime - g_LastTime) / 1000.f; g_LastTime = newTime; if (!g_DrawLastFrame) { // If we stopped rendering we cannot use DT. // assume 30fps in this case. g_DT = 0.033f; } // physics may break if DT is large. g_DT = minf(g_DT, 0.2f); if (g_Zoom != state->zoomTarget) { float dz; if (state->zoomTarget > 0.5f) { dz = (1 - g_Zoom) * 0.2f; } else { dz = -g_DT - (1 - g_Zoom) * 0.2f; } if (dz && (fabsf(dz) < 0.02f)) { if (dz > 0) { dz = 0.02f; } else { dz = -0.02f; } } if (fabsf(g_Zoom - state->zoomTarget) < fabsf(dz)) { g_Zoom = state->zoomTarget; } else { g_Zoom += dz; } updateReadback(); } // Set clear value to dim the background based on the zoom position. if ((g_Zoom < 0.001f) && (state->zoomTarget < 0.001f) && !g_SpecialHWWar) { pfClearColor(0.0f, 0.0f, 0.0f, 0.0f); // When we're zoomed out and not tracking motion events, reset the pos to 0. if (!g_LastTouchDown) { g_PosPage = 0; } return lastFrame(0); } else { pfClearColor(0.0f, 0.0f, 0.0f, g_Zoom); } // icons & labels int iconCount = state->iconCount; g_PosMax = ((iconCount + 3) / 4) - 4; if (g_PosMax < 0) g_PosMax = 0; updatePos(0.1f); updateReadback(); //debugF(" draw g_PosPage", g_PosPage); // Draw the icons ======================================== //bindProgramFragment(NAMED_PFColor); //positionStrip(1, 0, 0); //drawSimpleMesh(NAMED_SMMesh); bindProgramFragment(NAMED_PFTexLinear); drawTop(g_PosPage, 1-g_Zoom); drawBottom(g_PosPage, 1-g_Zoom); { float mat1[16]; matrixLoadIdentity(mat1); vpLoadModelMatrix(mat1); vpLoadTextureMatrix(mat1); } drawFrontGrid(g_PosPage, 1-g_Zoom); draw_home_button(); // This is a WAR to do a rendering pass without drawing during init to // force the driver to preload and compile its shaders. // Without this the first animation does not appear due to the time it // takes to init the driver state. if (g_SpecialHWWar) { g_SpecialHWWar = 0; return 1; } // Bug workaround where the last frame is not always displayed // So we keep rendering until the bug is fixed. return lastFrame((g_PosVelocity != 0) || fracf(g_PosPage) || g_Zoom != state->zoomTarget || (g_MoveToTime != 0)); }