summaryrefslogtreecommitdiffstats
path: root/60xx/libsensors_iio/software/core/mllite/results_holder.c
diff options
context:
space:
mode:
Diffstat (limited to '60xx/libsensors_iio/software/core/mllite/results_holder.c')
-rw-r--r--60xx/libsensors_iio/software/core/mllite/results_holder.c522
1 files changed, 522 insertions, 0 deletions
diff --git a/60xx/libsensors_iio/software/core/mllite/results_holder.c b/60xx/libsensors_iio/software/core/mllite/results_holder.c
new file mode 100644
index 0000000..df58f40
--- /dev/null
+++ b/60xx/libsensors_iio/software/core/mllite/results_holder.c
@@ -0,0 +1,522 @@
+/*
+ $License:
+ Copyright (C) 2011-2012 InvenSense Corporation, All Rights Reserved.
+ See included License.txt for License information.
+ $
+ */
+/**
+ * @defgroup Results_Holder results_holder
+ * @brief Motion Library - Results Holder
+ * Holds the data for MPL
+ *
+ * @{
+ * @file results_holder.c
+ * @brief Results Holder for HAL.
+ */
+
+#include <string.h>
+
+#include "results_holder.h"
+#include "ml_math_func.h"
+#include "mlmath.h"
+#include "start_manager.h"
+#include "data_builder.h"
+#include "message_layer.h"
+#include "log.h"
+
+// These 2 status bits are used to control when the 9 axis quaternion is updated
+#define INV_COMPASS_CORRECTION_SET 1
+#define INV_6_AXIS_QUAT_SET 2
+
+struct results_t {
+ long nav_quat[4];
+ long gam_quat[4];
+ inv_time_t nav_timestamp;
+ inv_time_t gam_timestamp;
+ long local_field[3]; /**< local earth's magnetic field */
+ long mag_scale[3]; /**< scale factor to apply to magnetic field reading */
+ long compass_correction[4]; /**< quaternion going from gyro,accel quaternion to 9 axis */
+ int acc_state; /**< Describes accel state */
+ int got_accel_bias; /**< Flag describing if accel bias is known */
+ long compass_bias_error[3]; /**< Error Squared */
+ unsigned char motion_state;
+ unsigned int motion_state_counter; /**< Incremented for each no motion event in a row */
+ long compass_count; /**< compass state internal counter */
+ int got_compass_bias; /**< Flag describing if compass bias is known */
+ int large_mag_field; /**< Flag describing if there is a large magnetic field */
+ int compass_state; /**< Internal compass state */
+ long status;
+ struct inv_sensor_cal_t *sensor;
+ float quat_confidence_interval;
+};
+static struct results_t rh;
+
+/** @internal
+* Store a quaternion more suitable for gaming. This quaternion is often determined
+* using only gyro and accel.
+* @param[in] quat Length 4, Quaternion scaled by 2^30
+*/
+void inv_store_gaming_quaternion(const long *quat, inv_time_t timestamp)
+{
+ rh.status |= INV_6_AXIS_QUAT_SET;
+ memcpy(&rh.gam_quat, quat, sizeof(rh.gam_quat));
+ rh.gam_timestamp = timestamp;
+}
+
+/** @internal
+* Sets the quaternion adjustment from 6 axis (accel, gyro) to 9 axis quaternion.
+* @param[in] data Quaternion Adjustment
+* @param[in] timestamp Timestamp of when this is valid
+*/
+void inv_set_compass_correction(const long *data, inv_time_t timestamp)
+{
+ rh.status |= INV_COMPASS_CORRECTION_SET;
+ memcpy(rh.compass_correction, data, sizeof(rh.compass_correction));
+ rh.nav_timestamp = timestamp;
+}
+
+/** @internal
+* Gets the quaternion adjustment from 6 axis (accel, gyro) to 9 axis quaternion.
+* @param[out] data Quaternion Adjustment
+* @param[out] timestamp Timestamp of when this is valid
+*/
+void inv_get_compass_correction(long *data, inv_time_t *timestamp)
+{
+ memcpy(data, rh.compass_correction, sizeof(rh.compass_correction));
+ *timestamp = rh.nav_timestamp;
+}
+
+/** Returns non-zero if there is a large magnetic field. See inv_set_large_mag_field() for setting this variable.
+ * @return Returns non-zero if there is a large magnetic field.
+ */
+int inv_get_large_mag_field()
+{
+ return rh.large_mag_field;
+}
+
+/** Set to non-zero if there as a large magnetic field. See inv_get_large_mag_field() for getting this variable.
+ * @param[in] state value to set for magnetic field strength. Should be non-zero if it is large.
+ */
+void inv_set_large_mag_field(int state)
+{
+ rh.large_mag_field = state;
+}
+
+/** Gets the accel state set by inv_set_acc_state()
+ * @return accel state.
+ */
+int inv_get_acc_state()
+{
+ return rh.acc_state;
+}
+
+/** Sets the accel state. See inv_get_acc_state() to get the value.
+ * @param[in] state value to set accel state to.
+ */
+void inv_set_acc_state(int state)
+{
+ rh.acc_state = state;
+ return;
+}
+
+/** Returns the motion state
+* @param[out] cntr Number of previous times a no motion event has occured in a row.
+* @return Returns INV_SUCCESS if successful or an error code if not.
+*/
+int inv_get_motion_state(unsigned int *cntr)
+{
+ *cntr = rh.motion_state_counter;
+ return rh.motion_state;
+}
+
+/** Sets the motion state
+ * @param[in] state motion state where INV_NO_MOTION is not moving
+ * and INV_MOTION is moving.
+ */
+void inv_set_motion_state(unsigned char state)
+{
+ long set;
+ if (state == rh.motion_state) {
+ if (state == INV_NO_MOTION) {
+ rh.motion_state_counter++;
+ } else {
+ rh.motion_state_counter = 0;
+ }
+ return;
+ }
+ rh.motion_state_counter = 0;
+ rh.motion_state = state;
+ /* Equivalent to set = state, but #define's may change. */
+ if (state == INV_MOTION)
+ set = INV_MSG_MOTION_EVENT;
+ else
+ set = INV_MSG_NO_MOTION_EVENT;
+ inv_set_message(set, (INV_MSG_MOTION_EVENT | INV_MSG_NO_MOTION_EVENT), 0);
+}
+
+/** Sets the local earth's magnetic field
+* @param[in] data Local earth's magnetic field in uT scaled by 2^16.
+* Length = 3. Y typically points north, Z typically points down in
+* northern hemisphere and up in southern hemisphere.
+*/
+void inv_set_local_field(const long *data)
+{
+ memcpy(rh.local_field, data, sizeof(rh.local_field));
+}
+
+/** Gets the local earth's magnetic field
+* @param[out] data Local earth's magnetic field in uT scaled by 2^16.
+* Length = 3. Y typically points north, Z typically points down in
+* northern hemisphere and up in southern hemisphere.
+*/
+void inv_get_local_field(long *data)
+{
+ memcpy(data, rh.local_field, sizeof(rh.local_field));
+}
+
+/** Sets the compass sensitivity
+ * @param[in] data Length 3, sensitivity for each compass axis
+ * scaled such that 1.0 = 2^30.
+ */
+void inv_set_mag_scale(const long *data)
+{
+ memcpy(rh.mag_scale, data, sizeof(rh.mag_scale));
+}
+
+/** Gets the compass sensitivity
+ * @param[out] data Length 3, sensitivity for each compass axis
+ * scaled such that 1.0 = 2^30.
+ */
+void inv_get_mag_scale(long *data)
+{
+ memcpy(data, rh.mag_scale, sizeof(rh.mag_scale));
+}
+
+/** Gets gravity vector
+ * @param[out] data gravity vector in body frame scaled such that 1.0 = 2^30.
+ * @return Returns INV_SUCCESS if successful or an error code if not.
+ */
+inv_error_t inv_get_gravity(long *data)
+{
+ data[0] =
+ inv_q29_mult(rh.nav_quat[1], rh.nav_quat[3]) - inv_q29_mult(rh.nav_quat[2], rh.nav_quat[0]);
+ data[1] =
+ inv_q29_mult(rh.nav_quat[2], rh.nav_quat[3]) + inv_q29_mult(rh.nav_quat[1], rh.nav_quat[0]);
+ data[2] =
+ (inv_q29_mult(rh.nav_quat[3], rh.nav_quat[3]) + inv_q29_mult(rh.nav_quat[0], rh.nav_quat[0])) -
+ 1073741824L;
+
+ return INV_SUCCESS;
+}
+
+/** Returns a quaternion based only on gyro and accel.
+ * @param[out] data 6-axis gyro and accel quaternion scaled such that 1.0 = 2^30.
+ * @return Returns INV_SUCCESS if successful or an error code if not.
+ */
+inv_error_t inv_get_6axis_quaternion(long *data)
+{
+ memcpy(data, rh.gam_quat, sizeof(rh.gam_quat));
+ return INV_SUCCESS;
+}
+
+/** Returns a quaternion.
+ * @param[out] data 9-axis quaternion scaled such that 1.0 = 2^30.
+ * @return Returns INV_SUCCESS if successful or an error code if not.
+ */
+inv_error_t inv_get_quaternion(long *data)
+{
+ if (rh.status & (INV_COMPASS_CORRECTION_SET | INV_6_AXIS_QUAT_SET)) {
+ inv_q_mult(rh.compass_correction, rh.gam_quat, rh.nav_quat);
+ rh.status &= ~(INV_COMPASS_CORRECTION_SET | INV_6_AXIS_QUAT_SET);
+ }
+ memcpy(data, rh.nav_quat, sizeof(rh.nav_quat));
+ return INV_SUCCESS;
+}
+
+/** Returns a quaternion.
+ * @param[out] data 9-axis quaternion.
+ * @return Returns INV_SUCCESS if successful or an error code if not.
+ */
+inv_error_t inv_get_quaternion_float(float *data)
+{
+ long ldata[4];
+ inv_error_t result = inv_get_quaternion(ldata);
+ data[0] = inv_q30_to_float(ldata[0]);
+ data[1] = inv_q30_to_float(ldata[1]);
+ data[2] = inv_q30_to_float(ldata[2]);
+ data[3] = inv_q30_to_float(ldata[3]);
+ return result;
+}
+
+/** Returns a quaternion with accuracy and timestamp.
+ * @param[out] data 9-axis quaternion scaled such that 1.0 = 2^30.
+ * @param[out] accuracy Accuracy of quaternion, 0-3, where 3 is most accurate.
+ * @param[out] timestamp Timestamp of this quaternion in nanoseconds
+ */
+void inv_get_quaternion_set(long *data, int *accuracy, inv_time_t *timestamp)
+{
+ inv_get_quaternion(data);
+ *timestamp = inv_get_last_timestamp();
+ if (inv_get_compass_on()) {
+ *accuracy = inv_get_mag_accuracy();
+ } else if (inv_get_gyro_on()) {
+ *accuracy = inv_get_gyro_accuracy();
+ }else if (inv_get_accel_on()) {
+ *accuracy = inv_get_accel_accuracy();
+ } else {
+ *accuracy = 0;
+ }
+}
+
+/** Callback that gets called everytime there is new data. It is
+ * registered by inv_start_results_holder().
+ * @param[in] sensor_cal New sensor data to process.
+ * @return Returns INV_SUCCESS if successful or an error code if not.
+ */
+inv_error_t inv_generate_results(struct inv_sensor_cal_t *sensor_cal)
+{
+ rh.sensor = sensor_cal;
+ return INV_SUCCESS;
+}
+
+/** Function to turn on this module. This is automatically called by
+ * inv_enable_results_holder(). Typically not called by users.
+ * @return Returns INV_SUCCESS if successful or an error code if not.
+ */
+inv_error_t inv_start_results_holder(void)
+{
+ inv_register_data_cb(inv_generate_results, INV_PRIORITY_RESULTS_HOLDER,
+ INV_GYRO_NEW | INV_ACCEL_NEW | INV_MAG_NEW);
+ return INV_SUCCESS;
+}
+
+/** Initializes results holder. This is called automatically by the
+* enable function inv_enable_results_holder(). It may be called any time the feature is enabled, but
+* is typically not needed to be called by outside callers.
+* @return Returns INV_SUCCESS if successful or an error code if not.
+*/
+inv_error_t inv_init_results_holder(void)
+{
+ memset(&rh, 0, sizeof(rh));
+ rh.mag_scale[0] = 1L<<30;
+ rh.mag_scale[1] = 1L<<30;
+ rh.mag_scale[2] = 1L<<30;
+ rh.compass_correction[0] = 1L<<30;
+ rh.gam_quat[0] = 1L<<30;
+ rh.nav_quat[0] = 1L<<30;
+ rh.quat_confidence_interval = (float)M_PI;
+ return INV_SUCCESS;
+}
+
+/** Turns on storage of results.
+*/
+inv_error_t inv_enable_results_holder()
+{
+ inv_error_t result;
+ result = inv_init_results_holder();
+ if ( result ) {
+ return result;
+ }
+
+ result = inv_register_mpl_start_notification(inv_start_results_holder);
+ return result;
+}
+
+/** Sets state of if we know the accel bias.
+ * @return return 1 if we know the accel bias, 0 if not.
+ * it is set with inv_set_accel_bias_found()
+ */
+int inv_got_accel_bias()
+{
+ return rh.got_accel_bias;
+}
+
+/** Sets whether we know the accel bias
+ * @param[in] state Set to 1 if we know the accel bias.
+ * Can be retrieved with inv_got_accel_bias()
+ */
+void inv_set_accel_bias_found(int state)
+{
+ rh.got_accel_bias = state;
+}
+
+/** Sets state of if we know the compass bias.
+ * @return return 1 if we know the compass bias, 0 if not.
+ * it is set with inv_set_compass_bias_found()
+ */
+int inv_got_compass_bias()
+{
+ return rh.got_compass_bias;
+}
+
+/** Sets whether we know the compass bias
+ * @param[in] state Set to 1 if we know the compass bias.
+ * Can be retrieved with inv_got_compass_bias()
+ */
+void inv_set_compass_bias_found(int state)
+{
+ rh.got_compass_bias = state;
+}
+
+/** Sets the compass state.
+ * @param[in] state Compass state. It can be retrieved with inv_get_compass_state().
+ */
+void inv_set_compass_state(int state)
+{
+ rh.compass_state = state;
+}
+
+/** Get's the compass state
+ * @return the compass state that was set with inv_set_compass_state()
+ */
+int inv_get_compass_state()
+{
+ return rh.compass_state;
+}
+
+/** Set compass bias error. See inv_get_compass_bias_error()
+ * @param[in] bias_error Set's how accurate we know the compass bias. It is the
+ * error squared.
+ */
+void inv_set_compass_bias_error(const long *bias_error)
+{
+ memcpy(rh.compass_bias_error, bias_error, sizeof(rh.compass_bias_error));
+}
+
+/** Get's compass bias error. See inv_set_compass_bias_error() for setting.
+ * @param[out] bias_error Accuracy as to how well the compass bias is known. It is the error squared.
+ */
+void inv_get_compass_bias_error(long *bias_error)
+{
+ memcpy(bias_error, rh.compass_bias_error, sizeof(rh.compass_bias_error));
+}
+
+/**
+ * @brief Returns 3-element vector of accelerometer data in body frame
+ * with gravity removed
+ * @param[out] data 3-element vector of accelerometer data in body frame
+ * with gravity removed
+ * @return INV_SUCCESS if successful
+ * INV_ERROR_INVALID_PARAMETER if invalid input pointer
+ */
+inv_error_t inv_get_linear_accel(long *data)
+{
+ long gravity[3];
+
+ if (data != NULL)
+ {
+ inv_get_accel_set(data, NULL, NULL);
+ inv_get_gravity(gravity);
+ data[0] -= gravity[0] >> 14;
+ data[1] -= gravity[1] >> 14;
+ data[2] -= gravity[2] >> 14;
+ return INV_SUCCESS;
+ }
+ else {
+ return INV_ERROR_INVALID_PARAMETER;
+ }
+}
+
+/**
+ * @brief Returns 3-element vector of accelerometer data in body frame
+ * @param[out] data 3-element vector of accelerometer data in body frame
+ * @return INV_SUCCESS if successful
+ * INV_ERROR_INVALID_PARAMETER if invalid input pointer
+ */
+inv_error_t inv_get_accel(long *data)
+{
+ if (data != NULL) {
+ inv_get_accel_set(data, NULL, NULL);
+ return INV_SUCCESS;
+ }
+ else {
+ return INV_ERROR_INVALID_PARAMETER;
+ }
+}
+
+/**
+ * @brief Returns 3-element vector of accelerometer float data
+ * @param[out] data 3-element vector of accelerometer float data
+ * @return INV_SUCCESS if successful
+ * INV_ERROR_INVALID_PARAMETER if invalid input pointer
+ */
+inv_error_t inv_get_accel_float(float *data)
+{
+ long tdata[3];
+ unsigned char i;
+
+ if (data != NULL && !inv_get_accel(tdata)) {
+ for (i = 0; i < 3; ++i) {
+ data[i] = ((float)tdata[i] / (1L << 16));
+ }
+ return INV_SUCCESS;
+ }
+ else {
+ return INV_ERROR_INVALID_PARAMETER;
+ }
+}
+
+/**
+ * @brief Returns 3-element vector of gyro float data
+ * @param[out] data 3-element vector of gyro float data
+ * @return INV_SUCCESS if successful
+ * INV_ERROR_INVALID_PARAMETER if invalid input pointer
+ */
+inv_error_t inv_get_gyro_float(float *data)
+{
+ long tdata[3];
+ unsigned char i;
+
+ if (data != NULL) {
+ inv_get_gyro_set(tdata, NULL, NULL);
+ for (i = 0; i < 3; ++i) {
+ data[i] = ((float)tdata[i] / (1L << 16));
+ }
+ return INV_SUCCESS;
+ }
+ else {
+ return INV_ERROR_INVALID_PARAMETER;
+ }
+}
+
+/** Set 9 axis 95% heading confidence interval for quaternion
+* @param[in] ci Confidence interval in radians.
+*/
+void inv_set_heading_confidence_interval(float ci)
+{
+ rh.quat_confidence_interval = ci;
+}
+
+/** Get 9 axis 95% heading confidence interval for quaternion
+* @return Confidence interval in radians.
+*/
+float inv_get_heading_confidence_interval(void)
+{
+ return rh.quat_confidence_interval;
+}
+
+/**
+ * @brief Returns 3-element vector of linear accel float data
+ * @param[out] data 3-element vector of linear aceel float data
+ * @return INV_SUCCESS if successful
+ * INV_ERROR_INVALID_PARAMETER if invalid input pointer
+ */
+inv_error_t inv_get_linear_accel_float(float *data)
+{
+ long tdata[3];
+ unsigned char i;
+
+ if (data != NULL && !inv_get_linear_accel(tdata)) {
+ for (i = 0; i < 3; ++i) {
+ data[i] = ((float)tdata[i] / (1L << 16));
+ }
+ return INV_SUCCESS;
+ }
+ else {
+ return INV_ERROR_INVALID_PARAMETER;
+ }
+}
+
+/**
+ * @}
+ */