summaryrefslogtreecommitdiffstats
path: root/jni/tinyplanet.cc
blob: dfb31d7687e3ba27f1d8c3df1a20168fcc1d2591 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <jni.h>
#include <math.h>
#include <android/bitmap.h>

#ifdef __cplusplus
extern "C" {
#endif


#define PI_F 3.141592653589f

class ImageRGBA {
 public:
  ImageRGBA(unsigned char* image, int width, int height)
   : image_(image), width_(width), height_(height) {
    width_step_ = width * 4;
  }

  int Width() const {
    return width_;
  }

  int Height() const {
    return height_;
  }

  // Pixel accessor.
  unsigned char* operator()(int x, int y) {
    return image_ + y * width_step_ + x * 4;
  }
  const unsigned char* operator()(int x, int y) const {
    return image_ + y * width_step_ + x * 4;
  }

 private:
  unsigned char* image_;
  int width_;
  int height_;
  int width_step_;
};

// Interpolate a pixel in a 3 channel image.
inline void InterpolatePixel(const ImageRGBA &image, float x, float y,
                             unsigned char* dest) {
  // Get pointers and scale factors for the source pixels.
  float ax = x - floor(x);
  float ay = y - floor(y);
  float axn = 1.0f - ax;
  float ayn = 1.0f - ay;
  const unsigned char *p = image(x, y);
  const unsigned char *p2 = image(x, y + 1);

  // Interpolate each image color plane.
  dest[0] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] +
             ax * ay * p2[4] + axn * ay * p2[0] + 0.5f);
  p++;
  p2++;

  dest[1] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] +
             ax * ay * p2[4] + axn * ay * p2[0] + 0.5f);
  p++;
  p2++;

  dest[2] = static_cast<unsigned char>(axn * ayn * p[0] + ax * ayn * p[4] +
             ax * ay * p2[4] + axn * ay * p2[0] + 0.5f);
  p++;
  p2++;
  dest[3] = 0xFF;
}

// Wrap circular coordinates around the globe
inline float wrap(float value, float dimension) {
  return value - (dimension * floor(value/dimension));
}

void StereographicProjection(float scale, float angle, unsigned char* input_image,
                             int input_width, int input_height,
                             unsigned char* output_image, int output_width,
                             int output_height) {
  ImageRGBA input(input_image, input_width, input_height);
  ImageRGBA output(output_image, output_width, output_height);

  const float image_scale = output_width * scale;

  for (int x = 0; x < output_width; x++) {
    // Center and scale x
    float xf = (x - output_width / 2.0f) / image_scale;

    for (int y = 0; y < output_height; y++) {
      // Center and scale y
      float yf = (y - output_height / 2.0f) / image_scale;

      // Convert to polar
      float r = hypotf(xf, yf);
      float theta = angle+atan2(yf, xf);
      if (theta>PI_F) theta-=2*PI_F;

      // Project onto plane
      float phi = 2 * atan(1 / r);
      // (theta stays the same)

      // Map to panorama image
      float px = (theta / (2 * PI_F)) * input_width;
      float py = (phi / PI_F) * input_height;

      // Wrap around the globe
      px = wrap(px, input_width);
      py = wrap(py, input_height);

      // Write the interpolated pixel
      InterpolatePixel(input, px, py, output(x, y));
    }
  }
}


JNIEXPORT void JNICALL Java_com_android_camera_tinyplanet_TinyPlanetNative_process(JNIEnv* env, jobject obj, jobject bitmap_in, jint width, jint height, jobject bitmap_out, jint output_size, jfloat scale, jfloat angle)
{
    char* source = 0;
    char* destination = 0;
    AndroidBitmap_lockPixels(env, bitmap_in, (void**) &source);
    AndroidBitmap_lockPixels(env, bitmap_out, (void**) &destination);
    unsigned char * rgb_in = (unsigned char * )source;
    unsigned char * rgb_out = (unsigned char * )destination;

    StereographicProjection(scale, angle, rgb_in, width, height, rgb_out, output_size, output_size);
    AndroidBitmap_unlockPixels(env, bitmap_in);
    AndroidBitmap_unlockPixels(env, bitmap_out);
}

#ifdef __cplusplus
}
#endif