From 325dc23624160689e59fbac708cf6f222b20d025 Mon Sep 17 00:00:00 2001 From: Daniel Sandler Date: Wed, 5 Jun 2013 22:57:57 -0400 Subject: Launcher2 is now Launcher3. Changes include - moving from com.android.launcher{,2} to com.android.launcher3 - removing wallpapers - new temporary icon Change-Id: I1eabd06059e94a8f3bdf6b620777bd1d2b7c212b --- src/com/android/launcher3/CellLayout.java | 3338 +++++++++++++++++++++++++++++ 1 file changed, 3338 insertions(+) create mode 100644 src/com/android/launcher3/CellLayout.java (limited to 'src/com/android/launcher3/CellLayout.java') diff --git a/src/com/android/launcher3/CellLayout.java b/src/com/android/launcher3/CellLayout.java new file mode 100644 index 000000000..842037c31 --- /dev/null +++ b/src/com/android/launcher3/CellLayout.java @@ -0,0 +1,3338 @@ +/* + * Copyright (C) 2008 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package com.android.launcher3; + +import android.animation.Animator; +import android.animation.AnimatorListenerAdapter; +import android.animation.AnimatorSet; +import android.animation.TimeInterpolator; +import android.animation.ValueAnimator; +import android.animation.ValueAnimator.AnimatorUpdateListener; +import android.content.Context; +import android.content.res.Resources; +import android.content.res.TypedArray; +import android.graphics.Bitmap; +import android.graphics.Canvas; +import android.graphics.Color; +import android.graphics.Paint; +import android.graphics.Point; +import android.graphics.PorterDuff; +import android.graphics.PorterDuffXfermode; +import android.graphics.Rect; +import android.graphics.drawable.ColorDrawable; +import android.graphics.drawable.Drawable; +import android.graphics.drawable.NinePatchDrawable; +import android.os.Parcelable; +import android.util.AttributeSet; +import android.util.Log; +import android.util.SparseArray; +import android.view.MotionEvent; +import android.view.View; +import android.view.ViewDebug; +import android.view.ViewGroup; +import android.view.animation.Animation; +import android.view.animation.DecelerateInterpolator; +import android.view.animation.LayoutAnimationController; + +import com.android.launcher3.R; +import com.android.launcher3.FolderIcon.FolderRingAnimator; + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.Collections; +import java.util.Comparator; +import java.util.HashMap; +import java.util.Stack; + +public class CellLayout extends ViewGroup { + static final String TAG = "CellLayout"; + + private Launcher mLauncher; + private int mCellWidth; + private int mCellHeight; + + private int mCountX; + private int mCountY; + + private int mOriginalWidthGap; + private int mOriginalHeightGap; + private int mWidthGap; + private int mHeightGap; + private int mMaxGap; + private boolean mScrollingTransformsDirty = false; + + private final Rect mRect = new Rect(); + private final CellInfo mCellInfo = new CellInfo(); + + // These are temporary variables to prevent having to allocate a new object just to + // return an (x, y) value from helper functions. Do NOT use them to maintain other state. + private final int[] mTmpXY = new int[2]; + private final int[] mTmpPoint = new int[2]; + int[] mTempLocation = new int[2]; + + boolean[][] mOccupied; + boolean[][] mTmpOccupied; + private boolean mLastDownOnOccupiedCell = false; + + private OnTouchListener mInterceptTouchListener; + + private ArrayList mFolderOuterRings = new ArrayList(); + private int[] mFolderLeaveBehindCell = {-1, -1}; + + private int mForegroundAlpha = 0; + private float mBackgroundAlpha; + private float mBackgroundAlphaMultiplier = 1.0f; + + private Drawable mNormalBackground; + private Drawable mActiveGlowBackground; + private Drawable mOverScrollForegroundDrawable; + private Drawable mOverScrollLeft; + private Drawable mOverScrollRight; + private Rect mBackgroundRect; + private Rect mForegroundRect; + private int mForegroundPadding; + + // If we're actively dragging something over this screen, mIsDragOverlapping is true + private boolean mIsDragOverlapping = false; + private final Point mDragCenter = new Point(); + + // These arrays are used to implement the drag visualization on x-large screens. + // They are used as circular arrays, indexed by mDragOutlineCurrent. + private Rect[] mDragOutlines = new Rect[4]; + private float[] mDragOutlineAlphas = new float[mDragOutlines.length]; + private InterruptibleInOutAnimator[] mDragOutlineAnims = + new InterruptibleInOutAnimator[mDragOutlines.length]; + + // Used as an index into the above 3 arrays; indicates which is the most current value. + private int mDragOutlineCurrent = 0; + private final Paint mDragOutlinePaint = new Paint(); + + private BubbleTextView mPressedOrFocusedIcon; + + private HashMap mReorderAnimators = new + HashMap(); + private HashMap + mShakeAnimators = new HashMap(); + + private boolean mItemPlacementDirty = false; + + // When a drag operation is in progress, holds the nearest cell to the touch point + private final int[] mDragCell = new int[2]; + + private boolean mDragging = false; + + private TimeInterpolator mEaseOutInterpolator; + private ShortcutAndWidgetContainer mShortcutsAndWidgets; + + private boolean mIsHotseat = false; + private float mHotseatScale = 1f; + + public static final int MODE_DRAG_OVER = 0; + public static final int MODE_ON_DROP = 1; + public static final int MODE_ON_DROP_EXTERNAL = 2; + public static final int MODE_ACCEPT_DROP = 3; + private static final boolean DESTRUCTIVE_REORDER = false; + private static final boolean DEBUG_VISUALIZE_OCCUPIED = false; + + static final int LANDSCAPE = 0; + static final int PORTRAIT = 1; + + private static final float REORDER_HINT_MAGNITUDE = 0.12f; + private static final int REORDER_ANIMATION_DURATION = 150; + private float mReorderHintAnimationMagnitude; + + private ArrayList mIntersectingViews = new ArrayList(); + private Rect mOccupiedRect = new Rect(); + private int[] mDirectionVector = new int[2]; + int[] mPreviousReorderDirection = new int[2]; + private static final int INVALID_DIRECTION = -100; + private DropTarget.DragEnforcer mDragEnforcer; + + private final static PorterDuffXfermode sAddBlendMode = + new PorterDuffXfermode(PorterDuff.Mode.ADD); + private final static Paint sPaint = new Paint(); + + public CellLayout(Context context) { + this(context, null); + } + + public CellLayout(Context context, AttributeSet attrs) { + this(context, attrs, 0); + } + + public CellLayout(Context context, AttributeSet attrs, int defStyle) { + super(context, attrs, defStyle); + mDragEnforcer = new DropTarget.DragEnforcer(context); + + // A ViewGroup usually does not draw, but CellLayout needs to draw a rectangle to show + // the user where a dragged item will land when dropped. + setWillNotDraw(false); + setClipToPadding(false); + mLauncher = (Launcher) context; + + TypedArray a = context.obtainStyledAttributes(attrs, R.styleable.CellLayout, defStyle, 0); + + mCellWidth = a.getDimensionPixelSize(R.styleable.CellLayout_cellWidth, 10); + mCellHeight = a.getDimensionPixelSize(R.styleable.CellLayout_cellHeight, 10); + mWidthGap = mOriginalWidthGap = a.getDimensionPixelSize(R.styleable.CellLayout_widthGap, 0); + mHeightGap = mOriginalHeightGap = a.getDimensionPixelSize(R.styleable.CellLayout_heightGap, 0); + mMaxGap = a.getDimensionPixelSize(R.styleable.CellLayout_maxGap, 0); + mCountX = LauncherModel.getCellCountX(); + mCountY = LauncherModel.getCellCountY(); + mOccupied = new boolean[mCountX][mCountY]; + mTmpOccupied = new boolean[mCountX][mCountY]; + mPreviousReorderDirection[0] = INVALID_DIRECTION; + mPreviousReorderDirection[1] = INVALID_DIRECTION; + + a.recycle(); + + setAlwaysDrawnWithCacheEnabled(false); + + final Resources res = getResources(); + mHotseatScale = (res.getInteger(R.integer.hotseat_item_scale_percentage) / 100f); + + mNormalBackground = res.getDrawable(R.drawable.homescreen_blue_normal_holo); + mActiveGlowBackground = res.getDrawable(R.drawable.homescreen_blue_strong_holo); + + mOverScrollLeft = res.getDrawable(R.drawable.overscroll_glow_left); + mOverScrollRight = res.getDrawable(R.drawable.overscroll_glow_right); + mForegroundPadding = + res.getDimensionPixelSize(R.dimen.workspace_overscroll_drawable_padding); + + mReorderHintAnimationMagnitude = (REORDER_HINT_MAGNITUDE * + res.getDimensionPixelSize(R.dimen.app_icon_size)); + + mNormalBackground.setFilterBitmap(true); + mActiveGlowBackground.setFilterBitmap(true); + + // Initialize the data structures used for the drag visualization. + + mEaseOutInterpolator = new DecelerateInterpolator(2.5f); // Quint ease out + + + mDragCell[0] = mDragCell[1] = -1; + for (int i = 0; i < mDragOutlines.length; i++) { + mDragOutlines[i] = new Rect(-1, -1, -1, -1); + } + + // When dragging things around the home screens, we show a green outline of + // where the item will land. The outlines gradually fade out, leaving a trail + // behind the drag path. + // Set up all the animations that are used to implement this fading. + final int duration = res.getInteger(R.integer.config_dragOutlineFadeTime); + final float fromAlphaValue = 0; + final float toAlphaValue = (float)res.getInteger(R.integer.config_dragOutlineMaxAlpha); + + Arrays.fill(mDragOutlineAlphas, fromAlphaValue); + + for (int i = 0; i < mDragOutlineAnims.length; i++) { + final InterruptibleInOutAnimator anim = + new InterruptibleInOutAnimator(this, duration, fromAlphaValue, toAlphaValue); + anim.getAnimator().setInterpolator(mEaseOutInterpolator); + final int thisIndex = i; + anim.getAnimator().addUpdateListener(new AnimatorUpdateListener() { + public void onAnimationUpdate(ValueAnimator animation) { + final Bitmap outline = (Bitmap)anim.getTag(); + + // If an animation is started and then stopped very quickly, we can still + // get spurious updates we've cleared the tag. Guard against this. + if (outline == null) { + @SuppressWarnings("all") // suppress dead code warning + final boolean debug = false; + if (debug) { + Object val = animation.getAnimatedValue(); + Log.d(TAG, "anim " + thisIndex + " update: " + val + + ", isStopped " + anim.isStopped()); + } + // Try to prevent it from continuing to run + animation.cancel(); + } else { + mDragOutlineAlphas[thisIndex] = (Float) animation.getAnimatedValue(); + CellLayout.this.invalidate(mDragOutlines[thisIndex]); + } + } + }); + // The animation holds a reference to the drag outline bitmap as long is it's + // running. This way the bitmap can be GCed when the animations are complete. + anim.getAnimator().addListener(new AnimatorListenerAdapter() { + @Override + public void onAnimationEnd(Animator animation) { + if ((Float) ((ValueAnimator) animation).getAnimatedValue() == 0f) { + anim.setTag(null); + } + } + }); + mDragOutlineAnims[i] = anim; + } + + mBackgroundRect = new Rect(); + mForegroundRect = new Rect(); + + mShortcutsAndWidgets = new ShortcutAndWidgetContainer(context); + mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap, + mCountX); + + addView(mShortcutsAndWidgets); + } + + static int widthInPortrait(Resources r, int numCells) { + // We use this method from Workspace to figure out how many rows/columns Launcher should + // have. We ignore the left/right padding on CellLayout because it turns out in our design + // the padding extends outside the visible screen size, but it looked fine anyway. + int cellWidth = r.getDimensionPixelSize(R.dimen.workspace_cell_width); + int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap), + r.getDimensionPixelSize(R.dimen.workspace_height_gap)); + + return minGap * (numCells - 1) + cellWidth * numCells; + } + + static int heightInLandscape(Resources r, int numCells) { + // We use this method from Workspace to figure out how many rows/columns Launcher should + // have. We ignore the left/right padding on CellLayout because it turns out in our design + // the padding extends outside the visible screen size, but it looked fine anyway. + int cellHeight = r.getDimensionPixelSize(R.dimen.workspace_cell_height); + int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap), + r.getDimensionPixelSize(R.dimen.workspace_height_gap)); + + return minGap * (numCells - 1) + cellHeight * numCells; + } + + public void enableHardwareLayers() { + mShortcutsAndWidgets.setLayerType(LAYER_TYPE_HARDWARE, sPaint); + } + + public void disableHardwareLayers() { + mShortcutsAndWidgets.setLayerType(LAYER_TYPE_NONE, sPaint); + } + + public void buildHardwareLayer() { + mShortcutsAndWidgets.buildLayer(); + } + + public float getChildrenScale() { + return mIsHotseat ? mHotseatScale : 1.0f; + } + + public void setGridSize(int x, int y) { + mCountX = x; + mCountY = y; + mOccupied = new boolean[mCountX][mCountY]; + mTmpOccupied = new boolean[mCountX][mCountY]; + mTempRectStack.clear(); + mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap, + mCountX); + requestLayout(); + } + + // Set whether or not to invert the layout horizontally if the layout is in RTL mode. + public void setInvertIfRtl(boolean invert) { + mShortcutsAndWidgets.setInvertIfRtl(invert); + } + + private void invalidateBubbleTextView(BubbleTextView icon) { + final int padding = icon.getPressedOrFocusedBackgroundPadding(); + invalidate(icon.getLeft() + getPaddingLeft() - padding, + icon.getTop() + getPaddingTop() - padding, + icon.getRight() + getPaddingLeft() + padding, + icon.getBottom() + getPaddingTop() + padding); + } + + void setOverScrollAmount(float r, boolean left) { + if (left && mOverScrollForegroundDrawable != mOverScrollLeft) { + mOverScrollForegroundDrawable = mOverScrollLeft; + } else if (!left && mOverScrollForegroundDrawable != mOverScrollRight) { + mOverScrollForegroundDrawable = mOverScrollRight; + } + + mForegroundAlpha = (int) Math.round((r * 255)); + mOverScrollForegroundDrawable.setAlpha(mForegroundAlpha); + invalidate(); + } + + void setPressedOrFocusedIcon(BubbleTextView icon) { + // We draw the pressed or focused BubbleTextView's background in CellLayout because it + // requires an expanded clip rect (due to the glow's blur radius) + BubbleTextView oldIcon = mPressedOrFocusedIcon; + mPressedOrFocusedIcon = icon; + if (oldIcon != null) { + invalidateBubbleTextView(oldIcon); + } + if (mPressedOrFocusedIcon != null) { + invalidateBubbleTextView(mPressedOrFocusedIcon); + } + } + + void setIsDragOverlapping(boolean isDragOverlapping) { + if (mIsDragOverlapping != isDragOverlapping) { + mIsDragOverlapping = isDragOverlapping; + invalidate(); + } + } + + boolean getIsDragOverlapping() { + return mIsDragOverlapping; + } + + protected void setOverscrollTransformsDirty(boolean dirty) { + mScrollingTransformsDirty = dirty; + } + + protected void resetOverscrollTransforms() { + if (mScrollingTransformsDirty) { + setOverscrollTransformsDirty(false); + setTranslationX(0); + setRotationY(0); + // It doesn't matter if we pass true or false here, the important thing is that we + // pass 0, which results in the overscroll drawable not being drawn any more. + setOverScrollAmount(0, false); + setPivotX(getMeasuredWidth() / 2); + setPivotY(getMeasuredHeight() / 2); + } + } + + public void scaleRect(Rect r, float scale) { + if (scale != 1.0f) { + r.left = (int) (r.left * scale + 0.5f); + r.top = (int) (r.top * scale + 0.5f); + r.right = (int) (r.right * scale + 0.5f); + r.bottom = (int) (r.bottom * scale + 0.5f); + } + } + + Rect temp = new Rect(); + void scaleRectAboutCenter(Rect in, Rect out, float scale) { + int cx = in.centerX(); + int cy = in.centerY(); + out.set(in); + out.offset(-cx, -cy); + scaleRect(out, scale); + out.offset(cx, cy); + } + + @Override + protected void onDraw(Canvas canvas) { + // When we're large, we are either drawn in a "hover" state (ie when dragging an item to + // a neighboring page) or with just a normal background (if backgroundAlpha > 0.0f) + // When we're small, we are either drawn normally or in the "accepts drops" state (during + // a drag). However, we also drag the mini hover background *over* one of those two + // backgrounds + if (mBackgroundAlpha > 0.0f) { + Drawable bg; + + if (mIsDragOverlapping) { + // In the mini case, we draw the active_glow bg *over* the active background + bg = mActiveGlowBackground; + } else { + bg = mNormalBackground; + } + + bg.setAlpha((int) (mBackgroundAlpha * mBackgroundAlphaMultiplier * 255)); + bg.setBounds(mBackgroundRect); + bg.draw(canvas); + } + + final Paint paint = mDragOutlinePaint; + for (int i = 0; i < mDragOutlines.length; i++) { + final float alpha = mDragOutlineAlphas[i]; + if (alpha > 0) { + final Rect r = mDragOutlines[i]; + scaleRectAboutCenter(r, temp, getChildrenScale()); + final Bitmap b = (Bitmap) mDragOutlineAnims[i].getTag(); + paint.setAlpha((int)(alpha + .5f)); + canvas.drawBitmap(b, null, temp, paint); + } + } + + // We draw the pressed or focused BubbleTextView's background in CellLayout because it + // requires an expanded clip rect (due to the glow's blur radius) + if (mPressedOrFocusedIcon != null) { + final int padding = mPressedOrFocusedIcon.getPressedOrFocusedBackgroundPadding(); + final Bitmap b = mPressedOrFocusedIcon.getPressedOrFocusedBackground(); + if (b != null) { + canvas.drawBitmap(b, + mPressedOrFocusedIcon.getLeft() + getPaddingLeft() - padding, + mPressedOrFocusedIcon.getTop() + getPaddingTop() - padding, + null); + } + } + + if (DEBUG_VISUALIZE_OCCUPIED) { + int[] pt = new int[2]; + ColorDrawable cd = new ColorDrawable(Color.RED); + cd.setBounds(0, 0, mCellWidth, mCellHeight); + for (int i = 0; i < mCountX; i++) { + for (int j = 0; j < mCountY; j++) { + if (mOccupied[i][j]) { + cellToPoint(i, j, pt); + canvas.save(); + canvas.translate(pt[0], pt[1]); + cd.draw(canvas); + canvas.restore(); + } + } + } + } + + int previewOffset = FolderRingAnimator.sPreviewSize; + + // The folder outer / inner ring image(s) + for (int i = 0; i < mFolderOuterRings.size(); i++) { + FolderRingAnimator fra = mFolderOuterRings.get(i); + + // Draw outer ring + Drawable d = FolderRingAnimator.sSharedOuterRingDrawable; + int width = (int) fra.getOuterRingSize(); + int height = width; + cellToPoint(fra.mCellX, fra.mCellY, mTempLocation); + + int centerX = mTempLocation[0] + mCellWidth / 2; + int centerY = mTempLocation[1] + previewOffset / 2; + + canvas.save(); + canvas.translate(centerX - width / 2, centerY - height / 2); + d.setBounds(0, 0, width, height); + d.draw(canvas); + canvas.restore(); + + // Draw inner ring + d = FolderRingAnimator.sSharedInnerRingDrawable; + width = (int) fra.getInnerRingSize(); + height = width; + cellToPoint(fra.mCellX, fra.mCellY, mTempLocation); + + centerX = mTempLocation[0] + mCellWidth / 2; + centerY = mTempLocation[1] + previewOffset / 2; + canvas.save(); + canvas.translate(centerX - width / 2, centerY - width / 2); + d.setBounds(0, 0, width, height); + d.draw(canvas); + canvas.restore(); + } + + if (mFolderLeaveBehindCell[0] >= 0 && mFolderLeaveBehindCell[1] >= 0) { + Drawable d = FolderIcon.sSharedFolderLeaveBehind; + int width = d.getIntrinsicWidth(); + int height = d.getIntrinsicHeight(); + + cellToPoint(mFolderLeaveBehindCell[0], mFolderLeaveBehindCell[1], mTempLocation); + int centerX = mTempLocation[0] + mCellWidth / 2; + int centerY = mTempLocation[1] + previewOffset / 2; + + canvas.save(); + canvas.translate(centerX - width / 2, centerY - width / 2); + d.setBounds(0, 0, width, height); + d.draw(canvas); + canvas.restore(); + } + } + + @Override + protected void dispatchDraw(Canvas canvas) { + super.dispatchDraw(canvas); + if (mForegroundAlpha > 0) { + mOverScrollForegroundDrawable.setBounds(mForegroundRect); + Paint p = ((NinePatchDrawable) mOverScrollForegroundDrawable).getPaint(); + p.setXfermode(sAddBlendMode); + mOverScrollForegroundDrawable.draw(canvas); + p.setXfermode(null); + } + } + + public void showFolderAccept(FolderRingAnimator fra) { + mFolderOuterRings.add(fra); + } + + public void hideFolderAccept(FolderRingAnimator fra) { + if (mFolderOuterRings.contains(fra)) { + mFolderOuterRings.remove(fra); + } + invalidate(); + } + + public void setFolderLeaveBehindCell(int x, int y) { + mFolderLeaveBehindCell[0] = x; + mFolderLeaveBehindCell[1] = y; + invalidate(); + } + + public void clearFolderLeaveBehind() { + mFolderLeaveBehindCell[0] = -1; + mFolderLeaveBehindCell[1] = -1; + invalidate(); + } + + @Override + public boolean shouldDelayChildPressedState() { + return false; + } + + public void restoreInstanceState(SparseArray states) { + dispatchRestoreInstanceState(states); + } + + @Override + public void cancelLongPress() { + super.cancelLongPress(); + + // Cancel long press for all children + final int count = getChildCount(); + for (int i = 0; i < count; i++) { + final View child = getChildAt(i); + child.cancelLongPress(); + } + } + + public void setOnInterceptTouchListener(View.OnTouchListener listener) { + mInterceptTouchListener = listener; + } + + int getCountX() { + return mCountX; + } + + int getCountY() { + return mCountY; + } + + public void setIsHotseat(boolean isHotseat) { + mIsHotseat = isHotseat; + } + + public boolean addViewToCellLayout(View child, int index, int childId, LayoutParams params, + boolean markCells) { + final LayoutParams lp = params; + + // Hotseat icons - remove text + if (child instanceof BubbleTextView) { + BubbleTextView bubbleChild = (BubbleTextView) child; + + Resources res = getResources(); + if (mIsHotseat) { + bubbleChild.setTextColor(res.getColor(android.R.color.transparent)); + } else { + bubbleChild.setTextColor(res.getColor(R.color.workspace_icon_text_color)); + } + } + + child.setScaleX(getChildrenScale()); + child.setScaleY(getChildrenScale()); + + // Generate an id for each view, this assumes we have at most 256x256 cells + // per workspace screen + if (lp.cellX >= 0 && lp.cellX <= mCountX - 1 && lp.cellY >= 0 && lp.cellY <= mCountY - 1) { + // If the horizontal or vertical span is set to -1, it is taken to + // mean that it spans the extent of the CellLayout + if (lp.cellHSpan < 0) lp.cellHSpan = mCountX; + if (lp.cellVSpan < 0) lp.cellVSpan = mCountY; + + child.setId(childId); + + mShortcutsAndWidgets.addView(child, index, lp); + + if (markCells) markCellsAsOccupiedForView(child); + + return true; + } + return false; + } + + @Override + public void removeAllViews() { + clearOccupiedCells(); + mShortcutsAndWidgets.removeAllViews(); + } + + @Override + public void removeAllViewsInLayout() { + if (mShortcutsAndWidgets.getChildCount() > 0) { + clearOccupiedCells(); + mShortcutsAndWidgets.removeAllViewsInLayout(); + } + } + + public void removeViewWithoutMarkingCells(View view) { + mShortcutsAndWidgets.removeView(view); + } + + @Override + public void removeView(View view) { + markCellsAsUnoccupiedForView(view); + mShortcutsAndWidgets.removeView(view); + } + + @Override + public void removeViewAt(int index) { + markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(index)); + mShortcutsAndWidgets.removeViewAt(index); + } + + @Override + public void removeViewInLayout(View view) { + markCellsAsUnoccupiedForView(view); + mShortcutsAndWidgets.removeViewInLayout(view); + } + + @Override + public void removeViews(int start, int count) { + for (int i = start; i < start + count; i++) { + markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i)); + } + mShortcutsAndWidgets.removeViews(start, count); + } + + @Override + public void removeViewsInLayout(int start, int count) { + for (int i = start; i < start + count; i++) { + markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i)); + } + mShortcutsAndWidgets.removeViewsInLayout(start, count); + } + + @Override + protected void onAttachedToWindow() { + super.onAttachedToWindow(); + mCellInfo.screen = ((ViewGroup) getParent()).indexOfChild(this); + } + + public void setTagToCellInfoForPoint(int touchX, int touchY) { + final CellInfo cellInfo = mCellInfo; + Rect frame = mRect; + final int x = touchX + getScrollX(); + final int y = touchY + getScrollY(); + final int count = mShortcutsAndWidgets.getChildCount(); + + boolean found = false; + for (int i = count - 1; i >= 0; i--) { + final View child = mShortcutsAndWidgets.getChildAt(i); + final LayoutParams lp = (LayoutParams) child.getLayoutParams(); + + if ((child.getVisibility() == VISIBLE || child.getAnimation() != null) && + lp.isLockedToGrid) { + child.getHitRect(frame); + + float scale = child.getScaleX(); + frame = new Rect(child.getLeft(), child.getTop(), child.getRight(), + child.getBottom()); + // The child hit rect is relative to the CellLayoutChildren parent, so we need to + // offset that by this CellLayout's padding to test an (x,y) point that is relative + // to this view. + frame.offset(getPaddingLeft(), getPaddingTop()); + frame.inset((int) (frame.width() * (1f - scale) / 2), + (int) (frame.height() * (1f - scale) / 2)); + + if (frame.contains(x, y)) { + cellInfo.cell = child; + cellInfo.cellX = lp.cellX; + cellInfo.cellY = lp.cellY; + cellInfo.spanX = lp.cellHSpan; + cellInfo.spanY = lp.cellVSpan; + found = true; + break; + } + } + } + + mLastDownOnOccupiedCell = found; + + if (!found) { + final int cellXY[] = mTmpXY; + pointToCellExact(x, y, cellXY); + + cellInfo.cell = null; + cellInfo.cellX = cellXY[0]; + cellInfo.cellY = cellXY[1]; + cellInfo.spanX = 1; + cellInfo.spanY = 1; + } + setTag(cellInfo); + } + + @Override + public boolean onInterceptTouchEvent(MotionEvent ev) { + // First we clear the tag to ensure that on every touch down we start with a fresh slate, + // even in the case where we return early. Not clearing here was causing bugs whereby on + // long-press we'd end up picking up an item from a previous drag operation. + final int action = ev.getAction(); + + if (action == MotionEvent.ACTION_DOWN) { + clearTagCellInfo(); + } + + if (mInterceptTouchListener != null && mInterceptTouchListener.onTouch(this, ev)) { + return true; + } + + if (action == MotionEvent.ACTION_DOWN) { + setTagToCellInfoForPoint((int) ev.getX(), (int) ev.getY()); + } + + return false; + } + + private void clearTagCellInfo() { + final CellInfo cellInfo = mCellInfo; + cellInfo.cell = null; + cellInfo.cellX = -1; + cellInfo.cellY = -1; + cellInfo.spanX = 0; + cellInfo.spanY = 0; + setTag(cellInfo); + } + + public CellInfo getTag() { + return (CellInfo) super.getTag(); + } + + /** + * Given a point, return the cell that strictly encloses that point + * @param x X coordinate of the point + * @param y Y coordinate of the point + * @param result Array of 2 ints to hold the x and y coordinate of the cell + */ + void pointToCellExact(int x, int y, int[] result) { + final int hStartPadding = getPaddingLeft(); + final int vStartPadding = getPaddingTop(); + + result[0] = (x - hStartPadding) / (mCellWidth + mWidthGap); + result[1] = (y - vStartPadding) / (mCellHeight + mHeightGap); + + final int xAxis = mCountX; + final int yAxis = mCountY; + + if (result[0] < 0) result[0] = 0; + if (result[0] >= xAxis) result[0] = xAxis - 1; + if (result[1] < 0) result[1] = 0; + if (result[1] >= yAxis) result[1] = yAxis - 1; + } + + /** + * Given a point, return the cell that most closely encloses that point + * @param x X coordinate of the point + * @param y Y coordinate of the point + * @param result Array of 2 ints to hold the x and y coordinate of the cell + */ + void pointToCellRounded(int x, int y, int[] result) { + pointToCellExact(x + (mCellWidth / 2), y + (mCellHeight / 2), result); + } + + /** + * Given a cell coordinate, return the point that represents the upper left corner of that cell + * + * @param cellX X coordinate of the cell + * @param cellY Y coordinate of the cell + * + * @param result Array of 2 ints to hold the x and y coordinate of the point + */ + void cellToPoint(int cellX, int cellY, int[] result) { + final int hStartPadding = getPaddingLeft(); + final int vStartPadding = getPaddingTop(); + + result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap); + result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap); + } + + /** + * Given a cell coordinate, return the point that represents the center of the cell + * + * @param cellX X coordinate of the cell + * @param cellY Y coordinate of the cell + * + * @param result Array of 2 ints to hold the x and y coordinate of the point + */ + void cellToCenterPoint(int cellX, int cellY, int[] result) { + regionToCenterPoint(cellX, cellY, 1, 1, result); + } + + /** + * Given a cell coordinate and span return the point that represents the center of the regio + * + * @param cellX X coordinate of the cell + * @param cellY Y coordinate of the cell + * + * @param result Array of 2 ints to hold the x and y coordinate of the point + */ + void regionToCenterPoint(int cellX, int cellY, int spanX, int spanY, int[] result) { + final int hStartPadding = getPaddingLeft(); + final int vStartPadding = getPaddingTop(); + result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap) + + (spanX * mCellWidth + (spanX - 1) * mWidthGap) / 2; + result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap) + + (spanY * mCellHeight + (spanY - 1) * mHeightGap) / 2; + } + + /** + * Given a cell coordinate and span fills out a corresponding pixel rect + * + * @param cellX X coordinate of the cell + * @param cellY Y coordinate of the cell + * @param result Rect in which to write the result + */ + void regionToRect(int cellX, int cellY, int spanX, int spanY, Rect result) { + final int hStartPadding = getPaddingLeft(); + final int vStartPadding = getPaddingTop(); + final int left = hStartPadding + cellX * (mCellWidth + mWidthGap); + final int top = vStartPadding + cellY * (mCellHeight + mHeightGap); + result.set(left, top, left + (spanX * mCellWidth + (spanX - 1) * mWidthGap), + top + (spanY * mCellHeight + (spanY - 1) * mHeightGap)); + } + + public float getDistanceFromCell(float x, float y, int[] cell) { + cellToCenterPoint(cell[0], cell[1], mTmpPoint); + float distance = (float) Math.sqrt( Math.pow(x - mTmpPoint[0], 2) + + Math.pow(y - mTmpPoint[1], 2)); + return distance; + } + + int getCellWidth() { + return mCellWidth; + } + + int getCellHeight() { + return mCellHeight; + } + + int getWidthGap() { + return mWidthGap; + } + + int getHeightGap() { + return mHeightGap; + } + + Rect getContentRect(Rect r) { + if (r == null) { + r = new Rect(); + } + int left = getPaddingLeft(); + int top = getPaddingTop(); + int right = left + getWidth() - getPaddingLeft() - getPaddingRight(); + int bottom = top + getHeight() - getPaddingTop() - getPaddingBottom(); + r.set(left, top, right, bottom); + return r; + } + + static void getMetrics(Rect metrics, Resources res, int measureWidth, int measureHeight, + int countX, int countY, int orientation) { + int numWidthGaps = countX - 1; + int numHeightGaps = countY - 1; + + int widthGap; + int heightGap; + int cellWidth; + int cellHeight; + int paddingLeft; + int paddingRight; + int paddingTop; + int paddingBottom; + + int maxGap = res.getDimensionPixelSize(R.dimen.workspace_max_gap); + if (orientation == LANDSCAPE) { + cellWidth = res.getDimensionPixelSize(R.dimen.workspace_cell_width_land); + cellHeight = res.getDimensionPixelSize(R.dimen.workspace_cell_height_land); + widthGap = res.getDimensionPixelSize(R.dimen.workspace_width_gap_land); + heightGap = res.getDimensionPixelSize(R.dimen.workspace_height_gap_land); + paddingLeft = res.getDimensionPixelSize(R.dimen.cell_layout_left_padding_land); + paddingRight = res.getDimensionPixelSize(R.dimen.cell_layout_right_padding_land); + paddingTop = res.getDimensionPixelSize(R.dimen.cell_layout_top_padding_land); + paddingBottom = res.getDimensionPixelSize(R.dimen.cell_layout_bottom_padding_land); + } else { + // PORTRAIT + cellWidth = res.getDimensionPixelSize(R.dimen.workspace_cell_width_port); + cellHeight = res.getDimensionPixelSize(R.dimen.workspace_cell_height_port); + widthGap = res.getDimensionPixelSize(R.dimen.workspace_width_gap_port); + heightGap = res.getDimensionPixelSize(R.dimen.workspace_height_gap_port); + paddingLeft = res.getDimensionPixelSize(R.dimen.cell_layout_left_padding_port); + paddingRight = res.getDimensionPixelSize(R.dimen.cell_layout_right_padding_port); + paddingTop = res.getDimensionPixelSize(R.dimen.cell_layout_top_padding_port); + paddingBottom = res.getDimensionPixelSize(R.dimen.cell_layout_bottom_padding_port); + } + + if (widthGap < 0 || heightGap < 0) { + int hSpace = measureWidth - paddingLeft - paddingRight; + int vSpace = measureHeight - paddingTop - paddingBottom; + int hFreeSpace = hSpace - (countX * cellWidth); + int vFreeSpace = vSpace - (countY * cellHeight); + widthGap = Math.min(maxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0); + heightGap = Math.min(maxGap, numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0); + } + metrics.set(cellWidth, cellHeight, widthGap, heightGap); + } + + @Override + protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { + int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec); + int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec); + + int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec); + int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec); + + if (widthSpecMode == MeasureSpec.UNSPECIFIED || heightSpecMode == MeasureSpec.UNSPECIFIED) { + throw new RuntimeException("CellLayout cannot have UNSPECIFIED dimensions"); + } + + int numWidthGaps = mCountX - 1; + int numHeightGaps = mCountY - 1; + + if (mOriginalWidthGap < 0 || mOriginalHeightGap < 0) { + int hSpace = widthSpecSize - getPaddingLeft() - getPaddingRight(); + int vSpace = heightSpecSize - getPaddingTop() - getPaddingBottom(); + int hFreeSpace = hSpace - (mCountX * mCellWidth); + int vFreeSpace = vSpace - (mCountY * mCellHeight); + mWidthGap = Math.min(mMaxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0); + mHeightGap = Math.min(mMaxGap,numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0); + mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap, + mCountX); + } else { + mWidthGap = mOriginalWidthGap; + mHeightGap = mOriginalHeightGap; + } + + // Initial values correspond to widthSpecMode == MeasureSpec.EXACTLY + int newWidth = widthSpecSize; + int newHeight = heightSpecSize; + if (widthSpecMode == MeasureSpec.AT_MOST) { + newWidth = getPaddingLeft() + getPaddingRight() + (mCountX * mCellWidth) + + ((mCountX - 1) * mWidthGap); + newHeight = getPaddingTop() + getPaddingBottom() + (mCountY * mCellHeight) + + ((mCountY - 1) * mHeightGap); + setMeasuredDimension(newWidth, newHeight); + } + + int count = getChildCount(); + for (int i = 0; i < count; i++) { + View child = getChildAt(i); + int childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(newWidth - getPaddingLeft() - + getPaddingRight(), MeasureSpec.EXACTLY); + int childheightMeasureSpec = MeasureSpec.makeMeasureSpec(newHeight - getPaddingTop() - + getPaddingBottom(), MeasureSpec.EXACTLY); + child.measure(childWidthMeasureSpec, childheightMeasureSpec); + } + setMeasuredDimension(newWidth, newHeight); + } + + @Override + protected void onLayout(boolean changed, int l, int t, int r, int b) { + int count = getChildCount(); + for (int i = 0; i < count; i++) { + View child = getChildAt(i); + child.layout(getPaddingLeft(), getPaddingTop(), + r - l - getPaddingRight(), b - t - getPaddingBottom()); + } + } + + @Override + protected void onSizeChanged(int w, int h, int oldw, int oldh) { + super.onSizeChanged(w, h, oldw, oldh); + mBackgroundRect.set(0, 0, w, h); + mForegroundRect.set(mForegroundPadding, mForegroundPadding, + w - mForegroundPadding, h - mForegroundPadding); + } + + @Override + protected void setChildrenDrawingCacheEnabled(boolean enabled) { + mShortcutsAndWidgets.setChildrenDrawingCacheEnabled(enabled); + } + + @Override + protected void setChildrenDrawnWithCacheEnabled(boolean enabled) { + mShortcutsAndWidgets.setChildrenDrawnWithCacheEnabled(enabled); + } + + public float getBackgroundAlpha() { + return mBackgroundAlpha; + } + + public void setBackgroundAlphaMultiplier(float multiplier) { + if (mBackgroundAlphaMultiplier != multiplier) { + mBackgroundAlphaMultiplier = multiplier; + invalidate(); + } + } + + public float getBackgroundAlphaMultiplier() { + return mBackgroundAlphaMultiplier; + } + + public void setBackgroundAlpha(float alpha) { + if (mBackgroundAlpha != alpha) { + mBackgroundAlpha = alpha; + invalidate(); + } + } + + public void setShortcutAndWidgetAlpha(float alpha) { + final int childCount = getChildCount(); + for (int i = 0; i < childCount; i++) { + getChildAt(i).setAlpha(alpha); + } + } + + public ShortcutAndWidgetContainer getShortcutsAndWidgets() { + if (getChildCount() > 0) { + return (ShortcutAndWidgetContainer) getChildAt(0); + } + return null; + } + + public View getChildAt(int x, int y) { + return mShortcutsAndWidgets.getChildAt(x, y); + } + + public boolean animateChildToPosition(final View child, int cellX, int cellY, int duration, + int delay, boolean permanent, boolean adjustOccupied) { + ShortcutAndWidgetContainer clc = getShortcutsAndWidgets(); + boolean[][] occupied = mOccupied; + if (!permanent) { + occupied = mTmpOccupied; + } + + if (clc.indexOfChild(child) != -1) { + final LayoutParams lp = (LayoutParams) child.getLayoutParams(); + final ItemInfo info = (ItemInfo) child.getTag(); + + // We cancel any existing animations + if (mReorderAnimators.containsKey(lp)) { + mReorderAnimators.get(lp).cancel(); + mReorderAnimators.remove(lp); + } + + final int oldX = lp.x; + final int oldY = lp.y; + if (adjustOccupied) { + occupied[lp.cellX][lp.cellY] = false; + occupied[cellX][cellY] = true; + } + lp.isLockedToGrid = true; + if (permanent) { + lp.cellX = info.cellX = cellX; + lp.cellY = info.cellY = cellY; + } else { + lp.tmpCellX = cellX; + lp.tmpCellY = cellY; + } + clc.setupLp(lp); + lp.isLockedToGrid = false; + final int newX = lp.x; + final int newY = lp.y; + + lp.x = oldX; + lp.y = oldY; + + // Exit early if we're not actually moving the view + if (oldX == newX && oldY == newY) { + lp.isLockedToGrid = true; + return true; + } + + ValueAnimator va = LauncherAnimUtils.ofFloat(child, 0f, 1f); + va.setDuration(duration); + mReorderAnimators.put(lp, va); + + va.addUpdateListener(new AnimatorUpdateListener() { + @Override + public void onAnimationUpdate(ValueAnimator animation) { + float r = ((Float) animation.getAnimatedValue()).floatValue(); + lp.x = (int) ((1 - r) * oldX + r * newX); + lp.y = (int) ((1 - r) * oldY + r * newY); + child.requestLayout(); + } + }); + va.addListener(new AnimatorListenerAdapter() { + boolean cancelled = false; + public void onAnimationEnd(Animator animation) { + // If the animation was cancelled, it means that another animation + // has interrupted this one, and we don't want to lock the item into + // place just yet. + if (!cancelled) { + lp.isLockedToGrid = true; + child.requestLayout(); + } + if (mReorderAnimators.containsKey(lp)) { + mReorderAnimators.remove(lp); + } + } + public void onAnimationCancel(Animator animation) { + cancelled = true; + } + }); + va.setStartDelay(delay); + va.start(); + return true; + } + return false; + } + + /** + * Estimate where the top left cell of the dragged item will land if it is dropped. + * + * @param originX The X value of the top left corner of the item + * @param originY The Y value of the top left corner of the item + * @param spanX The number of horizontal cells that the item spans + * @param spanY The number of vertical cells that the item spans + * @param result The estimated drop cell X and Y. + */ + void estimateDropCell(int originX, int originY, int spanX, int spanY, int[] result) { + final int countX = mCountX; + final int countY = mCountY; + + // pointToCellRounded takes the top left of a cell but will pad that with + // cellWidth/2 and cellHeight/2 when finding the matching cell + pointToCellRounded(originX, originY, result); + + // If the item isn't fully on this screen, snap to the edges + int rightOverhang = result[0] + spanX - countX; + if (rightOverhang > 0) { + result[0] -= rightOverhang; // Snap to right + } + result[0] = Math.max(0, result[0]); // Snap to left + int bottomOverhang = result[1] + spanY - countY; + if (bottomOverhang > 0) { + result[1] -= bottomOverhang; // Snap to bottom + } + result[1] = Math.max(0, result[1]); // Snap to top + } + + void visualizeDropLocation(View v, Bitmap dragOutline, int originX, int originY, int cellX, + int cellY, int spanX, int spanY, boolean resize, Point dragOffset, Rect dragRegion) { + final int oldDragCellX = mDragCell[0]; + final int oldDragCellY = mDragCell[1]; + + if (v != null && dragOffset == null) { + mDragCenter.set(originX + (v.getWidth() / 2), originY + (v.getHeight() / 2)); + } else { + mDragCenter.set(originX, originY); + } + + if (dragOutline == null && v == null) { + return; + } + + if (cellX != oldDragCellX || cellY != oldDragCellY) { + mDragCell[0] = cellX; + mDragCell[1] = cellY; + // Find the top left corner of the rect the object will occupy + final int[] topLeft = mTmpPoint; + cellToPoint(cellX, cellY, topLeft); + + int left = topLeft[0]; + int top = topLeft[1]; + + if (v != null && dragOffset == null) { + // When drawing the drag outline, it did not account for margin offsets + // added by the view's parent. + MarginLayoutParams lp = (MarginLayoutParams) v.getLayoutParams(); + left += lp.leftMargin; + top += lp.topMargin; + + // Offsets due to the size difference between the View and the dragOutline. + // There is a size difference to account for the outer blur, which may lie + // outside the bounds of the view. + top += (v.getHeight() - dragOutline.getHeight()) / 2; + // We center about the x axis + left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) + - dragOutline.getWidth()) / 2; + } else { + if (dragOffset != null && dragRegion != null) { + // Center the drag region *horizontally* in the cell and apply a drag + // outline offset + left += dragOffset.x + ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) + - dragRegion.width()) / 2; + top += dragOffset.y; + } else { + // Center the drag outline in the cell + left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) + - dragOutline.getWidth()) / 2; + top += ((mCellHeight * spanY) + ((spanY - 1) * mHeightGap) + - dragOutline.getHeight()) / 2; + } + } + final int oldIndex = mDragOutlineCurrent; + mDragOutlineAnims[oldIndex].animateOut(); + mDragOutlineCurrent = (oldIndex + 1) % mDragOutlines.length; + Rect r = mDragOutlines[mDragOutlineCurrent]; + r.set(left, top, left + dragOutline.getWidth(), top + dragOutline.getHeight()); + if (resize) { + cellToRect(cellX, cellY, spanX, spanY, r); + } + + mDragOutlineAnims[mDragOutlineCurrent].setTag(dragOutline); + mDragOutlineAnims[mDragOutlineCurrent].animateIn(); + } + } + + public void clearDragOutlines() { + final int oldIndex = mDragOutlineCurrent; + mDragOutlineAnims[oldIndex].animateOut(); + mDragCell[0] = mDragCell[1] = -1; + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param result Array in which to place the result, or null (in which case a new array will + * be allocated) + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestVacantArea(int pixelX, int pixelY, int spanX, int spanY, + int[] result) { + return findNearestVacantArea(pixelX, pixelY, spanX, spanY, null, result); + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param minSpanX The minimum horizontal span required + * @param minSpanY The minimum vertical span required + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param result Array in which to place the result, or null (in which case a new array will + * be allocated) + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, + int spanY, int[] result, int[] resultSpan) { + return findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, + result, resultSpan); + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param ignoreOccupied If true, the result can be an occupied cell + * @param result Array in which to place the result, or null (in which case a new array will + * be allocated) + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestArea(int pixelX, int pixelY, int spanX, int spanY, View ignoreView, + boolean ignoreOccupied, int[] result) { + return findNearestArea(pixelX, pixelY, spanX, spanY, + spanX, spanY, ignoreView, ignoreOccupied, result, null, mOccupied); + } + + private final Stack mTempRectStack = new Stack(); + private void lazyInitTempRectStack() { + if (mTempRectStack.isEmpty()) { + for (int i = 0; i < mCountX * mCountY; i++) { + mTempRectStack.push(new Rect()); + } + } + } + + private void recycleTempRects(Stack used) { + while (!used.isEmpty()) { + mTempRectStack.push(used.pop()); + } + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param minSpanX The minimum horizontal span required + * @param minSpanY The minimum vertical span required + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param ignoreOccupied If true, the result can be an occupied cell + * @param result Array in which to place the result, or null (in which case a new array will + * be allocated) + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, + View ignoreView, boolean ignoreOccupied, int[] result, int[] resultSpan, + boolean[][] occupied) { + lazyInitTempRectStack(); + // mark space take by ignoreView as available (method checks if ignoreView is null) + markCellsAsUnoccupiedForView(ignoreView, occupied); + + // For items with a spanX / spanY > 1, the passed in point (pixelX, pixelY) corresponds + // to the center of the item, but we are searching based on the top-left cell, so + // we translate the point over to correspond to the top-left. + pixelX -= (mCellWidth + mWidthGap) * (spanX - 1) / 2f; + pixelY -= (mCellHeight + mHeightGap) * (spanY - 1) / 2f; + + // Keep track of best-scoring drop area + final int[] bestXY = result != null ? result : new int[2]; + double bestDistance = Double.MAX_VALUE; + final Rect bestRect = new Rect(-1, -1, -1, -1); + final Stack validRegions = new Stack(); + + final int countX = mCountX; + final int countY = mCountY; + + if (minSpanX <= 0 || minSpanY <= 0 || spanX <= 0 || spanY <= 0 || + spanX < minSpanX || spanY < minSpanY) { + return bestXY; + } + + for (int y = 0; y < countY - (minSpanY - 1); y++) { + inner: + for (int x = 0; x < countX - (minSpanX - 1); x++) { + int ySize = -1; + int xSize = -1; + if (ignoreOccupied) { + // First, let's see if this thing fits anywhere + for (int i = 0; i < minSpanX; i++) { + for (int j = 0; j < minSpanY; j++) { + if (occupied[x + i][y + j]) { + continue inner; + } + } + } + xSize = minSpanX; + ySize = minSpanY; + + // We know that the item will fit at _some_ acceptable size, now let's see + // how big we can make it. We'll alternate between incrementing x and y spans + // until we hit a limit. + boolean incX = true; + boolean hitMaxX = xSize >= spanX; + boolean hitMaxY = ySize >= spanY; + while (!(hitMaxX && hitMaxY)) { + if (incX && !hitMaxX) { + for (int j = 0; j < ySize; j++) { + if (x + xSize > countX -1 || occupied[x + xSize][y + j]) { + // We can't move out horizontally + hitMaxX = true; + } + } + if (!hitMaxX) { + xSize++; + } + } else if (!hitMaxY) { + for (int i = 0; i < xSize; i++) { + if (y + ySize > countY - 1 || occupied[x + i][y + ySize]) { + // We can't move out vertically + hitMaxY = true; + } + } + if (!hitMaxY) { + ySize++; + } + } + hitMaxX |= xSize >= spanX; + hitMaxY |= ySize >= spanY; + incX = !incX; + } + incX = true; + hitMaxX = xSize >= spanX; + hitMaxY = ySize >= spanY; + } + final int[] cellXY = mTmpXY; + cellToCenterPoint(x, y, cellXY); + + // We verify that the current rect is not a sub-rect of any of our previous + // candidates. In this case, the current rect is disqualified in favour of the + // containing rect. + Rect currentRect = mTempRectStack.pop(); + currentRect.set(x, y, x + xSize, y + ySize); + boolean contained = false; + for (Rect r : validRegions) { + if (r.contains(currentRect)) { + contained = true; + break; + } + } + validRegions.push(currentRect); + double distance = Math.sqrt(Math.pow(cellXY[0] - pixelX, 2) + + Math.pow(cellXY[1] - pixelY, 2)); + + if ((distance <= bestDistance && !contained) || + currentRect.contains(bestRect)) { + bestDistance = distance; + bestXY[0] = x; + bestXY[1] = y; + if (resultSpan != null) { + resultSpan[0] = xSize; + resultSpan[1] = ySize; + } + bestRect.set(currentRect); + } + } + } + // re-mark space taken by ignoreView as occupied + markCellsAsOccupiedForView(ignoreView, occupied); + + // Return -1, -1 if no suitable location found + if (bestDistance == Double.MAX_VALUE) { + bestXY[0] = -1; + bestXY[1] = -1; + } + recycleTempRects(validRegions); + return bestXY; + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location, and will also weigh in a suggested direction vector of the + * desired location. This method computers distance based on unit grid distances, + * not pixel distances. + * + * @param cellX The X cell nearest to which you want to search for a vacant area. + * @param cellY The Y cell nearest which you want to search for a vacant area. + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param direction The favored direction in which the views should move from x, y + * @param exactDirectionOnly If this parameter is true, then only solutions where the direction + * matches exactly. Otherwise we find the best matching direction. + * @param occoupied The array which represents which cells in the CellLayout are occupied + * @param blockOccupied The array which represents which cells in the specified block (cellX, + * cellY, spanX, spanY) are occupied. This is used when try to move a group of views. + * @param result Array in which to place the result, or null (in which case a new array will + * be allocated) + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + private int[] findNearestArea(int cellX, int cellY, int spanX, int spanY, int[] direction, + boolean[][] occupied, boolean blockOccupied[][], int[] result) { + // Keep track of best-scoring drop area + final int[] bestXY = result != null ? result : new int[2]; + float bestDistance = Float.MAX_VALUE; + int bestDirectionScore = Integer.MIN_VALUE; + + final int countX = mCountX; + final int countY = mCountY; + + for (int y = 0; y < countY - (spanY - 1); y++) { + inner: + for (int x = 0; x < countX - (spanX - 1); x++) { + // First, let's see if this thing fits anywhere + for (int i = 0; i < spanX; i++) { + for (int j = 0; j < spanY; j++) { + if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) { + continue inner; + } + } + } + + float distance = (float) + Math.sqrt((x - cellX) * (x - cellX) + (y - cellY) * (y - cellY)); + int[] curDirection = mTmpPoint; + computeDirectionVector(x - cellX, y - cellY, curDirection); + // The direction score is just the dot product of the two candidate direction + // and that passed in. + int curDirectionScore = direction[0] * curDirection[0] + + direction[1] * curDirection[1]; + boolean exactDirectionOnly = false; + boolean directionMatches = direction[0] == curDirection[0] && + direction[0] == curDirection[0]; + if ((directionMatches || !exactDirectionOnly) && + Float.compare(distance, bestDistance) < 0 || (Float.compare(distance, + bestDistance) == 0 && curDirectionScore > bestDirectionScore)) { + bestDistance = distance; + bestDirectionScore = curDirectionScore; + bestXY[0] = x; + bestXY[1] = y; + } + } + } + + // Return -1, -1 if no suitable location found + if (bestDistance == Float.MAX_VALUE) { + bestXY[0] = -1; + bestXY[1] = -1; + } + return bestXY; + } + + private boolean addViewToTempLocation(View v, Rect rectOccupiedByPotentialDrop, + int[] direction, ItemConfiguration currentState) { + CellAndSpan c = currentState.map.get(v); + boolean success = false; + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); + markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); + + findNearestArea(c.x, c.y, c.spanX, c.spanY, direction, mTmpOccupied, null, mTempLocation); + + if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { + c.x = mTempLocation[0]; + c.y = mTempLocation[1]; + success = true; + } + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); + return success; + } + + /** + * This helper class defines a cluster of views. It helps with defining complex edges + * of the cluster and determining how those edges interact with other views. The edges + * essentially define a fine-grained boundary around the cluster of views -- like a more + * precise version of a bounding box. + */ + private class ViewCluster { + final static int LEFT = 0; + final static int TOP = 1; + final static int RIGHT = 2; + final static int BOTTOM = 3; + + ArrayList views; + ItemConfiguration config; + Rect boundingRect = new Rect(); + + int[] leftEdge = new int[mCountY]; + int[] rightEdge = new int[mCountY]; + int[] topEdge = new int[mCountX]; + int[] bottomEdge = new int[mCountX]; + boolean leftEdgeDirty, rightEdgeDirty, topEdgeDirty, bottomEdgeDirty, boundingRectDirty; + + @SuppressWarnings("unchecked") + public ViewCluster(ArrayList views, ItemConfiguration config) { + this.views = (ArrayList) views.clone(); + this.config = config; + resetEdges(); + } + + void resetEdges() { + for (int i = 0; i < mCountX; i++) { + topEdge[i] = -1; + bottomEdge[i] = -1; + } + for (int i = 0; i < mCountY; i++) { + leftEdge[i] = -1; + rightEdge[i] = -1; + } + leftEdgeDirty = true; + rightEdgeDirty = true; + bottomEdgeDirty = true; + topEdgeDirty = true; + boundingRectDirty = true; + } + + void computeEdge(int which, int[] edge) { + int count = views.size(); + for (int i = 0; i < count; i++) { + CellAndSpan cs = config.map.get(views.get(i)); + switch (which) { + case LEFT: + int left = cs.x; + for (int j = cs.y; j < cs.y + cs.spanY; j++) { + if (left < edge[j] || edge[j] < 0) { + edge[j] = left; + } + } + break; + case RIGHT: + int right = cs.x + cs.spanX; + for (int j = cs.y; j < cs.y + cs.spanY; j++) { + if (right > edge[j]) { + edge[j] = right; + } + } + break; + case TOP: + int top = cs.y; + for (int j = cs.x; j < cs.x + cs.spanX; j++) { + if (top < edge[j] || edge[j] < 0) { + edge[j] = top; + } + } + break; + case BOTTOM: + int bottom = cs.y + cs.spanY; + for (int j = cs.x; j < cs.x + cs.spanX; j++) { + if (bottom > edge[j]) { + edge[j] = bottom; + } + } + break; + } + } + } + + boolean isViewTouchingEdge(View v, int whichEdge) { + CellAndSpan cs = config.map.get(v); + + int[] edge = getEdge(whichEdge); + + switch (whichEdge) { + case LEFT: + for (int i = cs.y; i < cs.y + cs.spanY; i++) { + if (edge[i] == cs.x + cs.spanX) { + return true; + } + } + break; + case RIGHT: + for (int i = cs.y; i < cs.y + cs.spanY; i++) { + if (edge[i] == cs.x) { + return true; + } + } + break; + case TOP: + for (int i = cs.x; i < cs.x + cs.spanX; i++) { + if (edge[i] == cs.y + cs.spanY) { + return true; + } + } + break; + case BOTTOM: + for (int i = cs.x; i < cs.x + cs.spanX; i++) { + if (edge[i] == cs.y) { + return true; + } + } + break; + } + return false; + } + + void shift(int whichEdge, int delta) { + for (View v: views) { + CellAndSpan c = config.map.get(v); + switch (whichEdge) { + case LEFT: + c.x -= delta; + break; + case RIGHT: + c.x += delta; + break; + case TOP: + c.y -= delta; + break; + case BOTTOM: + default: + c.y += delta; + break; + } + } + resetEdges(); + } + + public void addView(View v) { + views.add(v); + resetEdges(); + } + + public Rect getBoundingRect() { + if (boundingRectDirty) { + boolean first = true; + for (View v: views) { + CellAndSpan c = config.map.get(v); + if (first) { + boundingRect.set(c.x, c.y, c.x + c.spanX, c.y + c.spanY); + first = false; + } else { + boundingRect.union(c.x, c.y, c.x + c.spanX, c.y + c.spanY); + } + } + } + return boundingRect; + } + + public int[] getEdge(int which) { + switch (which) { + case LEFT: + return getLeftEdge(); + case RIGHT: + return getRightEdge(); + case TOP: + return getTopEdge(); + case BOTTOM: + default: + return getBottomEdge(); + } + } + + public int[] getLeftEdge() { + if (leftEdgeDirty) { + computeEdge(LEFT, leftEdge); + } + return leftEdge; + } + + public int[] getRightEdge() { + if (rightEdgeDirty) { + computeEdge(RIGHT, rightEdge); + } + return rightEdge; + } + + public int[] getTopEdge() { + if (topEdgeDirty) { + computeEdge(TOP, topEdge); + } + return topEdge; + } + + public int[] getBottomEdge() { + if (bottomEdgeDirty) { + computeEdge(BOTTOM, bottomEdge); + } + return bottomEdge; + } + + PositionComparator comparator = new PositionComparator(); + class PositionComparator implements Comparator { + int whichEdge = 0; + public int compare(View left, View right) { + CellAndSpan l = config.map.get(left); + CellAndSpan r = config.map.get(right); + switch (whichEdge) { + case LEFT: + return (r.x + r.spanX) - (l.x + l.spanX); + case RIGHT: + return l.x - r.x; + case TOP: + return (r.y + r.spanY) - (l.y + l.spanY); + case BOTTOM: + default: + return l.y - r.y; + } + } + } + + public void sortConfigurationForEdgePush(int edge) { + comparator.whichEdge = edge; + Collections.sort(config.sortedViews, comparator); + } + } + + private boolean pushViewsToTempLocation(ArrayList views, Rect rectOccupiedByPotentialDrop, + int[] direction, View dragView, ItemConfiguration currentState) { + + ViewCluster cluster = new ViewCluster(views, currentState); + Rect clusterRect = cluster.getBoundingRect(); + int whichEdge; + int pushDistance; + boolean fail = false; + + // Determine the edge of the cluster that will be leading the push and how far + // the cluster must be shifted. + if (direction[0] < 0) { + whichEdge = ViewCluster.LEFT; + pushDistance = clusterRect.right - rectOccupiedByPotentialDrop.left; + } else if (direction[0] > 0) { + whichEdge = ViewCluster.RIGHT; + pushDistance = rectOccupiedByPotentialDrop.right - clusterRect.left; + } else if (direction[1] < 0) { + whichEdge = ViewCluster.TOP; + pushDistance = clusterRect.bottom - rectOccupiedByPotentialDrop.top; + } else { + whichEdge = ViewCluster.BOTTOM; + pushDistance = rectOccupiedByPotentialDrop.bottom - clusterRect.top; + } + + // Break early for invalid push distance. + if (pushDistance <= 0) { + return false; + } + + // Mark the occupied state as false for the group of views we want to move. + for (View v: views) { + CellAndSpan c = currentState.map.get(v); + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); + } + + // We save the current configuration -- if we fail to find a solution we will revert + // to the initial state. The process of finding a solution modifies the configuration + // in place, hence the need for revert in the failure case. + currentState.save(); + + // The pushing algorithm is simplified by considering the views in the order in which + // they would be pushed by the cluster. For example, if the cluster is leading with its + // left edge, we consider sort the views by their right edge, from right to left. + cluster.sortConfigurationForEdgePush(whichEdge); + + while (pushDistance > 0 && !fail) { + for (View v: currentState.sortedViews) { + // For each view that isn't in the cluster, we see if the leading edge of the + // cluster is contacting the edge of that view. If so, we add that view to the + // cluster. + if (!cluster.views.contains(v) && v != dragView) { + if (cluster.isViewTouchingEdge(v, whichEdge)) { + LayoutParams lp = (LayoutParams) v.getLayoutParams(); + if (!lp.canReorder) { + // The push solution includes the all apps button, this is not viable. + fail = true; + break; + } + cluster.addView(v); + CellAndSpan c = currentState.map.get(v); + + // Adding view to cluster, mark it as not occupied. + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); + } + } + } + pushDistance--; + + // The cluster has been completed, now we move the whole thing over in the appropriate + // direction. + cluster.shift(whichEdge, 1); + } + + boolean foundSolution = false; + clusterRect = cluster.getBoundingRect(); + + // Due to the nature of the algorithm, the only check required to verify a valid solution + // is to ensure that completed shifted cluster lies completely within the cell layout. + if (!fail && clusterRect.left >= 0 && clusterRect.right <= mCountX && clusterRect.top >= 0 && + clusterRect.bottom <= mCountY) { + foundSolution = true; + } else { + currentState.restore(); + } + + // In either case, we set the occupied array as marked for the location of the views + for (View v: cluster.views) { + CellAndSpan c = currentState.map.get(v); + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); + } + + return foundSolution; + } + + private boolean addViewsToTempLocation(ArrayList views, Rect rectOccupiedByPotentialDrop, + int[] direction, View dragView, ItemConfiguration currentState) { + if (views.size() == 0) return true; + + boolean success = false; + Rect boundingRect = null; + // We construct a rect which represents the entire group of views passed in + for (View v: views) { + CellAndSpan c = currentState.map.get(v); + if (boundingRect == null) { + boundingRect = new Rect(c.x, c.y, c.x + c.spanX, c.y + c.spanY); + } else { + boundingRect.union(c.x, c.y, c.x + c.spanX, c.y + c.spanY); + } + } + + // Mark the occupied state as false for the group of views we want to move. + for (View v: views) { + CellAndSpan c = currentState.map.get(v); + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); + } + + boolean[][] blockOccupied = new boolean[boundingRect.width()][boundingRect.height()]; + int top = boundingRect.top; + int left = boundingRect.left; + // We mark more precisely which parts of the bounding rect are truly occupied, allowing + // for interlocking. + for (View v: views) { + CellAndSpan c = currentState.map.get(v); + markCellsForView(c.x - left, c.y - top, c.spanX, c.spanY, blockOccupied, true); + } + + markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); + + findNearestArea(boundingRect.left, boundingRect.top, boundingRect.width(), + boundingRect.height(), direction, mTmpOccupied, blockOccupied, mTempLocation); + + // If we successfuly found a location by pushing the block of views, we commit it + if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { + int deltaX = mTempLocation[0] - boundingRect.left; + int deltaY = mTempLocation[1] - boundingRect.top; + for (View v: views) { + CellAndSpan c = currentState.map.get(v); + c.x += deltaX; + c.y += deltaY; + } + success = true; + } + + // In either case, we set the occupied array as marked for the location of the views + for (View v: views) { + CellAndSpan c = currentState.map.get(v); + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); + } + return success; + } + + private void markCellsForRect(Rect r, boolean[][] occupied, boolean value) { + markCellsForView(r.left, r.top, r.width(), r.height(), occupied, value); + } + + // This method tries to find a reordering solution which satisfies the push mechanic by trying + // to push items in each of the cardinal directions, in an order based on the direction vector + // passed. + private boolean attemptPushInDirection(ArrayList intersectingViews, Rect occupied, + int[] direction, View ignoreView, ItemConfiguration solution) { + if ((Math.abs(direction[0]) + Math.abs(direction[1])) > 1) { + // If the direction vector has two non-zero components, we try pushing + // separately in each of the components. + int temp = direction[1]; + direction[1] = 0; + + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + direction[1] = temp; + temp = direction[0]; + direction[0] = 0; + + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + // Revert the direction + direction[0] = temp; + + // Now we try pushing in each component of the opposite direction + direction[0] *= -1; + direction[1] *= -1; + temp = direction[1]; + direction[1] = 0; + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + + direction[1] = temp; + temp = direction[0]; + direction[0] = 0; + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + // revert the direction + direction[0] = temp; + direction[0] *= -1; + direction[1] *= -1; + + } else { + // If the direction vector has a single non-zero component, we push first in the + // direction of the vector + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + // Then we try the opposite direction + direction[0] *= -1; + direction[1] *= -1; + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + // Switch the direction back + direction[0] *= -1; + direction[1] *= -1; + + // If we have failed to find a push solution with the above, then we try + // to find a solution by pushing along the perpendicular axis. + + // Swap the components + int temp = direction[1]; + direction[1] = direction[0]; + direction[0] = temp; + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + + // Then we try the opposite direction + direction[0] *= -1; + direction[1] *= -1; + if (pushViewsToTempLocation(intersectingViews, occupied, direction, + ignoreView, solution)) { + return true; + } + // Switch the direction back + direction[0] *= -1; + direction[1] *= -1; + + // Swap the components back + temp = direction[1]; + direction[1] = direction[0]; + direction[0] = temp; + } + return false; + } + + private boolean rearrangementExists(int cellX, int cellY, int spanX, int spanY, int[] direction, + View ignoreView, ItemConfiguration solution) { + // Return early if get invalid cell positions + if (cellX < 0 || cellY < 0) return false; + + mIntersectingViews.clear(); + mOccupiedRect.set(cellX, cellY, cellX + spanX, cellY + spanY); + + // Mark the desired location of the view currently being dragged. + if (ignoreView != null) { + CellAndSpan c = solution.map.get(ignoreView); + if (c != null) { + c.x = cellX; + c.y = cellY; + } + } + Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY); + Rect r1 = new Rect(); + for (View child: solution.map.keySet()) { + if (child == ignoreView) continue; + CellAndSpan c = solution.map.get(child); + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + r1.set(c.x, c.y, c.x + c.spanX, c.y + c.spanY); + if (Rect.intersects(r0, r1)) { + if (!lp.canReorder) { + return false; + } + mIntersectingViews.add(child); + } + } + + // First we try to find a solution which respects the push mechanic. That is, + // we try to find a solution such that no displaced item travels through another item + // without also displacing that item. + if (attemptPushInDirection(mIntersectingViews, mOccupiedRect, direction, ignoreView, + solution)) { + return true; + } + + // Next we try moving the views as a block, but without requiring the push mechanic. + if (addViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction, ignoreView, + solution)) { + return true; + } + + // Ok, they couldn't move as a block, let's move them individually + for (View v : mIntersectingViews) { + if (!addViewToTempLocation(v, mOccupiedRect, direction, solution)) { + return false; + } + } + return true; + } + + /* + * Returns a pair (x, y), where x,y are in {-1, 0, 1} corresponding to vector between + * the provided point and the provided cell + */ + private void computeDirectionVector(float deltaX, float deltaY, int[] result) { + double angle = Math.atan(((float) deltaY) / deltaX); + + result[0] = 0; + result[1] = 0; + if (Math.abs(Math.cos(angle)) > 0.5f) { + result[0] = (int) Math.signum(deltaX); + } + if (Math.abs(Math.sin(angle)) > 0.5f) { + result[1] = (int) Math.signum(deltaY); + } + } + + private void copyOccupiedArray(boolean[][] occupied) { + for (int i = 0; i < mCountX; i++) { + for (int j = 0; j < mCountY; j++) { + occupied[i][j] = mOccupied[i][j]; + } + } + } + + ItemConfiguration simpleSwap(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, + int spanY, int[] direction, View dragView, boolean decX, ItemConfiguration solution) { + // Copy the current state into the solution. This solution will be manipulated as necessary. + copyCurrentStateToSolution(solution, false); + // Copy the current occupied array into the temporary occupied array. This array will be + // manipulated as necessary to find a solution. + copyOccupiedArray(mTmpOccupied); + + // We find the nearest cell into which we would place the dragged item, assuming there's + // nothing in its way. + int result[] = new int[2]; + result = findNearestArea(pixelX, pixelY, spanX, spanY, result); + + boolean success = false; + // First we try the exact nearest position of the item being dragged, + // we will then want to try to move this around to other neighbouring positions + success = rearrangementExists(result[0], result[1], spanX, spanY, direction, dragView, + solution); + + if (!success) { + // We try shrinking the widget down to size in an alternating pattern, shrink 1 in + // x, then 1 in y etc. + if (spanX > minSpanX && (minSpanY == spanY || decX)) { + return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX - 1, spanY, direction, + dragView, false, solution); + } else if (spanY > minSpanY) { + return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY - 1, direction, + dragView, true, solution); + } + solution.isSolution = false; + } else { + solution.isSolution = true; + solution.dragViewX = result[0]; + solution.dragViewY = result[1]; + solution.dragViewSpanX = spanX; + solution.dragViewSpanY = spanY; + } + return solution; + } + + private void copyCurrentStateToSolution(ItemConfiguration solution, boolean temp) { + int childCount = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < childCount; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + CellAndSpan c; + if (temp) { + c = new CellAndSpan(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan); + } else { + c = new CellAndSpan(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan); + } + solution.add(child, c); + } + } + + private void copySolutionToTempState(ItemConfiguration solution, View dragView) { + for (int i = 0; i < mCountX; i++) { + for (int j = 0; j < mCountY; j++) { + mTmpOccupied[i][j] = false; + } + } + + int childCount = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < childCount; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + if (child == dragView) continue; + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + CellAndSpan c = solution.map.get(child); + if (c != null) { + lp.tmpCellX = c.x; + lp.tmpCellY = c.y; + lp.cellHSpan = c.spanX; + lp.cellVSpan = c.spanY; + markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); + } + } + markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX, + solution.dragViewSpanY, mTmpOccupied, true); + } + + private void animateItemsToSolution(ItemConfiguration solution, View dragView, boolean + commitDragView) { + + boolean[][] occupied = DESTRUCTIVE_REORDER ? mOccupied : mTmpOccupied; + for (int i = 0; i < mCountX; i++) { + for (int j = 0; j < mCountY; j++) { + occupied[i][j] = false; + } + } + + int childCount = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < childCount; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + if (child == dragView) continue; + CellAndSpan c = solution.map.get(child); + if (c != null) { + animateChildToPosition(child, c.x, c.y, REORDER_ANIMATION_DURATION, 0, + DESTRUCTIVE_REORDER, false); + markCellsForView(c.x, c.y, c.spanX, c.spanY, occupied, true); + } + } + if (commitDragView) { + markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX, + solution.dragViewSpanY, occupied, true); + } + } + + // This method starts or changes the reorder hint animations + private void beginOrAdjustHintAnimations(ItemConfiguration solution, View dragView, int delay) { + int childCount = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < childCount; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + if (child == dragView) continue; + CellAndSpan c = solution.map.get(child); + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + if (c != null) { + ReorderHintAnimation rha = new ReorderHintAnimation(child, lp.cellX, lp.cellY, + c.x, c.y, c.spanX, c.spanY); + rha.animate(); + } + } + } + + // Class which represents the reorder hint animations. These animations show that an item is + // in a temporary state, and hint at where the item will return to. + class ReorderHintAnimation { + View child; + float finalDeltaX; + float finalDeltaY; + float initDeltaX; + float initDeltaY; + float finalScale; + float initScale; + private static final int DURATION = 300; + Animator a; + + public ReorderHintAnimation(View child, int cellX0, int cellY0, int cellX1, int cellY1, + int spanX, int spanY) { + regionToCenterPoint(cellX0, cellY0, spanX, spanY, mTmpPoint); + final int x0 = mTmpPoint[0]; + final int y0 = mTmpPoint[1]; + regionToCenterPoint(cellX1, cellY1, spanX, spanY, mTmpPoint); + final int x1 = mTmpPoint[0]; + final int y1 = mTmpPoint[1]; + final int dX = x1 - x0; + final int dY = y1 - y0; + finalDeltaX = 0; + finalDeltaY = 0; + if (dX == dY && dX == 0) { + } else { + if (dY == 0) { + finalDeltaX = - Math.signum(dX) * mReorderHintAnimationMagnitude; + } else if (dX == 0) { + finalDeltaY = - Math.signum(dY) * mReorderHintAnimationMagnitude; + } else { + double angle = Math.atan( (float) (dY) / dX); + finalDeltaX = (int) (- Math.signum(dX) * + Math.abs(Math.cos(angle) * mReorderHintAnimationMagnitude)); + finalDeltaY = (int) (- Math.signum(dY) * + Math.abs(Math.sin(angle) * mReorderHintAnimationMagnitude)); + } + } + initDeltaX = child.getTranslationX(); + initDeltaY = child.getTranslationY(); + finalScale = getChildrenScale() - 4.0f / child.getWidth(); + initScale = child.getScaleX(); + this.child = child; + } + + void animate() { + if (mShakeAnimators.containsKey(child)) { + ReorderHintAnimation oldAnimation = mShakeAnimators.get(child); + oldAnimation.cancel(); + mShakeAnimators.remove(child); + if (finalDeltaX == 0 && finalDeltaY == 0) { + completeAnimationImmediately(); + return; + } + } + if (finalDeltaX == 0 && finalDeltaY == 0) { + return; + } + ValueAnimator va = LauncherAnimUtils.ofFloat(child, 0f, 1f); + a = va; + va.setRepeatMode(ValueAnimator.REVERSE); + va.setRepeatCount(ValueAnimator.INFINITE); + va.setDuration(DURATION); + va.setStartDelay((int) (Math.random() * 60)); + va.addUpdateListener(new AnimatorUpdateListener() { + @Override + public void onAnimationUpdate(ValueAnimator animation) { + float r = ((Float) animation.getAnimatedValue()).floatValue(); + float x = r * finalDeltaX + (1 - r) * initDeltaX; + float y = r * finalDeltaY + (1 - r) * initDeltaY; + child.setTranslationX(x); + child.setTranslationY(y); + float s = r * finalScale + (1 - r) * initScale; + child.setScaleX(s); + child.setScaleY(s); + } + }); + va.addListener(new AnimatorListenerAdapter() { + public void onAnimationRepeat(Animator animation) { + // We make sure to end only after a full period + initDeltaX = 0; + initDeltaY = 0; + initScale = getChildrenScale(); + } + }); + mShakeAnimators.put(child, this); + va.start(); + } + + private void cancel() { + if (a != null) { + a.cancel(); + } + } + + private void completeAnimationImmediately() { + if (a != null) { + a.cancel(); + } + + AnimatorSet s = LauncherAnimUtils.createAnimatorSet(); + a = s; + s.playTogether( + LauncherAnimUtils.ofFloat(child, "scaleX", getChildrenScale()), + LauncherAnimUtils.ofFloat(child, "scaleY", getChildrenScale()), + LauncherAnimUtils.ofFloat(child, "translationX", 0f), + LauncherAnimUtils.ofFloat(child, "translationY", 0f) + ); + s.setDuration(REORDER_ANIMATION_DURATION); + s.setInterpolator(new android.view.animation.DecelerateInterpolator(1.5f)); + s.start(); + } + } + + private void completeAndClearReorderHintAnimations() { + for (ReorderHintAnimation a: mShakeAnimators.values()) { + a.completeAnimationImmediately(); + } + mShakeAnimators.clear(); + } + + private void commitTempPlacement() { + for (int i = 0; i < mCountX; i++) { + for (int j = 0; j < mCountY; j++) { + mOccupied[i][j] = mTmpOccupied[i][j]; + } + } + int childCount = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < childCount; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + ItemInfo info = (ItemInfo) child.getTag(); + // We do a null check here because the item info can be null in the case of the + // AllApps button in the hotseat. + if (info != null) { + if (info.cellX != lp.tmpCellX || info.cellY != lp.tmpCellY || + info.spanX != lp.cellHSpan || info.spanY != lp.cellVSpan) { + info.requiresDbUpdate = true; + } + info.cellX = lp.cellX = lp.tmpCellX; + info.cellY = lp.cellY = lp.tmpCellY; + info.spanX = lp.cellHSpan; + info.spanY = lp.cellVSpan; + } + } + mLauncher.getWorkspace().updateItemLocationsInDatabase(this); + } + + public void setUseTempCoords(boolean useTempCoords) { + int childCount = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < childCount; i++) { + LayoutParams lp = (LayoutParams) mShortcutsAndWidgets.getChildAt(i).getLayoutParams(); + lp.useTmpCoords = useTempCoords; + } + } + + ItemConfiguration findConfigurationNoShuffle(int pixelX, int pixelY, int minSpanX, int minSpanY, + int spanX, int spanY, View dragView, ItemConfiguration solution) { + int[] result = new int[2]; + int[] resultSpan = new int[2]; + findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, result, + resultSpan); + if (result[0] >= 0 && result[1] >= 0) { + copyCurrentStateToSolution(solution, false); + solution.dragViewX = result[0]; + solution.dragViewY = result[1]; + solution.dragViewSpanX = resultSpan[0]; + solution.dragViewSpanY = resultSpan[1]; + solution.isSolution = true; + } else { + solution.isSolution = false; + } + return solution; + } + + public void prepareChildForDrag(View child) { + markCellsAsUnoccupiedForView(child); + } + + /* This seems like it should be obvious and straight-forward, but when the direction vector + needs to match with the notion of the dragView pushing other views, we have to employ + a slightly more subtle notion of the direction vector. The question is what two points is + the vector between? The center of the dragView and its desired destination? Not quite, as + this doesn't necessarily coincide with the interaction of the dragView and items occupying + those cells. Instead we use some heuristics to often lock the vector to up, down, left + or right, which helps make pushing feel right. + */ + private void getDirectionVectorForDrop(int dragViewCenterX, int dragViewCenterY, int spanX, + int spanY, View dragView, int[] resultDirection) { + int[] targetDestination = new int[2]; + + findNearestArea(dragViewCenterX, dragViewCenterY, spanX, spanY, targetDestination); + Rect dragRect = new Rect(); + regionToRect(targetDestination[0], targetDestination[1], spanX, spanY, dragRect); + dragRect.offset(dragViewCenterX - dragRect.centerX(), dragViewCenterY - dragRect.centerY()); + + Rect dropRegionRect = new Rect(); + getViewsIntersectingRegion(targetDestination[0], targetDestination[1], spanX, spanY, + dragView, dropRegionRect, mIntersectingViews); + + int dropRegionSpanX = dropRegionRect.width(); + int dropRegionSpanY = dropRegionRect.height(); + + regionToRect(dropRegionRect.left, dropRegionRect.top, dropRegionRect.width(), + dropRegionRect.height(), dropRegionRect); + + int deltaX = (dropRegionRect.centerX() - dragViewCenterX) / spanX; + int deltaY = (dropRegionRect.centerY() - dragViewCenterY) / spanY; + + if (dropRegionSpanX == mCountX || spanX == mCountX) { + deltaX = 0; + } + if (dropRegionSpanY == mCountY || spanY == mCountY) { + deltaY = 0; + } + + if (deltaX == 0 && deltaY == 0) { + // No idea what to do, give a random direction. + resultDirection[0] = 1; + resultDirection[1] = 0; + } else { + computeDirectionVector(deltaX, deltaY, resultDirection); + } + } + + // For a given cell and span, fetch the set of views intersecting the region. + private void getViewsIntersectingRegion(int cellX, int cellY, int spanX, int spanY, + View dragView, Rect boundingRect, ArrayList intersectingViews) { + if (boundingRect != null) { + boundingRect.set(cellX, cellY, cellX + spanX, cellY + spanY); + } + intersectingViews.clear(); + Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY); + Rect r1 = new Rect(); + final int count = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < count; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + if (child == dragView) continue; + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + r1.set(lp.cellX, lp.cellY, lp.cellX + lp.cellHSpan, lp.cellY + lp.cellVSpan); + if (Rect.intersects(r0, r1)) { + mIntersectingViews.add(child); + if (boundingRect != null) { + boundingRect.union(r1); + } + } + } + } + + boolean isNearestDropLocationOccupied(int pixelX, int pixelY, int spanX, int spanY, + View dragView, int[] result) { + result = findNearestArea(pixelX, pixelY, spanX, spanY, result); + getViewsIntersectingRegion(result[0], result[1], spanX, spanY, dragView, null, + mIntersectingViews); + return !mIntersectingViews.isEmpty(); + } + + void revertTempState() { + if (!isItemPlacementDirty() || DESTRUCTIVE_REORDER) return; + final int count = mShortcutsAndWidgets.getChildCount(); + for (int i = 0; i < count; i++) { + View child = mShortcutsAndWidgets.getChildAt(i); + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + if (lp.tmpCellX != lp.cellX || lp.tmpCellY != lp.cellY) { + lp.tmpCellX = lp.cellX; + lp.tmpCellY = lp.cellY; + animateChildToPosition(child, lp.cellX, lp.cellY, REORDER_ANIMATION_DURATION, + 0, false, false); + } + } + completeAndClearReorderHintAnimations(); + setItemPlacementDirty(false); + } + + boolean createAreaForResize(int cellX, int cellY, int spanX, int spanY, + View dragView, int[] direction, boolean commit) { + int[] pixelXY = new int[2]; + regionToCenterPoint(cellX, cellY, spanX, spanY, pixelXY); + + // First we determine if things have moved enough to cause a different layout + ItemConfiguration swapSolution = simpleSwap(pixelXY[0], pixelXY[1], spanX, spanY, + spanX, spanY, direction, dragView, true, new ItemConfiguration()); + + setUseTempCoords(true); + if (swapSolution != null && swapSolution.isSolution) { + // If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother + // committing anything or animating anything as we just want to determine if a solution + // exists + copySolutionToTempState(swapSolution, dragView); + setItemPlacementDirty(true); + animateItemsToSolution(swapSolution, dragView, commit); + + if (commit) { + commitTempPlacement(); + completeAndClearReorderHintAnimations(); + setItemPlacementDirty(false); + } else { + beginOrAdjustHintAnimations(swapSolution, dragView, + REORDER_ANIMATION_DURATION); + } + mShortcutsAndWidgets.requestLayout(); + } + return swapSolution.isSolution; + } + + int[] createArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, + View dragView, int[] result, int resultSpan[], int mode) { + // First we determine if things have moved enough to cause a different layout + result = findNearestArea(pixelX, pixelY, spanX, spanY, result); + + if (resultSpan == null) { + resultSpan = new int[2]; + } + + // When we are checking drop validity or actually dropping, we don't recompute the + // direction vector, since we want the solution to match the preview, and it's possible + // that the exact position of the item has changed to result in a new reordering outcome. + if ((mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL || mode == MODE_ACCEPT_DROP) + && mPreviousReorderDirection[0] != INVALID_DIRECTION) { + mDirectionVector[0] = mPreviousReorderDirection[0]; + mDirectionVector[1] = mPreviousReorderDirection[1]; + // We reset this vector after drop + if (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) { + mPreviousReorderDirection[0] = INVALID_DIRECTION; + mPreviousReorderDirection[1] = INVALID_DIRECTION; + } + } else { + getDirectionVectorForDrop(pixelX, pixelY, spanX, spanY, dragView, mDirectionVector); + mPreviousReorderDirection[0] = mDirectionVector[0]; + mPreviousReorderDirection[1] = mDirectionVector[1]; + } + + ItemConfiguration swapSolution = simpleSwap(pixelX, pixelY, minSpanX, minSpanY, + spanX, spanY, mDirectionVector, dragView, true, new ItemConfiguration()); + + // We attempt the approach which doesn't shuffle views at all + ItemConfiguration noShuffleSolution = findConfigurationNoShuffle(pixelX, pixelY, minSpanX, + minSpanY, spanX, spanY, dragView, new ItemConfiguration()); + + ItemConfiguration finalSolution = null; + if (swapSolution.isSolution && swapSolution.area() >= noShuffleSolution.area()) { + finalSolution = swapSolution; + } else if (noShuffleSolution.isSolution) { + finalSolution = noShuffleSolution; + } + + boolean foundSolution = true; + if (!DESTRUCTIVE_REORDER) { + setUseTempCoords(true); + } + + if (finalSolution != null) { + result[0] = finalSolution.dragViewX; + result[1] = finalSolution.dragViewY; + resultSpan[0] = finalSolution.dragViewSpanX; + resultSpan[1] = finalSolution.dragViewSpanY; + + // If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother + // committing anything or animating anything as we just want to determine if a solution + // exists + if (mode == MODE_DRAG_OVER || mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) { + if (!DESTRUCTIVE_REORDER) { + copySolutionToTempState(finalSolution, dragView); + } + setItemPlacementDirty(true); + animateItemsToSolution(finalSolution, dragView, mode == MODE_ON_DROP); + + if (!DESTRUCTIVE_REORDER && + (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL)) { + commitTempPlacement(); + completeAndClearReorderHintAnimations(); + setItemPlacementDirty(false); + } else { + beginOrAdjustHintAnimations(finalSolution, dragView, + REORDER_ANIMATION_DURATION); + } + } + } else { + foundSolution = false; + result[0] = result[1] = resultSpan[0] = resultSpan[1] = -1; + } + + if ((mode == MODE_ON_DROP || !foundSolution) && !DESTRUCTIVE_REORDER) { + setUseTempCoords(false); + } + + mShortcutsAndWidgets.requestLayout(); + return result; + } + + void setItemPlacementDirty(boolean dirty) { + mItemPlacementDirty = dirty; + } + boolean isItemPlacementDirty() { + return mItemPlacementDirty; + } + + private class ItemConfiguration { + HashMap map = new HashMap(); + private HashMap savedMap = new HashMap(); + ArrayList sortedViews = new ArrayList(); + boolean isSolution = false; + int dragViewX, dragViewY, dragViewSpanX, dragViewSpanY; + + void save() { + // Copy current state into savedMap + for (View v: map.keySet()) { + map.get(v).copy(savedMap.get(v)); + } + } + + void restore() { + // Restore current state from savedMap + for (View v: savedMap.keySet()) { + savedMap.get(v).copy(map.get(v)); + } + } + + void add(View v, CellAndSpan cs) { + map.put(v, cs); + savedMap.put(v, new CellAndSpan()); + sortedViews.add(v); + } + + int area() { + return dragViewSpanX * dragViewSpanY; + } + } + + private class CellAndSpan { + int x, y; + int spanX, spanY; + + public CellAndSpan() { + } + + public void copy(CellAndSpan copy) { + copy.x = x; + copy.y = y; + copy.spanX = spanX; + copy.spanY = spanY; + } + + public CellAndSpan(int x, int y, int spanX, int spanY) { + this.x = x; + this.y = y; + this.spanX = spanX; + this.spanY = spanY; + } + + public String toString() { + return "(" + x + ", " + y + ": " + spanX + ", " + spanY + ")"; + } + + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param ignoreView Considers space occupied by this view as unoccupied + * @param result Previously returned value to possibly recycle. + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestVacantArea( + int pixelX, int pixelY, int spanX, int spanY, View ignoreView, int[] result) { + return findNearestArea(pixelX, pixelY, spanX, spanY, ignoreView, true, result); + } + + /** + * Find a vacant area that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param minSpanX The minimum horizontal span required + * @param minSpanY The minimum vertical span required + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param ignoreView Considers space occupied by this view as unoccupied + * @param result Previously returned value to possibly recycle. + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, + int spanX, int spanY, View ignoreView, int[] result, int[] resultSpan) { + return findNearestArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, ignoreView, true, + result, resultSpan, mOccupied); + } + + /** + * Find a starting cell position that will fit the given bounds nearest the requested + * cell location. Uses Euclidean distance to score multiple vacant areas. + * + * @param pixelX The X location at which you want to search for a vacant area. + * @param pixelY The Y location at which you want to search for a vacant area. + * @param spanX Horizontal span of the object. + * @param spanY Vertical span of the object. + * @param ignoreView Considers space occupied by this view as unoccupied + * @param result Previously returned value to possibly recycle. + * @return The X, Y cell of a vacant area that can contain this object, + * nearest the requested location. + */ + int[] findNearestArea( + int pixelX, int pixelY, int spanX, int spanY, int[] result) { + return findNearestArea(pixelX, pixelY, spanX, spanY, null, false, result); + } + + boolean existsEmptyCell() { + return findCellForSpan(null, 1, 1); + } + + /** + * Finds the upper-left coordinate of the first rectangle in the grid that can + * hold a cell of the specified dimensions. If intersectX and intersectY are not -1, + * then this method will only return coordinates for rectangles that contain the cell + * (intersectX, intersectY) + * + * @param cellXY The array that will contain the position of a vacant cell if such a cell + * can be found. + * @param spanX The horizontal span of the cell we want to find. + * @param spanY The vertical span of the cell we want to find. + * + * @return True if a vacant cell of the specified dimension was found, false otherwise. + */ + boolean findCellForSpan(int[] cellXY, int spanX, int spanY) { + return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, null, mOccupied); + } + + /** + * Like above, but ignores any cells occupied by the item "ignoreView" + * + * @param cellXY The array that will contain the position of a vacant cell if such a cell + * can be found. + * @param spanX The horizontal span of the cell we want to find. + * @param spanY The vertical span of the cell we want to find. + * @param ignoreView The home screen item we should treat as not occupying any space + * @return + */ + boolean findCellForSpanIgnoring(int[] cellXY, int spanX, int spanY, View ignoreView) { + return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, + ignoreView, mOccupied); + } + + /** + * Like above, but if intersectX and intersectY are not -1, then this method will try to + * return coordinates for rectangles that contain the cell [intersectX, intersectY] + * + * @param spanX The horizontal span of the cell we want to find. + * @param spanY The vertical span of the cell we want to find. + * @param ignoreView The home screen item we should treat as not occupying any space + * @param intersectX The X coordinate of the cell that we should try to overlap + * @param intersectX The Y coordinate of the cell that we should try to overlap + * + * @return True if a vacant cell of the specified dimension was found, false otherwise. + */ + boolean findCellForSpanThatIntersects(int[] cellXY, int spanX, int spanY, + int intersectX, int intersectY) { + return findCellForSpanThatIntersectsIgnoring( + cellXY, spanX, spanY, intersectX, intersectY, null, mOccupied); + } + + /** + * The superset of the above two methods + */ + boolean findCellForSpanThatIntersectsIgnoring(int[] cellXY, int spanX, int spanY, + int intersectX, int intersectY, View ignoreView, boolean occupied[][]) { + // mark space take by ignoreView as available (method checks if ignoreView is null) + markCellsAsUnoccupiedForView(ignoreView, occupied); + + boolean foundCell = false; + while (true) { + int startX = 0; + if (intersectX >= 0) { + startX = Math.max(startX, intersectX - (spanX - 1)); + } + int endX = mCountX - (spanX - 1); + if (intersectX >= 0) { + endX = Math.min(endX, intersectX + (spanX - 1) + (spanX == 1 ? 1 : 0)); + } + int startY = 0; + if (intersectY >= 0) { + startY = Math.max(startY, intersectY - (spanY - 1)); + } + int endY = mCountY - (spanY - 1); + if (intersectY >= 0) { + endY = Math.min(endY, intersectY + (spanY - 1) + (spanY == 1 ? 1 : 0)); + } + + for (int y = startY; y < endY && !foundCell; y++) { + inner: + for (int x = startX; x < endX; x++) { + for (int i = 0; i < spanX; i++) { + for (int j = 0; j < spanY; j++) { + if (occupied[x + i][y + j]) { + // small optimization: we can skip to after the column we just found + // an occupied cell + x += i; + continue inner; + } + } + } + if (cellXY != null) { + cellXY[0] = x; + cellXY[1] = y; + } + foundCell = true; + break; + } + } + if (intersectX == -1 && intersectY == -1) { + break; + } else { + // if we failed to find anything, try again but without any requirements of + // intersecting + intersectX = -1; + intersectY = -1; + continue; + } + } + + // re-mark space taken by ignoreView as occupied + markCellsAsOccupiedForView(ignoreView, occupied); + return foundCell; + } + + /** + * A drag event has begun over this layout. + * It may have begun over this layout (in which case onDragChild is called first), + * or it may have begun on another layout. + */ + void onDragEnter() { + mDragEnforcer.onDragEnter(); + mDragging = true; + } + + /** + * Called when drag has left this CellLayout or has been completed (successfully or not) + */ + void onDragExit() { + mDragEnforcer.onDragExit(); + // This can actually be called when we aren't in a drag, e.g. when adding a new + // item to this layout via the customize drawer. + // Guard against that case. + if (mDragging) { + mDragging = false; + } + + // Invalidate the drag data + mDragCell[0] = mDragCell[1] = -1; + mDragOutlineAnims[mDragOutlineCurrent].animateOut(); + mDragOutlineCurrent = (mDragOutlineCurrent + 1) % mDragOutlineAnims.length; + revertTempState(); + setIsDragOverlapping(false); + } + + /** + * Mark a child as having been dropped. + * At the beginning of the drag operation, the child may have been on another + * screen, but it is re-parented before this method is called. + * + * @param child The child that is being dropped + */ + void onDropChild(View child) { + if (child != null) { + LayoutParams lp = (LayoutParams) child.getLayoutParams(); + lp.dropped = true; + child.requestLayout(); + } + } + + /** + * Computes a bounding rectangle for a range of cells + * + * @param cellX X coordinate of upper left corner expressed as a cell position + * @param cellY Y coordinate of upper left corner expressed as a cell position + * @param cellHSpan Width in cells + * @param cellVSpan Height in cells + * @param resultRect Rect into which to put the results + */ + public void cellToRect(int cellX, int cellY, int cellHSpan, int cellVSpan, Rect resultRect) { + final int cellWidth = mCellWidth; + final int cellHeight = mCellHeight; + final int widthGap = mWidthGap; + final int heightGap = mHeightGap; + + final int hStartPadding = getPaddingLeft(); + final int vStartPadding = getPaddingTop(); + + int width = cellHSpan * cellWidth + ((cellHSpan - 1) * widthGap); + int height = cellVSpan * cellHeight + ((cellVSpan - 1) * heightGap); + + int x = hStartPadding + cellX * (cellWidth + widthGap); + int y = vStartPadding + cellY * (cellHeight + heightGap); + + resultRect.set(x, y, x + width, y + height); + } + + /** + * Computes the required horizontal and vertical cell spans to always + * fit the given rectangle. + * + * @param width Width in pixels + * @param height Height in pixels + * @param result An array of length 2 in which to store the result (may be null). + */ + public int[] rectToCell(int width, int height, int[] result) { + return rectToCell(getResources(), width, height, result); + } + + public static int[] rectToCell(Resources resources, int width, int height, int[] result) { + // Always assume we're working with the smallest span to make sure we + // reserve enough space in both orientations. + int actualWidth = resources.getDimensionPixelSize(R.dimen.workspace_cell_width); + int actualHeight = resources.getDimensionPixelSize(R.dimen.workspace_cell_height); + int smallerSize = Math.min(actualWidth, actualHeight); + + // Always round up to next largest cell + int spanX = (int) Math.ceil(width / (float) smallerSize); + int spanY = (int) Math.ceil(height / (float) smallerSize); + + if (result == null) { + return new int[] { spanX, spanY }; + } + result[0] = spanX; + result[1] = spanY; + return result; + } + + public int[] cellSpansToSize(int hSpans, int vSpans) { + int[] size = new int[2]; + size[0] = hSpans * mCellWidth + (hSpans - 1) * mWidthGap; + size[1] = vSpans * mCellHeight + (vSpans - 1) * mHeightGap; + return size; + } + + /** + * Calculate the grid spans needed to fit given item + */ + public void calculateSpans(ItemInfo info) { + final int minWidth; + final int minHeight; + + if (info instanceof LauncherAppWidgetInfo) { + minWidth = ((LauncherAppWidgetInfo) info).minWidth; + minHeight = ((LauncherAppWidgetInfo) info).minHeight; + } else if (info instanceof PendingAddWidgetInfo) { + minWidth = ((PendingAddWidgetInfo) info).minWidth; + minHeight = ((PendingAddWidgetInfo) info).minHeight; + } else { + // It's not a widget, so it must be 1x1 + info.spanX = info.spanY = 1; + return; + } + int[] spans = rectToCell(minWidth, minHeight, null); + info.spanX = spans[0]; + info.spanY = spans[1]; + } + + /** + * Find the first vacant cell, if there is one. + * + * @param vacant Holds the x and y coordinate of the vacant cell + * @param spanX Horizontal cell span. + * @param spanY Vertical cell span. + * + * @return True if a vacant cell was found + */ + public boolean getVacantCell(int[] vacant, int spanX, int spanY) { + + return findVacantCell(vacant, spanX, spanY, mCountX, mCountY, mOccupied); + } + + static boolean findVacantCell(int[] vacant, int spanX, int spanY, + int xCount, int yCount, boolean[][] occupied) { + + for (int y = 0; y < yCount; y++) { + for (int x = 0; x < xCount; x++) { + boolean available = !occupied[x][y]; +out: for (int i = x; i < x + spanX - 1 && x < xCount; i++) { + for (int j = y; j < y + spanY - 1 && y < yCount; j++) { + available = available && !occupied[i][j]; + if (!available) break out; + } + } + + if (available) { + vacant[0] = x; + vacant[1] = y; + return true; + } + } + } + + return false; + } + + private void clearOccupiedCells() { + for (int x = 0; x < mCountX; x++) { + for (int y = 0; y < mCountY; y++) { + mOccupied[x][y] = false; + } + } + } + + public void onMove(View view, int newCellX, int newCellY, int newSpanX, int newSpanY) { + markCellsAsUnoccupiedForView(view); + markCellsForView(newCellX, newCellY, newSpanX, newSpanY, mOccupied, true); + } + + public void markCellsAsOccupiedForView(View view) { + markCellsAsOccupiedForView(view, mOccupied); + } + public void markCellsAsOccupiedForView(View view, boolean[][] occupied) { + if (view == null || view.getParent() != mShortcutsAndWidgets) return; + LayoutParams lp = (LayoutParams) view.getLayoutParams(); + markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, true); + } + + public void markCellsAsUnoccupiedForView(View view) { + markCellsAsUnoccupiedForView(view, mOccupied); + } + public void markCellsAsUnoccupiedForView(View view, boolean occupied[][]) { + if (view == null || view.getParent() != mShortcutsAndWidgets) return; + LayoutParams lp = (LayoutParams) view.getLayoutParams(); + markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, false); + } + + private void markCellsForView(int cellX, int cellY, int spanX, int spanY, boolean[][] occupied, + boolean value) { + if (cellX < 0 || cellY < 0) return; + for (int x = cellX; x < cellX + spanX && x < mCountX; x++) { + for (int y = cellY; y < cellY + spanY && y < mCountY; y++) { + occupied[x][y] = value; + } + } + } + + public int getDesiredWidth() { + return getPaddingLeft() + getPaddingRight() + (mCountX * mCellWidth) + + (Math.max((mCountX - 1), 0) * mWidthGap); + } + + public int getDesiredHeight() { + return getPaddingTop() + getPaddingBottom() + (mCountY * mCellHeight) + + (Math.max((mCountY - 1), 0) * mHeightGap); + } + + public boolean isOccupied(int x, int y) { + if (x < mCountX && y < mCountY) { + return mOccupied[x][y]; + } else { + throw new RuntimeException("Position exceeds the bound of this CellLayout"); + } + } + + @Override + public ViewGroup.LayoutParams generateLayoutParams(AttributeSet attrs) { + return new CellLayout.LayoutParams(getContext(), attrs); + } + + @Override + protected boolean checkLayoutParams(ViewGroup.LayoutParams p) { + return p instanceof CellLayout.LayoutParams; + } + + @Override + protected ViewGroup.LayoutParams generateLayoutParams(ViewGroup.LayoutParams p) { + return new CellLayout.LayoutParams(p); + } + + public static class CellLayoutAnimationController extends LayoutAnimationController { + public CellLayoutAnimationController(Animation animation, float delay) { + super(animation, delay); + } + + @Override + protected long getDelayForView(View view) { + return (int) (Math.random() * 150); + } + } + + public static class LayoutParams extends ViewGroup.MarginLayoutParams { + /** + * Horizontal location of the item in the grid. + */ + @ViewDebug.ExportedProperty + public int cellX; + + /** + * Vertical location of the item in the grid. + */ + @ViewDebug.ExportedProperty + public int cellY; + + /** + * Temporary horizontal location of the item in the grid during reorder + */ + public int tmpCellX; + + /** + * Temporary vertical location of the item in the grid during reorder + */ + public int tmpCellY; + + /** + * Indicates that the temporary coordinates should be used to layout the items + */ + public boolean useTmpCoords; + + /** + * Number of cells spanned horizontally by the item. + */ + @ViewDebug.ExportedProperty + public int cellHSpan; + + /** + * Number of cells spanned vertically by the item. + */ + @ViewDebug.ExportedProperty + public int cellVSpan; + + /** + * Indicates whether the item will set its x, y, width and height parameters freely, + * or whether these will be computed based on cellX, cellY, cellHSpan and cellVSpan. + */ + public boolean isLockedToGrid = true; + + /** + * Indicates whether this item can be reordered. Always true except in the case of the + * the AllApps button. + */ + public boolean canReorder = true; + + // X coordinate of the view in the layout. + @ViewDebug.ExportedProperty + int x; + // Y coordinate of the view in the layout. + @ViewDebug.ExportedProperty + int y; + + boolean dropped; + + public LayoutParams(Context c, AttributeSet attrs) { + super(c, attrs); + cellHSpan = 1; + cellVSpan = 1; + } + + public LayoutParams(ViewGroup.LayoutParams source) { + super(source); + cellHSpan = 1; + cellVSpan = 1; + } + + public LayoutParams(LayoutParams source) { + super(source); + this.cellX = source.cellX; + this.cellY = source.cellY; + this.cellHSpan = source.cellHSpan; + this.cellVSpan = source.cellVSpan; + } + + public LayoutParams(int cellX, int cellY, int cellHSpan, int cellVSpan) { + super(LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT); + this.cellX = cellX; + this.cellY = cellY; + this.cellHSpan = cellHSpan; + this.cellVSpan = cellVSpan; + } + + public void setup(int cellWidth, int cellHeight, int widthGap, int heightGap, + boolean invertHorizontally, int colCount) { + if (isLockedToGrid) { + final int myCellHSpan = cellHSpan; + final int myCellVSpan = cellVSpan; + int myCellX = useTmpCoords ? tmpCellX : cellX; + int myCellY = useTmpCoords ? tmpCellY : cellY; + + if (invertHorizontally) { + myCellX = colCount - myCellX - cellHSpan; + } + + width = myCellHSpan * cellWidth + ((myCellHSpan - 1) * widthGap) - + leftMargin - rightMargin; + height = myCellVSpan * cellHeight + ((myCellVSpan - 1) * heightGap) - + topMargin - bottomMargin; + x = (int) (myCellX * (cellWidth + widthGap) + leftMargin); + y = (int) (myCellY * (cellHeight + heightGap) + topMargin); + } + } + + public String toString() { + return "(" + this.cellX + ", " + this.cellY + ")"; + } + + public void setWidth(int width) { + this.width = width; + } + + public int getWidth() { + return width; + } + + public void setHeight(int height) { + this.height = height; + } + + public int getHeight() { + return height; + } + + public void setX(int x) { + this.x = x; + } + + public int getX() { + return x; + } + + public void setY(int y) { + this.y = y; + } + + public int getY() { + return y; + } + } + + // This class stores info for two purposes: + // 1. When dragging items (mDragInfo in Workspace), we store the View, its cellX & cellY, + // its spanX, spanY, and the screen it is on + // 2. When long clicking on an empty cell in a CellLayout, we save information about the + // cellX and cellY coordinates and which page was clicked. We then set this as a tag on + // the CellLayout that was long clicked + static final class CellInfo { + View cell; + int cellX = -1; + int cellY = -1; + int spanX; + int spanY; + int screen; + long container; + + @Override + public String toString() { + return "Cell[view=" + (cell == null ? "null" : cell.getClass()) + + ", x=" + cellX + ", y=" + cellY + "]"; + } + } + + public boolean lastDownOnOccupiedCell() { + return mLastDownOnOccupiedCell; + } +} -- cgit v1.2.3