/* $License: Copyright (C) 2011-2012 InvenSense Corporation, All Rights Reserved. See included License.txt for License information. $ */ #ifndef INVENSENSE_INV_MATH_FUNC_H__ #define INVENSENSE_INV_MATH_FUNC_H__ #include "mltypes.h" #define GYRO_MAG_SQR_SHIFT 6 #define NUM_ROTATION_MATRIX_ELEMENTS (9) #define ROT_MATRIX_SCALE_LONG (1073741824L) #define ROT_MATRIX_SCALE_FLOAT (1073741824.0f) #define ROT_MATRIX_LONG_TO_FLOAT( longval ) \ ((float) ((longval) / ROT_MATRIX_SCALE_FLOAT )) #define SIGNM(k)((int)(k)&1?-1:1) #define SIGNSET(x) ((x) ? -1 : +1) #define INV_TWO_POWER_NEG_30 9.313225746154785e-010f #ifdef __cplusplus extern "C" { #endif typedef struct { float state[4]; float c[5]; float input; float output; } inv_biquad_filter_t; static inline float inv_q30_to_float(long q30) { return (float) q30 / ((float)(1L << 30)); } static inline double inv_q30_to_double(long q30) { return (double) q30 / ((double)(1L << 30)); } static inline float inv_q16_to_float(long q16) { return (float) q16 / (1L << 16); } static inline double inv_q16_to_double(long q16) { return (double) q16 / (1L << 16); } long inv_q29_mult(long a, long b); long inv_q30_mult(long a, long b); /* UMPL_ELIMINATE_64BIT Notes: * An alternate implementation using float instead of long long accudoublemulators * is provided for q29_mult and q30_mult. * When long long accumulators are used and an alternate implementation is not * available, we eliminate the entire function and header with a macro. */ #ifndef UMPL_ELIMINATE_64BIT long inv_q30_div(long a, long b); long inv_q_shift_mult(long a, long b, int shift); #endif void inv_q_mult(const long *q1, const long *q2, long *qProd); void inv_q_add(long *q1, long *q2, long *qSum); void inv_q_normalize(long *q); void inv_q_invert(const long *q, long *qInverted); void inv_q_multf(const float *q1, const float *q2, float *qProd); void inv_q_addf(const float *q1, const float *q2, float *qSum); void inv_q_normalizef(float *q); void inv_q_norm4(float *q); void inv_q_invertf(const float *q, float *qInverted); void inv_quaternion_to_rotation(const long *quat, long *rot); unsigned char *inv_int32_to_big8(long x, unsigned char *big8); long inv_big8_to_int32(const unsigned char *big8); short inv_big8_to_int16(const unsigned char *big8); short inv_little8_to_int16(const unsigned char *little8); unsigned char *inv_int16_to_big8(short x, unsigned char *big8); float inv_matrix_det(float *p, int *n); void inv_matrix_det_inc(float *a, float *b, int *n, int x, int y); double inv_matrix_detd(double *p, int *n); void inv_matrix_det_incd(double *a, double *b, int *n, int x, int y); float inv_wrap_angle(float ang); float inv_angle_diff(float ang1, float ang2); void inv_quaternion_to_rotation_vector(const long *quat, long *rot); unsigned short inv_orientation_matrix_to_scalar(const signed char *mtx); void inv_convert_to_body(unsigned short orientation, const long *input, long *output); void inv_convert_to_chip(unsigned short orientation, const long *input, long *output); void inv_convert_to_body_with_scale(unsigned short orientation, long sensitivity, const long *input, long *output); void inv_q_rotate(const long *q, const long *in, long *out); void inv_vector_normalize(long *vec, int length); uint32_t inv_checksum(const unsigned char *str, int len); float inv_compass_angle(const long *compass, const long *grav, const float *quat); unsigned long inv_get_gyro_sum_of_sqr(const long *gyro); static inline long inv_delta_time_ms(inv_time_t t1, inv_time_t t2) { return (long)((t1 - t2) / 1000000L); } double quaternion_to_rotation_angle(const long *quat); double inv_vector_norm(const float *x); void inv_init_biquad_filter(inv_biquad_filter_t *pFilter, float *pBiquadCoeff); float inv_biquad_filter_process(inv_biquad_filter_t *pFilter, float input); void inv_calc_state_to_match_output(inv_biquad_filter_t *pFilter, float input); void inv_get_cross_product_vec(float *cgcross, float compass[3], float grav[3]); #ifdef __cplusplus } #endif #endif // INVENSENSE_INV_MATH_FUNC_H__