summaryrefslogtreecommitdiffstats
path: root/jni/feature_stab/db_vlvm/db_metrics.h
diff options
context:
space:
mode:
Diffstat (limited to 'jni/feature_stab/db_vlvm/db_metrics.h')
-rw-r--r--jni/feature_stab/db_vlvm/db_metrics.h408
1 files changed, 408 insertions, 0 deletions
diff --git a/jni/feature_stab/db_vlvm/db_metrics.h b/jni/feature_stab/db_vlvm/db_metrics.h
new file mode 100644
index 000000000..6b95458f1
--- /dev/null
+++ b/jni/feature_stab/db_vlvm/db_metrics.h
@@ -0,0 +1,408 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* $Id: db_metrics.h,v 1.3 2011/06/17 14:03:31 mbansal Exp $ */
+
+#ifndef DB_METRICS
+#define DB_METRICS
+
+
+
+/*****************************************************************
+* Lean and mean begins here *
+*****************************************************************/
+
+#include "db_utilities.h"
+/*!
+ * \defgroup LMMetrics (LM) Metrics
+ */
+/*\{*/
+
+
+
+
+/*!
+Compute function value fp and Jacobian J of robustifier given input value f*/
+inline void db_CauchyDerivative(double J[4],double fp[2],const double f[2],double one_over_scale2)
+{
+ double x2,y2,r,r2,r2s,one_over_r2,fu,r_fu,one_over_r_fu;
+ double one_plus_r2s,half_dfu_dx,half_dfu_dy,coeff,coeff2,coeff3;
+ int at_zero;
+
+ /*The robustifier takes the input (x,y) and makes a new
+ vector (xp,yp) where
+ xp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*x/sqrt(x^2+y^2)
+ yp=sqrt(log(1+(x^2+y^2)*one_over_scale2))*y/sqrt(x^2+y^2)
+ The new vector has the property
+ xp^2+yp^2=log(1+(x^2+y^2)*one_over_scale2)
+ i.e. when it is square-summed it gives the robust
+ reprojection error
+ Define
+ r2=(x^2+y^2) and
+ r2s=r2*one_over_scale2
+ fu=log(1+r2s)/r2
+ then
+ xp=sqrt(fu)*x
+ yp=sqrt(fu)*y
+ and
+ d(r2)/dx=2x
+ d(r2)/dy=2y
+ and
+ dfu/dx=d(r2)/dx*(r2s/(1+r2s)-log(1+r2s))/(r2*r2)
+ dfu/dy=d(r2)/dy*(r2s/(1+r2s)-log(1+r2s))/(r2*r2)
+ and
+ d(xp)/dx=1/(2sqrt(fu))*(dfu/dx)*x+sqrt(fu)
+ d(xp)/dy=1/(2sqrt(fu))*(dfu/dy)*x
+ d(yp)/dx=1/(2sqrt(fu))*(dfu/dx)*y
+ d(yp)/dy=1/(2sqrt(fu))*(dfu/dy)*y+sqrt(fu)
+ */
+
+ x2=db_sqr(f[0]);
+ y2=db_sqr(f[1]);
+ r2=x2+y2;
+ r=sqrt(r2);
+
+ if(r2<=0.0) at_zero=1;
+ else
+ {
+ one_over_r2=1.0/r2;
+ r2s=r2*one_over_scale2;
+ one_plus_r2s=1.0+r2s;
+ fu=log(one_plus_r2s)*one_over_r2;
+ r_fu=sqrt(fu);
+ if(r_fu<=0.0) at_zero=1;
+ else
+ {
+ one_over_r_fu=1.0/r_fu;
+ fp[0]=r_fu*f[0];
+ fp[1]=r_fu*f[1];
+ /*r2s is always >= 0*/
+ coeff=(r2s/one_plus_r2s*one_over_r2-fu)*one_over_r2;
+ half_dfu_dx=f[0]*coeff;
+ half_dfu_dy=f[1]*coeff;
+ coeff2=one_over_r_fu*half_dfu_dx;
+ coeff3=one_over_r_fu*half_dfu_dy;
+
+ J[0]=coeff2*f[0]+r_fu;
+ J[1]=coeff3*f[0];
+ J[2]=coeff2*f[1];
+ J[3]=coeff3*f[1]+r_fu;
+ at_zero=0;
+ }
+ }
+ if(at_zero)
+ {
+ /*Close to zero the robustifying mapping
+ becomes identity*sqrt(one_over_scale2)*/
+ fp[0]=0.0;
+ fp[1]=0.0;
+ J[0]=sqrt(one_over_scale2);
+ J[1]=0.0;
+ J[2]=0.0;
+ J[3]=J[0];
+ }
+}
+
+inline double db_SquaredReprojectionErrorHomography(const double y[2],const double H[9],const double x[3])
+{
+ double x0,x1,x2,mult;
+ double sd;
+
+ x0=H[0]*x[0]+H[1]*x[1]+H[2]*x[2];
+ x1=H[3]*x[0]+H[4]*x[1]+H[5]*x[2];
+ x2=H[6]*x[0]+H[7]*x[1]+H[8]*x[2];
+ mult=1.0/((x2!=0.0)?x2:1.0);
+ sd=db_sqr((y[0]-x0*mult))+db_sqr((y[1]-x1*mult));
+
+ return(sd);
+}
+
+inline double db_SquaredInhomogenousHomographyError(const double y[2],const double H[9],const double x[2])
+{
+ double x0,x1,x2,mult;
+ double sd;
+
+ x0=H[0]*x[0]+H[1]*x[1]+H[2];
+ x1=H[3]*x[0]+H[4]*x[1]+H[5];
+ x2=H[6]*x[0]+H[7]*x[1]+H[8];
+ mult=1.0/((x2!=0.0)?x2:1.0);
+ sd=db_sqr((y[0]-x0*mult))+db_sqr((y[1]-x1*mult));
+
+ return(sd);
+}
+
+/*!
+Return a constant divided by likelihood of a Cauchy distributed
+reprojection error given the image point y, homography H, image point
+point x and the squared scale coefficient one_over_scale2=1.0/(scale*scale)
+where scale is the half width at half maximum (hWahM) of the
+Cauchy distribution*/
+inline double db_ExpCauchyInhomogenousHomographyError(const double y[2],const double H[9],const double x[2],
+ double one_over_scale2)
+{
+ double sd;
+ sd=db_SquaredInhomogenousHomographyError(y,H,x);
+ return(1.0+sd*one_over_scale2);
+}
+
+/*!
+Compute residual vector f between image point y and homography Hx of
+image point x. Also compute Jacobian of f with respect
+to an update dx of H*/
+inline void db_DerivativeInhomHomographyError(double Jf_dx[18],double f[2],const double y[2],const double H[9],
+ const double x[2])
+{
+ double xh,yh,zh,mult,mult2,xh_mult2,yh_mult2;
+ /*The Jacobian of the inhomogenous coordinates with respect to
+ the homogenous is
+ [1/zh 0 -xh/(zh*zh)]
+ [ 0 1/zh -yh/(zh*zh)]
+ The Jacobian of the homogenous coordinates with respect to dH is
+ [x0 x1 1 0 0 0 0 0 0]
+ [ 0 0 0 x0 x1 1 0 0 0]
+ [ 0 0 0 0 0 0 x0 x1 1]
+ The output Jacobian is minus their product, i.e.
+ [-x0/zh -x1/zh -1/zh 0 0 0 x0*xh/(zh*zh) x1*xh/(zh*zh) xh/(zh*zh)]
+ [ 0 0 0 -x0/zh -x1/zh -1/zh x0*yh/(zh*zh) x1*yh/(zh*zh) yh/(zh*zh)]*/
+
+ /*Compute warped point, which is the same as
+ homogenous coordinates of reprojection*/
+ xh=H[0]*x[0]+H[1]*x[1]+H[2];
+ yh=H[3]*x[0]+H[4]*x[1]+H[5];
+ zh=H[6]*x[0]+H[7]*x[1]+H[8];
+ mult=1.0/((zh!=0.0)?zh:1.0);
+ /*Compute inhomogenous residual*/
+ f[0]=y[0]-xh*mult;
+ f[1]=y[1]-yh*mult;
+ /*Compute Jacobian*/
+ mult2=mult*mult;
+ xh_mult2=xh*mult2;
+ yh_mult2=yh*mult2;
+ Jf_dx[0]= -x[0]*mult;
+ Jf_dx[1]= -x[1]*mult;
+ Jf_dx[2]= -mult;
+ Jf_dx[3]=0;
+ Jf_dx[4]=0;
+ Jf_dx[5]=0;
+ Jf_dx[6]=x[0]*xh_mult2;
+ Jf_dx[7]=x[1]*xh_mult2;
+ Jf_dx[8]=xh_mult2;
+ Jf_dx[9]=0;
+ Jf_dx[10]=0;
+ Jf_dx[11]=0;
+ Jf_dx[12]=Jf_dx[0];
+ Jf_dx[13]=Jf_dx[1];
+ Jf_dx[14]=Jf_dx[2];
+ Jf_dx[15]=x[0]*yh_mult2;
+ Jf_dx[16]=x[1]*yh_mult2;
+ Jf_dx[17]=yh_mult2;
+}
+
+/*!
+Compute robust residual vector f between image point y and homography Hx of
+image point x. Also compute Jacobian of f with respect
+to an update dH of H*/
+inline void db_DerivativeCauchyInhomHomographyReprojection(double Jf_dx[18],double f[2],const double y[2],const double H[9],
+ const double x[2],double one_over_scale2)
+{
+ double Jf_dx_loc[18],f_loc[2];
+ double J[4],J0,J1,J2,J3;
+
+ /*Compute reprojection Jacobian*/
+ db_DerivativeInhomHomographyError(Jf_dx_loc,f_loc,y,H,x);
+ /*Compute robustifier Jacobian*/
+ db_CauchyDerivative(J,f,f_loc,one_over_scale2);
+
+ /*Multiply the robustifier Jacobian with
+ the reprojection Jacobian*/
+ J0=J[0];J1=J[1];J2=J[2];J3=J[3];
+ Jf_dx[0]=J0*Jf_dx_loc[0];
+ Jf_dx[1]=J0*Jf_dx_loc[1];
+ Jf_dx[2]=J0*Jf_dx_loc[2];
+ Jf_dx[3]= J1*Jf_dx_loc[12];
+ Jf_dx[4]= J1*Jf_dx_loc[13];
+ Jf_dx[5]= J1*Jf_dx_loc[14];
+ Jf_dx[6]=J0*Jf_dx_loc[6]+J1*Jf_dx_loc[15];
+ Jf_dx[7]=J0*Jf_dx_loc[7]+J1*Jf_dx_loc[16];
+ Jf_dx[8]=J0*Jf_dx_loc[8]+J1*Jf_dx_loc[17];
+ Jf_dx[9]= J2*Jf_dx_loc[0];
+ Jf_dx[10]=J2*Jf_dx_loc[1];
+ Jf_dx[11]=J2*Jf_dx_loc[2];
+ Jf_dx[12]= J3*Jf_dx_loc[12];
+ Jf_dx[13]= J3*Jf_dx_loc[13];
+ Jf_dx[14]= J3*Jf_dx_loc[14];
+ Jf_dx[15]=J2*Jf_dx_loc[6]+J3*Jf_dx_loc[15];
+ Jf_dx[16]=J2*Jf_dx_loc[7]+J3*Jf_dx_loc[16];
+ Jf_dx[17]=J2*Jf_dx_loc[8]+J3*Jf_dx_loc[17];
+}
+/*!
+Compute residual vector f between image point y and rotation of
+image point x by R. Also compute Jacobian of f with respect
+to an update dx of R*/
+inline void db_DerivativeInhomRotationReprojection(double Jf_dx[6],double f[2],const double y[2],const double R[9],
+ const double x[2])
+{
+ double xh,yh,zh,mult,mult2,xh_mult2,yh_mult2;
+ /*The Jacobian of the inhomogenous coordinates with respect to
+ the homogenous is
+ [1/zh 0 -xh/(zh*zh)]
+ [ 0 1/zh -yh/(zh*zh)]
+ The Jacobian at zero of the homogenous coordinates with respect to
+ [sin(phi) sin(ohm) sin(kap)] is
+ [-rx2 0 rx1 ]
+ [ 0 rx2 -rx0 ]
+ [ rx0 -rx1 0 ]
+ The output Jacobian is minus their product, i.e.
+ [1+xh*xh/(zh*zh) -xh*yh/(zh*zh) -yh/zh]
+ [xh*yh/(zh*zh) -1-yh*yh/(zh*zh) xh/zh]*/
+
+ /*Compute rotated point, which is the same as
+ homogenous coordinates of reprojection*/
+ xh=R[0]*x[0]+R[1]*x[1]+R[2];
+ yh=R[3]*x[0]+R[4]*x[1]+R[5];
+ zh=R[6]*x[0]+R[7]*x[1]+R[8];
+ mult=1.0/((zh!=0.0)?zh:1.0);
+ /*Compute inhomogenous residual*/
+ f[0]=y[0]-xh*mult;
+ f[1]=y[1]-yh*mult;
+ /*Compute Jacobian*/
+ mult2=mult*mult;
+ xh_mult2=xh*mult2;
+ yh_mult2=yh*mult2;
+ Jf_dx[0]= 1.0+xh*xh_mult2;
+ Jf_dx[1]= -yh*xh_mult2;
+ Jf_dx[2]= -yh*mult;
+ Jf_dx[3]= -Jf_dx[1];
+ Jf_dx[4]= -1-yh*yh_mult2;
+ Jf_dx[5]= xh*mult;
+}
+
+/*!
+Compute robust residual vector f between image point y and rotation of
+image point x by R. Also compute Jacobian of f with respect
+to an update dx of R*/
+inline void db_DerivativeCauchyInhomRotationReprojection(double Jf_dx[6],double f[2],const double y[2],const double R[9],
+ const double x[2],double one_over_scale2)
+{
+ double Jf_dx_loc[6],f_loc[2];
+ double J[4],J0,J1,J2,J3;
+
+ /*Compute reprojection Jacobian*/
+ db_DerivativeInhomRotationReprojection(Jf_dx_loc,f_loc,y,R,x);
+ /*Compute robustifier Jacobian*/
+ db_CauchyDerivative(J,f,f_loc,one_over_scale2);
+
+ /*Multiply the robustifier Jacobian with
+ the reprojection Jacobian*/
+ J0=J[0];J1=J[1];J2=J[2];J3=J[3];
+ Jf_dx[0]=J0*Jf_dx_loc[0]+J1*Jf_dx_loc[3];
+ Jf_dx[1]=J0*Jf_dx_loc[1]+J1*Jf_dx_loc[4];
+ Jf_dx[2]=J0*Jf_dx_loc[2]+J1*Jf_dx_loc[5];
+ Jf_dx[3]=J2*Jf_dx_loc[0]+J3*Jf_dx_loc[3];
+ Jf_dx[4]=J2*Jf_dx_loc[1]+J3*Jf_dx_loc[4];
+ Jf_dx[5]=J2*Jf_dx_loc[2]+J3*Jf_dx_loc[5];
+}
+
+
+
+/*!
+// remove the outliers whose projection error is larger than pre-defined
+*/
+inline int db_RemoveOutliers_Homography(const double H[9], double *x_i,double *xp_i, double *wp,double *im, double *im_p, double *im_r, double *im_raw,double *im_raw_p,int point_count,double scale, double thresh=DB_OUTLIER_THRESHOLD)
+{
+ double temp_valueE, t2;
+ int c;
+ int k1=0;
+ int k2=0;
+ int k3=0;
+ int numinliers=0;
+ int ind1;
+ int ind2;
+ int ind3;
+ int isinlier;
+
+ // experimentally determined
+ t2=1.0/(thresh*thresh*thresh*thresh);
+
+ // count the inliers
+ for(c=0;c<point_count;c++)
+ {
+ ind1=c<<1;
+ ind2=c<<2;
+ ind3=3*c;
+
+ temp_valueE=db_SquaredInhomogenousHomographyError(im_p+ind3,H,im+ind3);
+
+ isinlier=((temp_valueE<=t2)?1:0);
+
+ // if it is inlier, then copy the 3d and 2d correspondences
+ if (isinlier)
+ {
+ numinliers++;
+
+ x_i[k1]=x_i[ind1];
+ x_i[k1+1]=x_i[ind1+1];
+
+ xp_i[k1]=xp_i[ind1];
+ xp_i[k1+1]=xp_i[ind1+1];
+
+ k1=k1+2;
+
+ // original normalized pixel coordinates
+ im[k3]=im[ind3];
+ im[k3+1]=im[ind3+1];
+ im[k3+2]=im[ind3+2];
+
+ im_r[k3]=im_r[ind3];
+ im_r[k3+1]=im_r[ind3+1];
+ im_r[k3+2]=im_r[ind3+2];
+
+ im_p[k3]=im_p[ind3];
+ im_p[k3+1]=im_p[ind3+1];
+ im_p[k3+2]=im_p[ind3+2];
+
+ // left and right raw pixel coordinates
+ im_raw[k3] = im_raw[ind3];
+ im_raw[k3+1] = im_raw[ind3+1];
+ im_raw[k3+2] = im_raw[ind3+2]; // the index
+
+ im_raw_p[k3] = im_raw_p[ind3];
+ im_raw_p[k3+1] = im_raw_p[ind3+1];
+ im_raw_p[k3+2] = im_raw_p[ind3+2]; // the index
+
+ k3=k3+3;
+
+ // 3D coordinates
+ wp[k2]=wp[ind2];
+ wp[k2+1]=wp[ind2+1];
+ wp[k2+2]=wp[ind2+2];
+ wp[k2+3]=wp[ind2+3];
+
+ k2=k2+4;
+
+ }
+ }
+
+ return numinliers;
+}
+
+
+
+
+
+/*\}*/
+
+#endif /* DB_METRICS */