summaryrefslogtreecommitdiffstats
path: root/60xx/libsensors_iio/MPLSensor.cpp
diff options
context:
space:
mode:
Diffstat (limited to '60xx/libsensors_iio/MPLSensor.cpp')
-rw-r--r--60xx/libsensors_iio/MPLSensor.cpp2764
1 files changed, 2764 insertions, 0 deletions
diff --git a/60xx/libsensors_iio/MPLSensor.cpp b/60xx/libsensors_iio/MPLSensor.cpp
new file mode 100644
index 0000000..031ae6e
--- /dev/null
+++ b/60xx/libsensors_iio/MPLSensor.cpp
@@ -0,0 +1,2764 @@
+/*
+* Copyright (C) 2012 Invensense, Inc.
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*/
+
+#define LOG_NDEBUG 0
+//see also the EXTRA_VERBOSE define in the MPLSensor.h header file
+
+#include <fcntl.h>
+#include <errno.h>
+#include <math.h>
+#include <float.h>
+#include <poll.h>
+#include <unistd.h>
+#include <dirent.h>
+#include <stdlib.h>
+#include <sys/select.h>
+#include <sys/syscall.h>
+#include <dlfcn.h>
+#include <pthread.h>
+#include <cutils/log.h>
+#include <utils/KeyedVector.h>
+#include <utils/String8.h>
+#include <string.h>
+#include <linux/input.h>
+#include <utils/Atomic.h>
+
+#include "MPLSensor.h"
+#include "MPLSupport.h"
+#include "sensor_params.h"
+#include "local_log_def.h"
+
+#include "invensense.h"
+#include "invensense_adv.h"
+#include "ml_stored_data.h"
+#include "ml_load_dmp.h"
+#include "ml_sysfs_helper.h"
+
+// #define TESTING
+
+#ifdef THIRD_PARTY_ACCEL
+# warning "Third party accel"
+# define USE_THIRD_PARTY_ACCEL (1)
+#else
+# define USE_THIRD_PARTY_ACCEL (0)
+#endif
+
+#define MAX_SYSFS_ATTRB (sizeof(struct sysfs_attrbs) / sizeof(char*))
+
+/******************************************************************************/
+/* MPL interface misc. */
+/******************************************************************************/
+static int hertz_request = 200;
+
+#define DEFAULT_MPL_GYRO_RATE (20000L) //us
+#define DEFAULT_MPL_COMPASS_RATE (20000L) //us
+
+#define DEFAULT_HW_GYRO_RATE (100) //Hz
+#define DEFAULT_HW_ACCEL_RATE (20) //ms
+#define DEFAULT_HW_COMPASS_RATE (20000000L) //ns
+#define DEFAULT_HW_AKMD_COMPASS_RATE (200000000L) //ns
+
+/* convert ns to hardware units */
+#define HW_GYRO_RATE_NS (1000000000LL / rate_request) // to Hz
+#define HW_ACCEL_RATE_NS (rate_request / (1000000L)) // to ms
+#define HW_COMPASS_RATE_NS (rate_request) // to ns
+
+/* convert Hz to hardware units */
+#define HW_GYRO_RATE_HZ (hertz_request)
+#define HW_ACCEL_RATE_HZ (1000 / hertz_request)
+#define HW_COMPASS_RATE_HZ (1000000000LL / hertz_request)
+
+#define RATE_200HZ 5000000LL
+#define RATE_15HZ 66667000LL
+#define RATE_5HZ 200000000LL
+
+static struct sensor_t sSensorList[] =
+{
+ {"MPL Gyroscope", "Invensense", 1,
+ SENSORS_GYROSCOPE_HANDLE,
+ SENSOR_TYPE_GYROSCOPE, 2000.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Raw Gyroscope", "Invensense", 1,
+ SENSORS_RAW_GYROSCOPE_HANDLE,
+ SENSOR_TYPE_GYROSCOPE, 2000.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Accelerometer", "Invensense", 1,
+ SENSORS_ACCELERATION_HANDLE,
+ SENSOR_TYPE_ACCELEROMETER, 10240.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Magnetic Field", "Invensense", 1,
+ SENSORS_MAGNETIC_FIELD_HANDLE,
+ SENSOR_TYPE_MAGNETIC_FIELD, 10240.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Orientation", "Invensense", 1,
+ SENSORS_ORIENTATION_HANDLE,
+ SENSOR_TYPE_ORIENTATION, 360.0f, 1.0f, 9.7f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Rotation Vector", "Invensense", 1,
+ SENSORS_ROTATION_VECTOR_HANDLE,
+ SENSOR_TYPE_ROTATION_VECTOR, 10240.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Linear Acceleration", "Invensense", 1,
+ SENSORS_LINEAR_ACCEL_HANDLE,
+ SENSOR_TYPE_LINEAR_ACCELERATION, 10240.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+ {"MPL Gravity", "Invensense", 1,
+ SENSORS_GRAVITY_HANDLE,
+ SENSOR_TYPE_GRAVITY, 10240.0f, 1.0f, 0.5f, 10000, 0, 0, 0, 0, 0, 0, {}},
+
+#ifdef ENABLE_DMP_SCREEN_AUTO_ROTATION
+ {"MPL Screen Orientation", "Invensense ", 1,
+ SENSORS_SCREEN_ORIENTATION_HANDLE,
+ SENSOR_TYPE_SCREEN_ORIENTATION, 100.0f, 1.0f, 1.1f, 0, 0, 0, 0, 0, 0, 0, {}},
+#endif
+};
+
+MPLSensor *MPLSensor::gMPLSensor = NULL;
+
+extern "C" {
+void procData_cb_wrapper()
+{
+ if(MPLSensor::gMPLSensor) {
+ MPLSensor::gMPLSensor->cbProcData();
+ }
+}
+
+void setCallbackObject(MPLSensor* gbpt)
+{
+ MPLSensor::gMPLSensor = gbpt;
+}
+
+MPLSensor* getCallbackObject() {
+ return MPLSensor::gMPLSensor;
+}
+
+} // end of extern C
+
+#ifdef INV_PLAYBACK_DBG
+static FILE *logfile = NULL;
+#endif
+
+pthread_mutex_t GlobalHalMutex = PTHREAD_MUTEX_INITIALIZER;
+
+/*******************************************************************************
+ * MPLSensor class implementation
+ ******************************************************************************/
+
+MPLSensor::MPLSensor(CompassSensor *compass, int (*m_pt2AccelCalLoadFunc)(long *))
+ : SensorBase(NULL, NULL),
+ mNewData(0),
+ mMasterSensorMask(INV_ALL_SENSORS),
+ mLocalSensorMask(0),
+ mPollTime(-1),
+ mHaveGoodMpuCal(0),
+ mGyroAccuracy(0),
+ mAccelAccuracy(0),
+ mCompassAccuracy(0),
+ mSampleCount(0),
+ dmp_orient_fd(-1),
+ mDmpOrientationEnabled(0),
+ mEnabled(0),
+ mOldEnabledMask(0),
+ mAccelInputReader(4),
+ mGyroInputReader(32),
+ mTempScale(0),
+ mTempOffset(0),
+ mTempCurrentTime(0),
+ mAccelScale(2),
+ mPendingMask(0),
+ mSensorMask(0),
+ mFeatureActiveMask(0) {
+ VFUNC_LOG;
+
+ inv_error_t rv;
+ int fd;
+ char *ver_str;
+
+ mCompassSensor = compass;
+
+ LOGV_IF(EXTRA_VERBOSE,
+ "HAL:MPLSensor constructor : numSensors = %d", numSensors);
+
+ pthread_mutex_init(&mMplMutex, NULL);
+ pthread_mutex_init(&mHALMutex, NULL);
+ memset(mGyroOrientation, 0, sizeof(mGyroOrientation));
+ memset(mAccelOrientation, 0, sizeof(mAccelOrientation));
+
+#ifdef INV_PLAYBACK_DBG
+ LOGV_IF(PROCESS_VERBOSE, "HAL:inv_turn_on_data_logging");
+ logfile = fopen("/data/playback.bin", "wb");
+ if (logfile)
+ inv_turn_on_data_logging(logfile);
+#endif
+
+ /* setup sysfs paths */
+ inv_init_sysfs_attributes();
+
+ /* get chip name */
+ if (inv_get_chip_name(chip_ID) != INV_SUCCESS) {
+ LOGE("HAL:ERR- Failed to get chip ID\n");
+ } else {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Chip ID= %s\n", chip_ID);
+ }
+
+ enable_iio_sysfs();
+
+ /* turn on power state */
+ onPower(1);
+
+ /* reset driver master enable */
+ masterEnable(0);
+
+ if (isLowPowerQuatEnabled() || isDmpDisplayOrientationOn()) {
+ /* Load DMP image if capable, ie. MPU6xxx/9xxx */
+ loadDMP();
+ }
+
+ /* open temperature fd for temp comp */
+ LOGV_IF(EXTRA_VERBOSE, "HAL:gyro temperature path: %s", mpu.temperature);
+ gyro_temperature_fd = open(mpu.temperature, O_RDONLY);
+ if (gyro_temperature_fd == -1) {
+ LOGE("HAL:could not open temperature node");
+ } else {
+ LOGV_IF(EXTRA_VERBOSE,
+ "HAL:temperature_fd opened: %s", mpu.temperature);
+ }
+
+ /* read accel FSR to calcuate accel scale later */
+ if (!USE_THIRD_PARTY_ACCEL) {
+ char buf[3];
+ int count = 0;
+ LOGV_IF(SYSFS_VERBOSE,
+ "HAL:sysfs:cat %s (%lld)", mpu.accel_fsr, getTimestamp());
+
+ fd = open(mpu.accel_fsr, O_RDONLY);
+ if(fd < 0) {
+ LOGE("HAL:Error opening accel FSR");
+ } else {
+ memset(buf, 0, sizeof(buf));
+ count = read_attribute_sensor(fd, buf, sizeof(buf));
+ if(count < 1) {
+ LOGE("HAL:Error reading accel FSR");
+ } else {
+ count = sscanf(buf, "%d", &mAccelScale);
+ if(count)
+ LOGV_IF(EXTRA_VERBOSE, "HAL:Accel FSR used %d", mAccelScale);
+ }
+ close(fd);
+ }
+ }
+
+ /* initialize sensor data */
+ memset(mPendingEvents, 0, sizeof(mPendingEvents));
+
+ mPendingEvents[RotationVector].version = sizeof(sensors_event_t);
+ mPendingEvents[RotationVector].sensor = ID_RV;
+ mPendingEvents[RotationVector].type = SENSOR_TYPE_ROTATION_VECTOR;
+
+ mPendingEvents[LinearAccel].version = sizeof(sensors_event_t);
+ mPendingEvents[LinearAccel].sensor = ID_LA;
+ mPendingEvents[LinearAccel].type = SENSOR_TYPE_LINEAR_ACCELERATION;
+
+ mPendingEvents[Gravity].version = sizeof(sensors_event_t);
+ mPendingEvents[Gravity].sensor = ID_GR;
+ mPendingEvents[Gravity].type = SENSOR_TYPE_GRAVITY;
+
+ mPendingEvents[Gyro].version = sizeof(sensors_event_t);
+ mPendingEvents[Gyro].sensor = ID_GY;
+ mPendingEvents[Gyro].type = SENSOR_TYPE_GYROSCOPE;
+
+ mPendingEvents[RawGyro].version = sizeof(sensors_event_t);
+ mPendingEvents[RawGyro].sensor = ID_RG;
+ mPendingEvents[RawGyro].type = SENSOR_TYPE_GYROSCOPE;
+
+ mPendingEvents[Accelerometer].version = sizeof(sensors_event_t);
+ mPendingEvents[Accelerometer].sensor = ID_A;
+ mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER;
+
+ /* Invensense compass calibration */
+ mPendingEvents[MagneticField].version = sizeof(sensors_event_t);
+ mPendingEvents[MagneticField].sensor = ID_M;
+ mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD;
+ mPendingEvents[MagneticField].magnetic.status =
+ SENSOR_STATUS_ACCURACY_HIGH;
+
+ mPendingEvents[Orientation].version = sizeof(sensors_event_t);
+ mPendingEvents[Orientation].sensor = ID_O;
+ mPendingEvents[Orientation].type = SENSOR_TYPE_ORIENTATION;
+ mPendingEvents[Orientation].orientation.status
+ = SENSOR_STATUS_ACCURACY_HIGH;
+
+ mHandlers[RotationVector] = &MPLSensor::rvHandler;
+ mHandlers[LinearAccel] = &MPLSensor::laHandler;
+ mHandlers[Gravity] = &MPLSensor::gravHandler;
+ mHandlers[Gyro] = &MPLSensor::gyroHandler;
+ mHandlers[RawGyro] = &MPLSensor::rawGyroHandler;
+ mHandlers[Accelerometer] = &MPLSensor::accelHandler;
+ mHandlers[MagneticField] = &MPLSensor::compassHandler;
+ mHandlers[Orientation] = &MPLSensor::orienHandler;
+
+ for (int i = 0; i < numSensors; i++) {
+ mDelays[i] = 0;
+ }
+
+ (void)inv_get_version(&ver_str);
+ LOGV_IF(PROCESS_VERBOSE, "%s\n", ver_str);
+
+ /* setup MPL */
+ inv_constructor_init();
+
+ /* load calibration file from /data/inv_cal_data.bin */
+ rv = inv_load_calibration();
+ if(rv == INV_SUCCESS)
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Calibration file successfully loaded");
+ else
+ LOGE("HAL:Could not open or load MPL calibration file (%d)", rv);
+
+ /* Takes external Accel Calibration Load Method */
+ if( m_pt2AccelCalLoadFunc != NULL)
+ {
+ long accel_offset[3];
+ long tmp_offset[3];
+ int result = m_pt2AccelCalLoadFunc(accel_offset);
+ if(result)
+ LOGW("HAL:Vendor accelerometer calibration file load failed %d\n", result);
+ else
+ {
+ LOGW("HAL:Vendor accelerometer calibration file successfully loaded");
+ inv_get_accel_bias(tmp_offset, NULL);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Original accel offset, %ld, %ld, %ld\n",
+ tmp_offset[0], tmp_offset[1], tmp_offset[2]);
+ inv_set_accel_bias(accel_offset, mAccelAccuracy);
+ inv_get_accel_bias(tmp_offset, NULL);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Set accel offset, %ld, %ld, %ld\n",
+ tmp_offset[0], tmp_offset[1], tmp_offset[2]);
+ }
+ }
+ /* End of Accel Calibration Load Method */
+
+ inv_set_device_properties();
+
+ /* disable driver master enable the first sensor goes on */
+ masterEnable(0);
+ enableGyro(0);
+ enableAccel(0);
+ enableCompass(0);
+
+ if (isLowPowerQuatEnabled()) {
+ enableLPQuaternion(0);
+ }
+
+ onPower(0);
+
+ if (isDmpDisplayOrientationOn()) {
+ enableDmpOrientation(!isDmpScreenAutoRotationEnabled());
+ }
+
+}
+
+void MPLSensor::enable_iio_sysfs()
+{
+ VFUNC_LOG;
+
+ char iio_trigger_name[MAX_CHIP_ID_LEN], iio_device_node[MAX_CHIP_ID_LEN];
+ FILE *tempFp = NULL;
+
+ /* ignore failures */
+ write_sysfs_int(mpu.in_timestamp_en, 1);
+
+ LOGV_IF(SYSFS_VERBOSE,
+ "HAL:sysfs:cat %s (%lld)",
+ mpu.trigger_name, getTimestamp());
+ tempFp = fopen(mpu.trigger_name, "r");
+ if (tempFp == NULL) {
+ LOGE("HAL:could not open trigger name");
+ } else {
+ if (fscanf(tempFp, "%s", iio_trigger_name) < 0) {
+ LOGE("HAL:could not read trigger name");
+ }
+ fclose(tempFp);
+ }
+
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:echo %s > %s (%lld)",
+ iio_trigger_name, mpu.current_trigger, getTimestamp());
+ tempFp = fopen(mpu.current_trigger, "w");
+ if (tempFp == NULL) {
+ LOGE("HAL:could not open current trigger");
+ } else {
+ if (fprintf(tempFp, "%s", iio_trigger_name) < 0 || fclose(tempFp) < 0) {
+ LOGE("HAL:could not write current trigger %s err=%d", iio_trigger_name, errno);
+ }
+ }
+
+ write_sysfs_int(mpu.buffer_length, IIO_BUFFER_LENGTH);
+
+ if (inv_get_iio_device_node(iio_device_node) < 0) {
+ LOGE("HAL:could retrive the iio device node");
+ }
+ iio_fd = open(iio_device_node, O_RDONLY);
+ if (iio_fd < 0) {
+ LOGE("HAL:could not open iio device node");
+ } else {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:iio iio_fd (%s) opened: %d", iio_device_node, iio_fd);
+ }
+}
+
+int MPLSensor::inv_constructor_init()
+{
+ VFUNC_LOG;
+
+ inv_error_t result = inv_init_mpl();
+ if (result) {
+ LOGE("HAL:inv_init_mpl() failed");
+ return result;
+ }
+ result = inv_constructor_default_enable();
+ result = inv_start_mpl();
+ if (result) {
+ LOGE("HAL:inv_start_mpl() failed");
+ LOG_RESULT_LOCATION(result);
+ return result;
+ }
+
+ return result;
+}
+
+int MPLSensor::inv_constructor_default_enable()
+{
+ VFUNC_LOG;
+
+ inv_error_t result;
+
+ result = inv_enable_quaternion();
+ if (result) {
+ LOGE("HAL:Cannot enable quaternion\n");
+ return result;
+ }
+
+ result = inv_enable_in_use_auto_calibration();
+ if (result) {
+ return result;
+ }
+
+ // result = inv_enable_motion_no_motion();
+ result = inv_enable_fast_nomot();
+ if (result) {
+ return result;
+ }
+
+ result = inv_enable_gyro_tc();
+ if (result) {
+ return result;
+ }
+
+ result = inv_enable_hal_outputs();
+ if (result) {
+ return result;
+ }
+
+ if (!mCompassSensor->providesCalibration()) {
+ /* Invensense compass calibration */
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Invensense vector compass cal enabled");
+ result = inv_enable_vector_compass_cal();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ } else {
+ mFeatureActiveMask |= INV_COMPASS_CAL;
+ }
+
+ // specify MPL's trust weight, used by compass algorithms
+ inv_vector_compass_cal_sensitivity(3);
+
+ result = inv_enable_compass_bias_w_gyro();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ }
+
+ result = inv_enable_heading_from_gyro();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ }
+
+ result = inv_enable_magnetic_disturbance();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ }
+ }
+
+ result = inv_enable_9x_sensor_fusion();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ } else {
+ // 9x sensor fusion enables Compass fit
+ mFeatureActiveMask |= INV_COMPASS_FIT;
+ }
+
+ result = inv_enable_no_gyro_fusion();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ }
+
+ result = inv_enable_quat_accuracy_monitor();
+ if (result) {
+ LOG_RESULT_LOCATION(result);
+ return result;
+ }
+
+ return result;
+}
+
+/* TODO: create function pointers to calculate scale */
+void MPLSensor::inv_set_device_properties()
+{
+ VFUNC_LOG;
+
+ unsigned short orient;
+
+ inv_get_sensors_orientation();
+
+ inv_set_gyro_sample_rate(DEFAULT_MPL_GYRO_RATE);
+ inv_set_compass_sample_rate(DEFAULT_MPL_COMPASS_RATE);
+
+ /* gyro setup */
+ orient = inv_orientation_matrix_to_scalar(mGyroOrientation);
+ inv_set_gyro_orientation_and_scale(orient, 2000L << 15);
+
+ /* accel setup */
+ orient = inv_orientation_matrix_to_scalar(mAccelOrientation);
+ /* use for third party accel input subsystem driver
+ inv_set_accel_orientation_and_scale(orient, 1LL << 22);
+ */
+ inv_set_accel_orientation_and_scale(orient, mAccelScale << 15);
+
+ /* compass setup */
+ signed char orientMtx[9];
+ mCompassSensor->getOrientationMatrix(orientMtx);
+ orient =
+ inv_orientation_matrix_to_scalar(orientMtx);
+ long sensitivity;
+ sensitivity = mCompassSensor->getSensitivity();
+ inv_set_compass_orientation_and_scale(orient, sensitivity);
+}
+
+void MPLSensor::loadDMP()
+{
+ int res, fd;
+ FILE *fptr;
+
+ if (isMpu3050()) {
+ //DMP support only for MPU6xxx/9xxx currently
+ return;
+ }
+
+ /* load DMP firmware */
+ LOGV_IF(SYSFS_VERBOSE,
+ "HAL:sysfs:cat %s (%lld)", mpu.firmware_loaded, getTimestamp());
+ fd = open(mpu.firmware_loaded, O_RDONLY);
+ if(fd < 0) {
+ LOGE("HAL:could not open dmp state");
+ return;
+ }
+ if(inv_read_dmp_state(fd)) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:DMP is already loaded");
+ return;
+ }
+
+ LOGV_IF(EXTRA_VERBOSE, "HAL:load dmp: %s", mpu.dmp_firmware);
+ fptr = fopen(mpu.dmp_firmware, "w");
+ if(!fptr) {
+ LOGE("HAL:could open %s for write. %s", mpu.dmp_firmware, strerror(errno));
+ return;
+ }
+ res = inv_load_dmp(fptr);
+ if(res < 0) {
+ LOGE("HAL:load DMP failed");
+ } else {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:DMP loaded");
+ }
+ fclose(fptr);
+}
+
+void MPLSensor::inv_get_sensors_orientation()
+{
+ FILE *fptr;
+
+ // get gyro orientation
+ LOGV_IF(SYSFS_VERBOSE,
+ "HAL:sysfs:cat %s (%lld)", mpu.gyro_orient, getTimestamp());
+ fptr = fopen(mpu.gyro_orient, "r");
+ if (fptr != NULL) {
+ int om[9];
+ fscanf(fptr, "%d,%d,%d,%d,%d,%d,%d,%d,%d",
+ &om[0], &om[1], &om[2], &om[3], &om[4], &om[5],
+ &om[6], &om[7], &om[8]);
+ fclose(fptr);
+
+ LOGV_IF(EXTRA_VERBOSE,
+ "HAL:gyro mounting matrix: "
+ "%+d %+d %+d %+d %+d %+d %+d %+d %+d",
+ om[0], om[1], om[2], om[3], om[4], om[5], om[6], om[7], om[8]);
+
+ mGyroOrientation[0] = om[0];
+ mGyroOrientation[1] = om[1];
+ mGyroOrientation[2] = om[2];
+ mGyroOrientation[3] = om[3];
+ mGyroOrientation[4] = om[4];
+ mGyroOrientation[5] = om[5];
+ mGyroOrientation[6] = om[6];
+ mGyroOrientation[7] = om[7];
+ mGyroOrientation[8] = om[8];
+ } else {
+ LOGE("HAL:Couldn't read gyro mounting matrix");
+ }
+
+ // get accel orientation
+ LOGV_IF(SYSFS_VERBOSE,
+ "HAL:sysfs:cat %s (%lld)", mpu.accel_orient, getTimestamp());
+ fptr = fopen(mpu.accel_orient, "r");
+ if (fptr != NULL) {
+ int om[9];
+ fscanf(fptr, "%d,%d,%d,%d,%d,%d,%d,%d,%d",
+ &om[0], &om[1], &om[2], &om[3], &om[4], &om[5],
+ &om[6], &om[7], &om[8]);
+ fclose(fptr);
+
+ LOGV_IF(EXTRA_VERBOSE,
+ "HAL:accel mounting matrix: "
+ "%+d %+d %+d %+d %+d %+d %+d %+d %+d",
+ om[0], om[1], om[2], om[3], om[4], om[5], om[6], om[7], om[8]);
+
+ mAccelOrientation[0] = om[0];
+ mAccelOrientation[1] = om[1];
+ mAccelOrientation[2] = om[2];
+ mAccelOrientation[3] = om[3];
+ mAccelOrientation[4] = om[4];
+ mAccelOrientation[5] = om[5];
+ mAccelOrientation[6] = om[6];
+ mAccelOrientation[7] = om[7];
+ mAccelOrientation[8] = om[8];
+ } else {
+ LOGE("HAL:Couldn't read accel mounting matrix");
+ }
+}
+
+MPLSensor::~MPLSensor()
+{
+ VFUNC_LOG;
+
+ mCompassSensor = NULL;
+
+ /* Close open fds */
+ if (iio_fd > 0)
+ close(iio_fd);
+ if( accel_fd > 0 )
+ close(accel_fd );
+ if (gyro_temperature_fd > 0)
+ close(gyro_temperature_fd);
+ if (sysfs_names_ptr)
+ free(sysfs_names_ptr);
+
+ if (isDmpDisplayOrientationOn()) {
+ closeDmpOrientFd();
+ }
+
+ /* Turn off Gyro master enable */
+ /* A workaround until driver handles it */
+ /* TODO: Turn off and close all sensors */
+ if(write_sysfs_int(mpu.chip_enable, 0) < 0) {
+ LOGE("HAL:could not disable gyro master enable");
+ }
+
+#ifdef INV_PLAYBACK_DBG
+ inv_turn_off_data_logging();
+ fclose(logfile);
+#endif
+}
+
+#define GY_ENABLED (((1 << ID_GY) | (1 << ID_RG)) & enabled_sensors)
+#define A_ENABLED ((1 << ID_A) & enabled_sensors)
+#define M_ENABLED ((1 << ID_M) & enabled_sensors)
+#define O_ENABLED ((1 << ID_O) & enabled_sensors)
+#define LA_ENABLED ((1 << ID_LA) & enabled_sensors)
+#define GR_ENABLED ((1 << ID_GR) & enabled_sensors)
+#define RV_ENABLED ((1 << ID_RV) & enabled_sensors)
+
+/* TODO: this step is optional, remove? */
+int MPLSensor::setGyroInitialState()
+{
+ VFUNC_LOG;
+
+ int res = 0;
+
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:echo %d > %s (%lld)",
+ HW_GYRO_RATE_HZ, mpu.gyro_fifo_rate, getTimestamp());
+ int fd = open(mpu.gyro_fifo_rate, O_RDWR);
+ res = errno;
+ if(fd < 0) {
+ LOGE("HAL:open of %s failed with '%s' (%d)",
+ mpu.gyro_fifo_rate, strerror(res), res);
+ return res;
+ }
+ res = write_attribute_sensor(fd, HW_GYRO_RATE_HZ);
+ if(res < 0) {
+ LOGE("HAL:write_attribute_sensor : error writing %s with %d",
+ mpu.gyro_fifo_rate, HW_GYRO_RATE_HZ);
+ return res;
+ }
+
+ // Setting LPF is deprecated
+
+ return 0;
+}
+
+/* this applies to BMA250 Input Subsystem Driver only */
+int MPLSensor::setAccelInitialState()
+{
+ VFUNC_LOG;
+
+ struct input_absinfo absinfo_x;
+ struct input_absinfo absinfo_y;
+ struct input_absinfo absinfo_z;
+ float value;
+ if (!ioctl(accel_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo_x) &&
+ !ioctl(accel_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo_y) &&
+ !ioctl(accel_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo_z)) {
+ value = absinfo_x.value;
+ mPendingEvents[Accelerometer].data[0] = value * CONVERT_A_X;
+ value = absinfo_y.value;
+ mPendingEvents[Accelerometer].data[1] = value * CONVERT_A_Y;
+ value = absinfo_z.value;
+ mPendingEvents[Accelerometer].data[2] = value * CONVERT_A_Z;
+ }
+ return 0;
+}
+
+int MPLSensor::onPower(int en)
+{
+ VFUNC_LOG;
+
+ int res;
+
+ int curr_power_state;
+
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:echo %d > %s (%lld)",
+ en, mpu.power_state, getTimestamp());
+ res = read_sysfs_int(mpu.power_state, &curr_power_state);
+ if (res < 0) {
+ LOGE("HAL:Error reading power state");
+ // will set power_state anyway
+ curr_power_state = -1;
+ }
+ if (en != curr_power_state) {
+ if((res = write_sysfs_int(mpu.power_state, en)) < 0) {
+ LOGE("HAL:Couldn't write power state");
+ }
+ } else {
+ LOGV_IF(EXTRA_VERBOSE,
+ "HAL:Power state already enable/disable curr=%d new=%d",
+ curr_power_state, en);
+ }
+ return res;
+}
+
+int MPLSensor::onDMP(int en)
+{
+ VFUNC_LOG;
+
+ int res = -1;
+ int status;
+
+ //Sequence to enable DMP
+ //1. Turn On power if not already on
+ //2. Load DMP image if not already loaded
+ //3. Either Gyro or Accel must be enabled/configured before next step
+ //4. Enable DMP
+
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:cat %s (%lld)",
+ mpu.firmware_loaded, getTimestamp());
+ res = read_sysfs_int(mpu.firmware_loaded, &status);
+ if (res < 0){
+ LOGE("HAL:ERR can't get firmware_loaded status");
+ return res;
+ }
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs: %s status=%d", mpu.firmware_loaded, status);
+
+ if (status) {
+ //Write only if curr DMP state <> request
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:cat %s (%lld)",
+ mpu.dmp_on, getTimestamp());
+ if (read_sysfs_int(mpu.dmp_on, &status) < 0) {
+ LOGE("HAL:ERR can't read DMP state");
+ } else if (status != en) {
+ res = write_sysfs_int(mpu.dmp_on, en);
+ //Enable DMP interrupt
+ if (write_sysfs_int(mpu.dmp_int_on, en) < 0) {
+ LOGE("HAL:ERR can't en/dis DMP interrupt");
+ }
+ } else {
+ res = 0; //DMP already set as requested
+ }
+ } else {
+ LOGE("HAL:ERR No DMP image");
+ }
+ return res;
+}
+
+int MPLSensor::checkLPQuaternion(void)
+{
+ VFUNC_LOG;
+
+ return ((mFeatureActiveMask & INV_DMP_QUATERNION)? 1:0);
+}
+
+int MPLSensor::enableLPQuaternion(int en)
+{
+ VFUNC_LOG;
+
+ if (!en) {
+ enableQuaternionData(0);
+ onDMP(0);
+ mFeatureActiveMask &= ~INV_DMP_QUATERNION;
+ LOGV_IF(PROCESS_VERBOSE, "HAL:LP Quat disabled");
+ } else {
+ if (enableQuaternionData(1) < 0 || onDMP(1) < 0) {
+ LOGE("HAL:ERR can't enable LP Quaternion");
+ } else {
+ mFeatureActiveMask |= INV_DMP_QUATERNION;
+ LOGV_IF(PROCESS_VERBOSE, "HAL:LP Quat enabled");
+ }
+ }
+ return 0;
+}
+
+int MPLSensor::enableQuaternionData(int en)
+{
+ int res = 0;
+ VFUNC_LOG;
+
+ // Enable DMP quaternion
+ res = write_sysfs_int(mpu.quaternion_on, en);
+
+ if (!en) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Disabling quat scan elems");
+ } else {
+
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Enabling quat scan elems");
+ }
+ write_sysfs_int(mpu.in_quat_r_en, en);
+ write_sysfs_int(mpu.in_quat_x_en, en);
+ write_sysfs_int(mpu.in_quat_y_en, en);
+ write_sysfs_int(mpu.in_quat_z_en, en);
+
+ LOGV_IF(EXTRA_VERBOSE, "HAL:DMP quaternion data was turned off");
+
+ if (!en) {
+ inv_quaternion_sensor_was_turned_off();
+ }
+
+ return res;
+}
+
+int MPLSensor::enableTap(int /*en*/)
+{
+ VFUNC_LOG;
+
+ return 0;
+}
+
+int MPLSensor::enableFlick(int /*en*/)
+{
+ VFUNC_LOG;
+
+ return 0;
+}
+
+int MPLSensor::enablePedometer(int /*en*/)
+{
+ VFUNC_LOG;
+
+ return 0;
+}
+
+int MPLSensor::masterEnable(int en)
+{
+ VFUNC_LOG;
+ return write_sysfs_int(mpu.chip_enable, en);
+}
+
+int MPLSensor::enableGyro(int en)
+{
+ VFUNC_LOG;
+
+ /* TODO: FIX error handling. Handle or ignore it appropriately for hw. */
+ int res;
+
+ /* need to also turn on/off the master enable */
+ res = write_sysfs_int(mpu.gyro_enable, en);
+
+ if (!en) {
+ LOGV_IF(EXTRA_VERBOSE, "HAL:MPL:inv_gyro_was_turned_off");
+ inv_gyro_was_turned_off();
+ } else {
+ write_sysfs_int(mpu.gyro_x_fifo_enable, en);
+ write_sysfs_int(mpu.gyro_y_fifo_enable, en);
+ res = write_sysfs_int(mpu.gyro_z_fifo_enable, en);
+ }
+
+ return res;
+}
+
+int MPLSensor::enableAccel(int en)
+{
+ VFUNC_LOG;
+
+ /* TODO: FIX error handling. Handle or ignore it appropriately for hw. */
+ int res;
+
+ /* need to also turn on/off the master enable */
+ res = write_sysfs_int(mpu.accel_enable, en);
+
+ if (!en) {
+ LOGV_IF(EXTRA_VERBOSE, "HAL:MPL:inv_accel_was_turned_off");
+ inv_accel_was_turned_off();
+ } else {
+ write_sysfs_int(mpu.accel_x_fifo_enable, en);
+ write_sysfs_int(mpu.accel_y_fifo_enable, en);
+ res = write_sysfs_int(mpu.accel_z_fifo_enable, en);
+ }
+
+ return res;
+}
+
+int MPLSensor::enableCompass(int en)
+{
+ VFUNC_LOG;
+
+ int res = mCompassSensor->enable(ID_M, en);
+ if (!en) {
+ LOGV_IF(EXTRA_VERBOSE, "HAL:MPL:inv_compass_was_turned_off");
+ inv_compass_was_turned_off();
+ }
+ return res;
+}
+
+void MPLSensor::computeLocalSensorMask(int enabled_sensors)
+{
+ VFUNC_LOG;
+
+ do {
+ if (LA_ENABLED || GR_ENABLED || RV_ENABLED || O_ENABLED) {
+ LOGV_IF(ENG_VERBOSE, "FUSION ENABLED");
+ mLocalSensorMask = ALL_MPL_SENSORS_NP;
+ break;
+ }
+
+ if(!A_ENABLED && !M_ENABLED && !GY_ENABLED) {
+ /* Invensense compass cal */
+ LOGV_IF(ENG_VERBOSE, "ALL DISABLED");
+ mLocalSensorMask = 0;
+ break;
+ }
+
+ if (GY_ENABLED) {
+ LOGV_IF(ENG_VERBOSE, "G ENABLED");
+ mLocalSensorMask |= INV_THREE_AXIS_GYRO;
+ } else {
+ LOGV_IF(ENG_VERBOSE, "G DISABLED");
+ mLocalSensorMask &= ~INV_THREE_AXIS_GYRO;
+ }
+
+ if (A_ENABLED) {
+ LOGV_IF(ENG_VERBOSE, "A ENABLED");
+ mLocalSensorMask |= INV_THREE_AXIS_ACCEL;
+ } else {
+ LOGV_IF(ENG_VERBOSE, "A DISABLED");
+ mLocalSensorMask &= ~INV_THREE_AXIS_ACCEL;
+ }
+
+ /* Invensense compass calibration */
+ if (M_ENABLED) {
+ LOGV_IF(ENG_VERBOSE, "M ENABLED");
+ mLocalSensorMask |= INV_THREE_AXIS_COMPASS;
+ } else {
+ LOGV_IF(ENG_VERBOSE, "M DISABLED");
+ mLocalSensorMask &= ~INV_THREE_AXIS_COMPASS;
+ }
+ } while (0);
+}
+
+int MPLSensor::enableOneSensor(int en, const char *name, int (MPLSensor::*enabler)(int)) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:enableSensors - %s %s", en ? "enabled" : "disable", name);
+ return (this->*enabler)(en);
+}
+
+int MPLSensor::enableSensors(unsigned long sensors, int /*en*/, uint32_t changed) {
+ VFUNC_LOG;
+
+ inv_error_t res = -1;
+ bool store_cal = false;
+ bool ext_compass_changed = false;
+
+ // Sequence to enable or disable a sensor
+ // 1. enable Power state
+ // 2. reset master enable (=0)
+ // 3. enable or disable a sensor
+ // 4. set master enable (=1)
+
+ pthread_mutex_lock(&GlobalHalMutex);
+
+ uint32_t all_changeables = (1 << Gyro) | (1 << RawGyro) | (1 << Accelerometer)
+ | (1 << MagneticField);
+ uint32_t all_integrated_changeables = all_changeables;
+
+ if (!mCompassSensor->isIntegrated()) {
+ ext_compass_changed = changed & (1 << MagneticField);
+ all_integrated_changeables = all_changeables & ~(1 << MagneticField);
+ }
+
+ if (isLowPowerQuatEnabled() || (changed & all_integrated_changeables)) {
+ /* ensure power state is on */
+ onPower(1);
+
+ /* reset master enable */
+ res = masterEnable(0);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+
+ LOGV_IF(PROCESS_VERBOSE, "HAL:enableSensors - sensors: 0x%0x", (unsigned int)sensors);
+
+ if (changed & ((1 << Gyro) | (1 << RawGyro))) {
+ res = enableOneSensor(sensors & INV_THREE_AXIS_GYRO, "gyro", &MPLSensor::enableGyro);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+
+ if (changed & (1 << Accelerometer)) {
+ res = enableOneSensor(sensors & INV_THREE_AXIS_ACCEL, "accel", &MPLSensor::enableAccel);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+
+ if (changed & (1 << MagneticField)) {
+ /* Invensense compass calibration */
+ res = enableOneSensor(sensors & INV_THREE_AXIS_COMPASS, "compass", &MPLSensor::enableCompass);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+
+ if ( isLowPowerQuatEnabled() ) {
+ // Enable LP Quat
+ if ((mEnabled & ((1 << Orientation) | (1 << RotationVector) |
+ (1 << LinearAccel) | (1 << Gravity)))) {
+ if (!(changed & all_integrated_changeables)) {
+ /* ensure power state is on */
+ onPower(1);
+ /* reset master enable */
+ res = masterEnable(0);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+ if (!checkLPQuaternion()) {
+ enableLPQuaternion(1);
+ } else {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:LP Quat already enabled");
+ }
+ } else if (checkLPQuaternion()) {
+ enableLPQuaternion(0);
+ }
+ }
+
+ if (changed & all_integrated_changeables) {
+ if (sensors &
+ (INV_THREE_AXIS_GYRO
+ | INV_THREE_AXIS_ACCEL
+ | (INV_THREE_AXIS_COMPASS * mCompassSensor->isIntegrated()))) {
+ if ( isLowPowerQuatEnabled() ||
+ (isDmpDisplayOrientationOn() && mDmpOrientationEnabled) ) {
+ // disable DMP event interrupt only (w/ data interrupt)
+ if (write_sysfs_int(mpu.dmp_event_int_on, 0) < 0) {
+ res = -1;
+ LOGE("HAL:ERR can't disable DMP event interrupt");
+ goto unlock_res;
+ }
+ }
+
+ if (isDmpDisplayOrientationOn() && mDmpOrientationEnabled) {
+ // enable DMP
+ onDMP(1);
+
+ res = enableAccel(1);
+ if(res < 0) {
+ goto unlock_res;
+ }
+
+ if ((sensors & INV_THREE_AXIS_ACCEL) == 0) {
+ res = turnOffAccelFifo();
+ }
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+
+ res = masterEnable(1);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ } else { // all sensors idle -> reduce power
+ if (isDmpDisplayOrientationOn() && mDmpOrientationEnabled) {
+ // enable DMP
+ onDMP(1);
+ // enable DMP event interrupt only (no data interrupt)
+ if (write_sysfs_int(mpu.dmp_event_int_on, 1) < 0) {
+ res = -1;
+ LOGE("HAL:ERR can't enable DMP event interrupt");
+ }
+ res = enableAccel(1);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ if ((sensors & INV_THREE_AXIS_ACCEL) == 0) {
+ res = turnOffAccelFifo();
+ }
+ if(res < 0) {
+ goto unlock_res;
+ }
+ res = masterEnable(1);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+ else {
+ res = onPower(0);
+ if(res < 0) {
+ goto unlock_res;
+ }
+ }
+ store_cal = true;
+ }
+ } else if (ext_compass_changed &&
+ !(sensors & (INV_THREE_AXIS_GYRO | INV_THREE_AXIS_ACCEL
+ | (INV_THREE_AXIS_COMPASS * (!mCompassSensor->isIntegrated()))))) {
+ store_cal = true;
+ }
+
+ if (store_cal || ((changed & all_changeables) != all_changeables)) {
+ storeCalibration();
+ }
+
+unlock_res:
+ pthread_mutex_unlock(&GlobalHalMutex);
+ return res;
+}
+
+/* Store calibration file */
+void MPLSensor::storeCalibration()
+{
+ if(mHaveGoodMpuCal || mAccelAccuracy >= 2 || mCompassAccuracy >= 3) {
+ int res = inv_store_calibration();
+ if (res) {
+ LOGE("HAL:Cannot store calibration on file");
+ } else {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Cal file updated");
+ }
+ }
+}
+
+void MPLSensor::cbProcData()
+{
+ mNewData = 1;
+ mSampleCount++;
+ LOGV_IF(EXTRA_VERBOSE, "HAL:new data");
+}
+
+/* these handlers transform mpl data into one of the Android sensor types */
+int MPLSensor::gyroHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int8_t status;
+ int update;
+ update = inv_get_sensor_type_gyroscope(s->gyro.v, &status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:gyro data : %+f %+f %+f -- %lld - %d",
+ s->gyro.v[0], s->gyro.v[1], s->gyro.v[2], s->timestamp, update);
+ return update;
+}
+
+int MPLSensor::rawGyroHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int8_t status;
+ int update;
+ update = inv_get_sensor_type_gyroscope_raw(s->gyro.v, &status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:raw gyro data : %+f %+f %+f -- %lld - %d",
+ s->gyro.v[0], s->gyro.v[1], s->gyro.v[2], s->timestamp, update);
+ return update;
+}
+
+int MPLSensor::accelHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int8_t status;
+ int update;
+ update = inv_get_sensor_type_accelerometer(
+ s->acceleration.v, &status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:accel data : %+f %+f %+f -- %lld - %d",
+ s->acceleration.v[0], s->acceleration.v[1], s->acceleration.v[2],
+ s->timestamp, update);
+ mAccelAccuracy = status;
+ return update;
+}
+
+int MPLSensor::compassHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int update;
+ update = inv_get_sensor_type_magnetic_field(
+ s->magnetic.v, &s->magnetic.status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:compass data: %+f %+f %+f -- %lld - %d",
+ s->magnetic.v[0], s->magnetic.v[1], s->magnetic.v[2], s->timestamp, update);
+ mCompassAccuracy = s->magnetic.status;
+ return update;
+}
+
+int MPLSensor::rvHandler(sensors_event_t* s)
+{
+ // rotation vector does not have an accuracy or status
+ VHANDLER_LOG;
+ int8_t status;
+ int update;
+ update = inv_get_sensor_type_rotation_vector(s->data, &status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:rv data: %+f %+f %+f %+f - %+lld - %d",
+ s->data[0], s->data[1], s->data[2], s->data[3], s->timestamp, update);
+ return update;
+}
+
+int MPLSensor::laHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int8_t status;
+ int update;
+ update = inv_get_sensor_type_linear_acceleration(
+ s->gyro.v, &status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:la data: %+f %+f %+f - %lld - %d",
+ s->gyro.v[0], s->gyro.v[1], s->gyro.v[2], s->timestamp, update);
+ return update;
+}
+
+int MPLSensor::gravHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int8_t status;
+ int update;
+ update = inv_get_sensor_type_gravity(s->gyro.v, &status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:gr data: %+f %+f %+f - %lld - %d",
+ s->gyro.v[0], s->gyro.v[1], s->gyro.v[2], s->timestamp, update);
+ return update;
+}
+
+int MPLSensor::orienHandler(sensors_event_t* s)
+{
+ VHANDLER_LOG;
+ int update;
+ update = inv_get_sensor_type_orientation(
+ s->orientation.v, &s->orientation.status, &s->timestamp);
+ LOGV_IF(HANDLER_DATA, "HAL:or data: %f %f %f - %lld - %d",
+ s->orientation.v[0], s->orientation.v[1], s->orientation.v[2], s->timestamp, update);
+ return update;
+}
+
+int MPLSensor::enable(int32_t handle, int en)
+{
+ VFUNC_LOG;
+
+ android::String8 sname;
+ int what = -1, err = 0;
+
+ switch (handle) {
+ case ID_SO:
+ sname = "Screen Orientation";
+ LOGV_IF(PROCESS_VERBOSE, "HAL:enable - sensor %s (handle %d) %s -> %s", sname.string(), handle,
+ (mDmpOrientationEnabled? "en": "dis"),
+ (en? "en" : "dis"));
+ enableDmpOrientation(en && isDmpDisplayOrientationOn());
+ /* TODO: stop manually testing/using 0 and 1 instead of
+ * false and true, but just use 0 and non-0.
+ * This allows passing 0 and non-0 ints around instead of
+ * having to convert to 1 and test against 1.
+ */
+ mDmpOrientationEnabled = en;
+ return 0;
+ case ID_A:
+ what = Accelerometer;
+ sname = "Accelerometer";
+ break;
+ case ID_M:
+ what = MagneticField;
+ sname = "MagneticField";
+ break;
+ case ID_O:
+ what = Orientation;
+ sname = "Orientation";
+ break;
+ case ID_GY:
+ what = Gyro;
+ sname = "Gyro";
+ break;
+ case ID_RG:
+ what = RawGyro;
+ sname = "RawGyro";
+ break;
+ case ID_GR:
+ what = Gravity;
+ sname = "Gravity";
+ break;
+ case ID_RV:
+ what = RotationVector;
+ sname = "RotationVector";
+ break;
+ case ID_LA:
+ what = LinearAccel;
+ sname = "LinearAccel";
+ break;
+ default: //this takes care of all the gestures
+ what = handle;
+ sname = "Others";
+ break;
+ }
+
+ if (uint32_t(what) >= numSensors)
+ return -EINVAL;
+
+ int newState = en ? 1 : 0;
+ unsigned long sen_mask;
+
+ LOGV_IF(PROCESS_VERBOSE, "HAL:enable - sensor %s (handle %d) %s -> %s", sname.string(), handle,
+ ((mEnabled & (1 << what)) ? "en" : "dis"),
+ ((uint32_t(newState) << what) ? "en" : "dis"));
+ LOGV_IF(PROCESS_VERBOSE,
+ "HAL:%s sensor state change what=%d", sname.string(), what);
+
+ if ((uint32_t(newState) << what) != (mEnabled & (1 << what))) {
+ short flags = newState;
+ uint32_t lastEnabled = mEnabled, changed = 0;
+
+ mEnabled &= ~(1 << what);
+ mEnabled |= (uint32_t(flags) << what);
+
+ LOGV_IF(PROCESS_VERBOSE, "HAL:handle = %d", handle);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:flags = %d", flags);
+ computeLocalSensorMask(mEnabled);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:enable : mEnabled = %d", mEnabled);
+ sen_mask = mLocalSensorMask & mMasterSensorMask;
+ mSensorMask = sen_mask;
+ LOGV_IF(PROCESS_VERBOSE, "HAL:sen_mask= 0x%0lx", sen_mask);
+
+ switch (what) {
+ case Gyro:
+ case RawGyro:
+ case Accelerometer:
+ case MagneticField:
+ if (!(mEnabled & ((1 << Orientation) | (1 << RotationVector) |
+ (1 << LinearAccel) | (1 << Gravity))) &&
+ ((lastEnabled & (1 << what)) != (mEnabled & (1 << what)))) {
+ changed |= (1 << what);
+ }
+ break;
+
+ case Orientation:
+ case RotationVector:
+ case LinearAccel:
+ case Gravity:
+ if ((en && !(lastEnabled & ((1 << Orientation) | (1 << RotationVector) |
+ (1 << LinearAccel) | (1 << Gravity)))) ||
+ (!en && !(mEnabled & ((1 << Orientation) | (1 << RotationVector) |
+ (1 << LinearAccel) | (1 << Gravity))))) {
+ for (int i = Gyro; i <= MagneticField; i++) {
+ if (!(mEnabled & (1 << i))) {
+ changed |= (1 << i);
+ }
+ }
+ }
+ break;
+ }
+ LOGV_IF(PROCESS_VERBOSE, "HAL:changed = %d", changed);
+ enableSensors(sen_mask, flags, changed);
+ }
+
+#ifdef INV_PLAYBACK_DBG
+ /* apparently the logging needs to be go through this sequence
+ to properly flush the log file */
+ inv_turn_off_data_logging();
+ fclose(logfile);
+ logfile = fopen("/data/playback.bin", "ab");
+ if (logfile)
+ inv_turn_on_data_logging(logfile);
+#endif
+
+ return err;
+}
+
+int MPLSensor::setDelay(int32_t handle, int64_t ns)
+{
+ VFUNC_LOG;
+
+ android::String8 sname;
+ int what = -1;
+
+ switch (handle) {
+ case ID_SO:
+ return update_delay();
+ case ID_A:
+ what = Accelerometer;
+ sname = "Accelerometer";
+ break;
+ case ID_M:
+ what = MagneticField;
+ sname = "MagneticField";
+ break;
+ case ID_O:
+ what = Orientation;
+ sname = "Orientation";
+ break;
+ case ID_GY:
+ what = Gyro;
+ sname = "Gyro";
+ break;
+ case ID_RG:
+ what = RawGyro;
+ sname = "RawGyro";
+ break;
+ case ID_GR:
+ what = Gravity;
+ sname = "Gravity";
+ break;
+ case ID_RV:
+ what = RotationVector;
+ sname = "RotationVector";
+ break;
+ case ID_LA:
+ what = LinearAccel;
+ sname = "LinearAccel";
+ break;
+ default: // this takes care of all the gestures
+ what = handle;
+ sname = "Others";
+ break;
+ }
+
+#if 0
+ // skip the 1st call for enalbing sensors called by ICS/JB sensor service
+ static int counter_delay = 0;
+ if (!(mEnabled & (1 << what))) {
+ counter_delay = 0;
+ } else {
+ if (++counter_delay == 1) {
+ return 0;
+ }
+ else {
+ counter_delay = 0;
+ }
+ }
+#endif
+
+ if (uint32_t(what) >= numSensors)
+ return -EINVAL;
+
+ if (ns < 0)
+ return -EINVAL;
+
+ LOGV_IF(PROCESS_VERBOSE, "setDelay : %llu ns, (%.2f Hz)", ns, 1000000000.f / ns);
+
+ // limit all rates to reasonable ones */
+ if (ns < 5000000LL) {
+ ns = 5000000LL;
+ }
+
+ /* store request rate to mDelays array for each sensor */
+ mDelays[what] = ns;
+
+ switch (what) {
+ case Gyro:
+ case RawGyro:
+ case Accelerometer:
+ for (int i = Gyro; i <= Accelerometer + mCompassSensor->isIntegrated();
+ i++) {
+ if (i != what && (mEnabled & (1 << i)) && ns > mDelays[i]) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:ignore delay set due to sensor %d", i);
+ return 0;
+ }
+ }
+ break;
+
+ case MagneticField:
+ if (mCompassSensor->isIntegrated() &&
+ (((mEnabled & (1 << Gyro)) && ns > mDelays[Gyro]) ||
+ ((mEnabled & (1 << RawGyro)) && ns > mDelays[RawGyro]) ||
+ ((mEnabled & (1 << Accelerometer)) && ns > mDelays[Accelerometer]))) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:ignore delay set due to gyro/accel");
+ return 0;
+ }
+ break;
+
+ case Orientation:
+ case RotationVector:
+ case LinearAccel:
+ case Gravity:
+ if (isLowPowerQuatEnabled()) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:need to update delay due to LPQ");
+ break;
+ }
+
+ for (int i = 0; i < numSensors; i++) {
+ if (i != what && (mEnabled & (1 << i)) && ns > mDelays[i]) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:ignore delay set due to sensor %d", i);
+ return 0;
+ }
+ }
+ break;
+ }
+
+ int res = update_delay();
+ return res;
+}
+
+int MPLSensor::update_delay() {
+ VHANDLER_LOG;
+
+ int res = 0;
+ int64_t got;
+
+ pthread_mutex_lock(&GlobalHalMutex);
+ if (mEnabled) {
+ int64_t wanted = 1000000000;
+ int64_t wanted_3rd_party_sensor = 1000000000;
+
+ // Sequence to change sensor's FIFO rate
+ // 1. enable Power state
+ // 2. reset master enable
+ // 3. Update delay
+ // 4. set master enable
+
+ // ensure power on
+ onPower(1);
+
+ // reset master enable
+ masterEnable(0);
+
+ /* search the minimum delay requested across all enabled sensors */
+ for (int i = 0; i < numSensors; i++) {
+ if (mEnabled & (1 << i)) {
+ int64_t ns = mDelays[i];
+ wanted = wanted < ns ? wanted : ns;
+ }
+ }
+
+ // same delay for 3rd party Accel or Compass
+ wanted_3rd_party_sensor = wanted;
+
+ /* mpl rate in us in future maybe different for
+ gyro vs compass vs accel */
+ int rateInus = (int)wanted / 1000LL;
+ int mplGyroRate = rateInus;
+ int mplAccelRate = rateInus;
+ int mplCompassRate = rateInus;
+
+ LOGV_IF(PROCESS_VERBOSE, "HAL:wanted rate for all sensors : "
+ "%llu ns, mpl rate: %d us, (%.2f Hz)",
+ wanted, rateInus, 1000000000.f / wanted);
+
+ /* set rate in MPL */
+ /* compass can only do 100Hz max */
+ inv_set_gyro_sample_rate(mplGyroRate);
+ inv_set_accel_sample_rate(mplAccelRate);
+ inv_set_compass_sample_rate(mplCompassRate);
+#ifdef LIBMLLITE_FROM_SOURCE
+ inv_set_linear_acceleration_sample_rate(rateInus);
+ inv_set_gravity_sample_rate(rateInus);
+#endif
+
+ /* TODO: Test 200Hz */
+ // inv_set_gyro_sample_rate(5000);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:MPL gyro sample rate: %d", mplGyroRate);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:MPL accel sample rate: %d", mplAccelRate);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:MPL compass sample rate: %d", mplCompassRate);
+
+ int enabled_sensors = mEnabled;
+ int tempFd = -1;
+ if (LA_ENABLED || GR_ENABLED || RV_ENABLED || O_ENABLED) {
+ if (isLowPowerQuatEnabled() ||
+ (isDmpDisplayOrientationOn() && mDmpOrientationEnabled)) {
+ bool setDMPrate= 0;
+ // Set LP Quaternion sample rate if enabled
+ if (checkLPQuaternion()) {
+ if (wanted < RATE_200HZ) {
+ enableLPQuaternion(0);
+ } else {
+ inv_set_quat_sample_rate(rateInus);
+ setDMPrate= 1;
+ }
+ }
+
+ if (checkDMPOrientation() || setDMPrate==1) {
+ getDmpRate(&wanted);
+ }
+ }
+
+ int64_t tempRate = wanted;
+ LOGV_IF(EXTRA_VERBOSE, "HAL:setDelay - Fusion");
+ //nsToHz
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:echo %.0f > %s (%lld)",
+ 1000000000.f / tempRate, mpu.gyro_fifo_rate,
+ getTimestamp());
+ tempFd = open(mpu.gyro_fifo_rate, O_RDWR);
+ res = write_attribute_sensor(tempFd, 1000000000.f / tempRate);
+ if(res < 0) {
+ LOGE("HAL:GYRO update delay error");
+ }
+
+ //nsToHz (BMA250)
+ if(USE_THIRD_PARTY_ACCEL) {
+ LOGV_IF(SYSFS_VERBOSE, "echo %lld > %s (%lld)",
+ wanted_3rd_party_sensor / 1000000L, mpu.accel_fifo_rate,
+ getTimestamp());
+ tempFd = open(mpu.accel_fifo_rate, O_RDWR);
+ res = write_attribute_sensor(tempFd, wanted_3rd_party_sensor / 1000000L);
+ LOGE_IF(res < 0, "HAL:ACCEL update delay error");
+ }
+
+ if (!mCompassSensor->isIntegrated()) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:Ext compass rate %.2f Hz", 1000000000.f / wanted_3rd_party_sensor);
+ mCompassSensor->setDelay(ID_M, wanted_3rd_party_sensor);
+ got = mCompassSensor->getDelay(ID_M);
+ inv_set_compass_sample_rate(got / 1000);
+ }
+
+ } else {
+
+ if (GY_ENABLED) {
+ wanted = (mDelays[Gyro] <= mDelays[RawGyro]?
+ (mEnabled & (1 << Gyro)? mDelays[Gyro]: mDelays[RawGyro]):
+ (mEnabled & (1 << RawGyro)? mDelays[RawGyro]: mDelays[Gyro]));
+
+ if (isDmpDisplayOrientationOn() && mDmpOrientationEnabled) {
+ getDmpRate(&wanted);
+ }
+
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:echo %.0f > %s (%lld)",
+ 1000000000.f / wanted, mpu.gyro_fifo_rate, getTimestamp());
+ tempFd = open(mpu.gyro_fifo_rate, O_RDWR);
+ res = write_attribute_sensor(tempFd, 1000000000.f / wanted);
+ LOGE_IF(res < 0, "HAL:GYRO update delay error");
+ }
+
+ if (A_ENABLED) { /* else if because there is only 1 fifo rate for MPUxxxx */
+ if (GY_ENABLED && mDelays[Gyro] < mDelays[Accelerometer]) {
+ wanted = mDelays[Gyro];
+ }
+ else if (GY_ENABLED && mDelays[RawGyro] < mDelays[Accelerometer]) {
+ wanted = mDelays[RawGyro];
+
+ } else {
+ wanted = mDelays[Accelerometer];
+ }
+
+ if (isDmpDisplayOrientationOn() && mDmpOrientationEnabled) {
+ getDmpRate(&wanted);
+ }
+
+ /* TODO: use function pointers to calculate delay value specific to vendor */
+ LOGV_IF(SYSFS_VERBOSE, "HAL:sysfs:echo %.0f > %s (%lld)",
+ 1000000000.f / wanted, mpu.accel_fifo_rate, getTimestamp());
+ tempFd = open(mpu.accel_fifo_rate, O_RDWR);
+ if(USE_THIRD_PARTY_ACCEL) {
+ //BMA250 in ms
+ res = write_attribute_sensor(tempFd, wanted / 1000000L);
+ }
+ else {
+ //MPUxxxx in hz
+ res = write_attribute_sensor(tempFd, 1000000000.f/wanted);
+ }
+ LOGE_IF(res < 0, "HAL:ACCEL update delay error");
+ }
+
+ /* Invensense compass calibration */
+ if (M_ENABLED) {
+ if (!mCompassSensor->isIntegrated()) {
+ wanted = mDelays[MagneticField];
+ } else {
+ if (GY_ENABLED && mDelays[Gyro] < mDelays[MagneticField]) {
+ wanted = mDelays[Gyro];
+ }
+ else if (GY_ENABLED && mDelays[RawGyro] < mDelays[MagneticField]) {
+ wanted = mDelays[RawGyro];
+ } else if (A_ENABLED && mDelays[Accelerometer] < mDelays[MagneticField]) {
+ wanted = mDelays[Accelerometer];
+ } else {
+ wanted = mDelays[MagneticField];
+ }
+
+ if (isDmpDisplayOrientationOn() && mDmpOrientationEnabled) {
+ getDmpRate(&wanted);
+ }
+ }
+
+ mCompassSensor->setDelay(ID_M, wanted);
+ got = mCompassSensor->getDelay(ID_M);
+ inv_set_compass_sample_rate(got / 1000);
+ }
+
+ }
+
+ unsigned long sensors = mLocalSensorMask & mMasterSensorMask;
+ if (sensors &
+ (INV_THREE_AXIS_GYRO
+ | INV_THREE_AXIS_ACCEL
+ | (INV_THREE_AXIS_COMPASS * mCompassSensor->isIntegrated()))) {
+ res = masterEnable(1);
+ } else { // all sensors idle -> reduce power
+ res = onPower(0);
+ }
+ }
+ pthread_mutex_unlock(&GlobalHalMutex);
+ return res;
+}
+
+/* For Third Party Accel Input Subsystem Drivers only */
+/* TODO: FIX! data is not used and count not decremented, results is hardcoded to 0 */
+int MPLSensor::readAccelEvents(sensors_event_t* /*data*/, int count)
+{
+ VHANDLER_LOG;
+
+ if (count < 1)
+ return -EINVAL;
+
+ ssize_t n = mAccelInputReader.fill(accel_fd);
+ if (n < 0) {
+ LOGE("HAL:missed accel events, exit");
+ return n;
+ }
+
+ int numEventReceived = 0;
+ input_event const* event;
+ int done = 0;
+
+ while (!done && count && mAccelInputReader.readEvent(&event)) {
+ int type = event->type;
+ if (type == EV_ABS) {
+ if (event->code == EVENT_TYPE_ACCEL_X) {
+ mPendingMask |= 1 << Accelerometer;
+ mCachedAccelData[0] = event->value;
+ } else if (event->code == EVENT_TYPE_ACCEL_Y) {
+ mPendingMask |= 1 << Accelerometer;
+ mCachedAccelData[1] = event->value;
+ } else if (event->code == EVENT_TYPE_ACCEL_Z) {
+ mPendingMask |= 1 << Accelerometer;
+ mCachedAccelData[2] =event-> value;
+ }
+ } else if (type == EV_SYN) {
+ done = 1;
+ if (mLocalSensorMask & INV_THREE_AXIS_ACCEL) {
+ inv_build_accel(mCachedAccelData, 0, getTimestamp());
+ }
+ } else {
+ LOGE("HAL:AccelSensor: unknown event (type=%d, code=%d)",
+ type, event->code);
+ }
+ mAccelInputReader.next();
+ }
+
+ return numEventReceived;
+}
+
+/**
+ * Should be called after reading at least one of gyro
+ * compass or accel data. (Also okay for handling all of them).
+ * @returns 0, if successful, error number if not.
+ */
+/* TODO: This should probably be called "int readEvents(...)"
+ * and readEvents() called "void cacheData(void)".
+ */
+int MPLSensor::executeOnData(sensors_event_t* data, int count)
+{
+ VFUNC_LOG;
+
+ inv_execute_on_data();
+
+ int numEventReceived = 0;
+
+ long msg;
+ msg = inv_get_message_level_0(1);
+ if (msg) {
+ if (msg & INV_MSG_MOTION_EVENT) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:**** Motion ****\n");
+ }
+ if (msg & INV_MSG_NO_MOTION_EVENT) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:***** No Motion *****\n");
+ /* after the first no motion, the gyro should be
+ calibrated well */
+ mGyroAccuracy = SENSOR_STATUS_ACCURACY_HIGH;
+ /* if gyros are on and we got a no motion, set a flag
+ indicating that the cal file can be written. */
+ mHaveGoodMpuCal = true;
+ }
+ }
+
+ // load up virtual sensors
+ for (int i = 0; i < numSensors; i++) {
+ int update;
+ if (mEnabled & (1 << i)) {
+ update = CALL_MEMBER_FN(this, mHandlers[i])(mPendingEvents + i);
+ mPendingMask |= (1 << i);
+
+ if (update && (count > 0)) {
+ *data++ = mPendingEvents[i];
+ count--;
+ numEventReceived++;
+ }
+ }
+ }
+
+ return numEventReceived;
+}
+
+// collect data for MPL (but NOT sensor service currently), from driver layer
+/* TODO: FIX! data and count are not used, results is hardcoded to 0 */
+/* TODO: This should probably be called "void cacheEvents(void)"
+ * And executeOnData() should be int readEvents(data,count)
+ */
+int MPLSensor::readEvents(sensors_event_t* /*data*/, int /*count*/) {
+
+
+ int lp_quaternion_on = 0, nbyte;
+ int i, mask = 0, numEventReceived = 0,
+ sensors = ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 1 : 0) +
+ ((mLocalSensorMask & INV_THREE_AXIS_ACCEL)? 1 : 0) +
+ (((mLocalSensorMask & INV_THREE_AXIS_COMPASS) && mCompassSensor->isIntegrated())? 1 : 0);
+ char *rdata = mIIOBuffer;
+
+ nbyte= (8 * sensors + 8) * 1;
+
+ if (isLowPowerQuatEnabled()) {
+ lp_quaternion_on = checkLPQuaternion();
+ if (lp_quaternion_on) {
+ nbyte += sizeof(mCachedQuaternionData); //currently 16 bytes for Q data
+ }
+ }
+
+ ssize_t rsize = read(iio_fd, rdata, nbyte);
+ if (sensors == 0) {
+ rsize = read(iio_fd, rdata, sizeof(mIIOBuffer));
+ }
+
+#ifdef TESTING
+ LOGI("get one sample of IIO data with size: %d", rsize);
+ LOGI("sensors: %d", sensors);
+
+ LOGI_IF(mLocalSensorMask & INV_THREE_AXIS_GYRO, "gyro x/y/z: %d/%d/%d",
+ *((short *) (rdata + 0)), *((short *) (rdata + 2)),
+ *((short *) (rdata + 4)));
+ LOGI_IF(mLocalSensorMask & INV_THREE_AXIS_ACCEL, "accel x/y/z: %d/%d/%d",
+ *((short *) (rdata + 0 + ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0))),
+ *((short *) (rdata + 2 + ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0))),
+ *((short *) (rdata + 4) + ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0)));
+
+ LOGI_IF(mLocalSensorMask & INV_THREE_AXIS_COMPASS &
+ mCompassSensor->isIntegrated(), "compass x/y/z: %d/%d/%d",
+ *((short *) (rdata + 0 + ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0) +
+ ((mLocalSensorMask & INV_THREE_AXIS_ACCEL)? 6: 0))),
+ *((short *) (rdata + 2 + ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0) +
+ ((mLocalSensorMask & INV_THREE_AXIS_ACCEL)? 6: 0))),
+ *((short *) (rdata + 4) + ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0) +
+ ((mLocalSensorMask & INV_THREE_AXIS_ACCEL)? 6: 0)));
+#endif
+
+ if (rsize != nbyte) {
+ LOGE("HAL:ERR Full data packet was not read. rsize=%zd nbyte=%d sensors=%d errno=%d(%s)",
+ rsize, nbyte, sensors, errno, strerror(errno));
+ rsize = read(iio_fd, rdata, sizeof(mIIOBuffer));
+ return -1;
+ }
+
+ if (isLowPowerQuatEnabled() && lp_quaternion_on) {
+
+ for (i=0; i< 4; i++) {
+ mCachedQuaternionData[i]= *(long*)rdata;
+ rdata += sizeof(long);
+ }
+ }
+
+ for (i = 0; i < 3; i++) {
+ if (mLocalSensorMask & INV_THREE_AXIS_GYRO) {
+ mCachedGyroData[i] = *((short *) (rdata + i * 2));
+ }
+ if (mLocalSensorMask & INV_THREE_AXIS_ACCEL) {
+ mCachedAccelData[i] = *((short *) (rdata + i * 2 +
+ ((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 6: 0)));
+ }
+ if ((mLocalSensorMask & INV_THREE_AXIS_COMPASS) && mCompassSensor->isIntegrated()) {
+ mCachedCompassData[i] = *((short *) (rdata + i * 2 + 6 * (sensors - 1)));
+ }
+ }
+
+ mask |= (((mLocalSensorMask & INV_THREE_AXIS_GYRO)? 1 << Gyro: 0) +
+ ((mLocalSensorMask & INV_THREE_AXIS_ACCEL)? 1 << Accelerometer: 0));
+ if ((mLocalSensorMask & INV_THREE_AXIS_COMPASS) && mCompassSensor->isIntegrated() &&
+ (mCachedCompassData[0] != 0 || mCachedCompassData[1] != 0 || mCachedCompassData[0] != 0)) {
+ mask |= 1 << MagneticField;
+ }
+
+ mSensorTimestamp = *((long long *) (rdata + 8 * sensors));
+ if (mCompassSensor->isIntegrated()) {
+ mCompassTimestamp = mSensorTimestamp;
+ }
+
+ if (mask & (1 << Gyro)) {
+ // send down temperature every 0.5 seconds
+ // with timestamp measured in "driver" layer
+ if(mSensorTimestamp - mTempCurrentTime >= 500000000LL) {
+ mTempCurrentTime = mSensorTimestamp;
+ long long temperature[2];
+ if(inv_read_temperature(temperature) == 0) {
+ LOGV_IF(INPUT_DATA,
+ "HAL:inv_read_temperature = %lld, timestamp= %lld",
+ temperature[0], temperature[1]);
+ inv_build_temp(temperature[0], temperature[1]);
+ }
+#ifdef TESTING
+ long bias[3], temp, temp_slope[3];
+ inv_get_gyro_bias(bias, &temp);
+ inv_get_gyro_ts(temp_slope);
+
+ LOGI("T: %.3f "
+ "GB: %+13f %+13f %+13f "
+ "TS: %+13f %+13f %+13f "
+ "\n",
+ (float)temperature[0] / 65536.f,
+ (float)bias[0] / 65536.f / 16.384f,
+ (float)bias[1] / 65536.f / 16.384f,
+ (float)bias[2] / 65536.f / 16.384f,
+ temp_slope[0] / 65536.f,
+ temp_slope[1] / 65536.f,
+ temp_slope[2] / 65536.f);
+#endif
+ }
+
+ mPendingMask |= 1 << Gyro;
+ mPendingMask |= 1 << RawGyro;
+
+ if (mLocalSensorMask & INV_THREE_AXIS_GYRO) {
+ inv_build_gyro(mCachedGyroData, mSensorTimestamp);
+ LOGV_IF(INPUT_DATA,
+ "HAL:inv_build_gyro: %+8d %+8d %+8d - %lld",
+ mCachedGyroData[0], mCachedGyroData[1],
+ mCachedGyroData[2], mSensorTimestamp);
+ }
+ }
+
+ if (mask & (1 << Accelerometer)) {
+ mPendingMask |= 1 << Accelerometer;
+ if (mLocalSensorMask & INV_THREE_AXIS_ACCEL) {
+ inv_build_accel(mCachedAccelData, 0, mSensorTimestamp);
+ LOGV_IF(INPUT_DATA,
+ "HAL:inv_build_accel: %+8ld %+8ld %+8ld - %lld",
+ mCachedAccelData[0], mCachedAccelData[1],
+ mCachedAccelData[2], mSensorTimestamp);
+ }
+ }
+
+ if ((mask & (1 << MagneticField)) && mCompassSensor->isIntegrated()) {
+ int status = 0;
+ if (mCompassSensor->providesCalibration()) {
+ status = mCompassSensor->getAccuracy();
+ status |= INV_CALIBRATED;
+ }
+ if (mLocalSensorMask & INV_THREE_AXIS_COMPASS) {
+ inv_build_compass(mCachedCompassData, status,
+ mCompassTimestamp);
+ LOGV_IF(INPUT_DATA, "HAL:inv_build_compass: %+8ld %+8ld %+8ld - %lld",
+ mCachedCompassData[0], mCachedCompassData[1],
+ mCachedCompassData[2], mCompassTimestamp);
+ }
+ }
+
+ if (isLowPowerQuatEnabled() && lp_quaternion_on) {
+
+ inv_build_quat(mCachedQuaternionData, 32 /*default 32 for now (16/32bits)*/, mSensorTimestamp);
+ LOGV_IF(INPUT_DATA, "HAL:inv_build_quat: %+8ld %+8ld %+8ld %+8ld - %lld",
+ mCachedQuaternionData[0], mCachedQuaternionData[1],
+ mCachedQuaternionData[2], mCachedQuaternionData[3], mSensorTimestamp);
+ }
+
+ return numEventReceived;
+}
+
+/* use for both MPUxxxx and third party compass */
+int MPLSensor::readCompassEvents(sensors_event_t* /*data*/, int count)
+{
+ VHANDLER_LOG;
+
+ if (count < 1)
+ return -EINVAL;
+
+ int numEventReceived = 0;
+ int done = 0;
+
+ done = mCompassSensor->readSample(mCachedCompassData, &mCompassTimestamp);
+#ifdef COMPASS_YAS53x
+ if (mCompassSensor->checkCoilsReset()) {
+ //Reset relevant compass settings
+ resetCompass();
+ }
+#endif
+ if (done > 0) {
+ int status = 0;
+ if (mCompassSensor->providesCalibration()) {
+ status = mCompassSensor->getAccuracy();
+ status |= INV_CALIBRATED;
+ }
+ if (mLocalSensorMask & INV_THREE_AXIS_COMPASS) {
+ inv_build_compass(mCachedCompassData, status,
+ mCompassTimestamp);
+ LOGV_IF(INPUT_DATA, "HAL:inv_build_compass: %+8ld %+8ld %+8ld - %lld",
+ mCachedCompassData[0], mCachedCompassData[1],
+ mCachedCompassData[2], mCompassTimestamp);
+ }
+ }
+
+ return numEventReceived;
+}
+
+#ifdef COMPASS_YAS53x
+int MPLSensor::resetCompass()
+{
+ VFUNC_LOG;
+
+ //Reset compass cal if enabled
+ if (mFeatureActiveMask & INV_COMPASS_CAL) {
+ LOGV_IF(EXTRA_VERBOSE, "HAL:Reset compass cal");
+ inv_init_vector_compass_cal();
+ }
+
+ //Reset compass fit if enabled
+ if (mFeatureActiveMask & INV_COMPASS_FIT) {
+ LOGV_IF(EXTRA_VERBOSE, "HAL:Reset compass fit");
+ inv_init_compass_fit();
+ }
+
+ return 0;
+}
+#endif
+
+int MPLSensor::getFd() const
+{
+ VFUNC_LOG;
+ LOGV_IF(EXTRA_VERBOSE, "MPLSensor::getFd returning %d", iio_fd);
+ return iio_fd;
+}
+
+int MPLSensor::getAccelFd() const
+{
+ VFUNC_LOG;
+ LOGV_IF(EXTRA_VERBOSE, "MPLSensor::getAccelFd returning %d", accel_fd);
+ return accel_fd;
+}
+
+int MPLSensor::getCompassFd() const
+{
+ VFUNC_LOG;
+ int fd = mCompassSensor->getFd();
+ LOGV_IF(EXTRA_VERBOSE, "MPLSensor::getCompassFd returning %d", fd);
+ return fd;
+}
+
+int MPLSensor::turnOffAccelFifo() {
+ int i, res;
+ char *accel_fifo_enable[3] = {mpu.accel_x_fifo_enable,
+ mpu.accel_y_fifo_enable, mpu.accel_z_fifo_enable};
+
+ for (i = 0; i < 3; i++) {
+ res = write_sysfs_int(accel_fifo_enable[i], 0);
+ if (res < 0) {
+ return res;
+ }
+ }
+ return 0;
+}
+
+int MPLSensor::enableDmpOrientation(int en)
+{
+ VFUNC_LOG;
+ /* TODO: FIX error handling. Handle or ignore it appropriately for hw. */
+ int res = 0;
+ int enabled_sensors = mEnabled;
+
+ if (isMpu3050())
+ return res;
+
+ pthread_mutex_lock(&GlobalHalMutex);
+
+ // on power if not already On
+ res = onPower(1);
+ // reset master enable
+ res = masterEnable(0);
+
+ if (en) {
+ //Enable DMP orientation
+ if (write_sysfs_int(mpu.display_orientation_on, en) < 0) {
+ LOGE("HAL:ERR can't enable Android orientation");
+ res = -1; // indicate an err
+ }
+
+ // open DMP Orient Fd
+ res = openDmpOrientFd();
+
+ // enable DMP
+ res = onDMP(1);
+
+ // default DMP output rate to FIFO
+ if (write_sysfs_int(mpu.dmp_output_rate, 5) < 0) {
+ LOGE("HAL:ERR can't default DMP output rate");
+ }
+
+ // set DMP rate to 200Hz
+ if (write_sysfs_int(mpu.accel_fifo_rate, 200) < 0) {
+ res = -1;
+ LOGE("HAL:ERR can't set DMP rate to 200Hz");
+ }
+
+ // enable accel engine
+ res = enableAccel(1);
+
+ // disable accel FIFO
+ if (!A_ENABLED) {
+ res = turnOffAccelFifo();
+ }
+
+ mFeatureActiveMask |= INV_DMP_DISPL_ORIENTATION;
+ } else {
+ // disable DMP
+ res = onDMP(0);
+
+ // disable accel engine
+ if (!A_ENABLED) {
+ res = enableAccel(0);
+ }
+ }
+
+ res = masterEnable(1);
+ pthread_mutex_unlock(&GlobalHalMutex);
+ return res;
+}
+
+int MPLSensor::openDmpOrientFd()
+{
+ VFUNC_LOG;
+
+ if (!isDmpDisplayOrientationOn() || dmp_orient_fd >= 0) {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:DMP display orientation disabled or file desc opened");
+ return -1;
+ }
+
+ dmp_orient_fd = open(mpu.event_display_orientation, O_RDONLY| O_NONBLOCK);
+ if (dmp_orient_fd < 0) {
+ LOGE("HAL:ERR couldn't open dmpOrient node");
+ return -1;
+ } else {
+ LOGV_IF(PROCESS_VERBOSE, "HAL:dmp_orient_fd opened : %d", dmp_orient_fd);
+ return 0;
+ }
+}
+
+int MPLSensor::closeDmpOrientFd()
+{
+ VFUNC_LOG;
+ if (dmp_orient_fd >= 0)
+ close(dmp_orient_fd);
+ return 0;
+}
+
+int MPLSensor::dmpOrientHandler(int orient)
+{
+ VFUNC_LOG;
+
+ LOGV_IF(PROCESS_VERBOSE, "HAL:orient %x", orient);
+ return 0;
+}
+
+int MPLSensor::readDmpOrientEvents(sensors_event_t* data, int count) {
+ VFUNC_LOG;
+
+ char dummy[4];
+ int screen_orientation = 0;
+ FILE *fp;
+
+ fp = fopen(mpu.event_display_orientation, "r");
+ if (fp == NULL) {
+ LOGE("HAL:cannot open event_display_orientation");
+ return 0;
+ }
+ fscanf(fp, "%d\n", &screen_orientation);
+ fclose(fp);
+
+ int numEventReceived = 0;
+
+ if (mDmpOrientationEnabled && count > 0) {
+ sensors_event_t temp;
+
+ bzero(&temp, sizeof(temp)); /* Let's hope that SENSOR_TYPE_NONE is 0 */
+ temp.version = sizeof(sensors_event_t);
+ temp.sensor = ID_SO;
+#ifdef ENABLE_DMP_SCREEN_AUTO_ROTATION
+ temp.type = SENSOR_TYPE_SCREEN_ORIENTATION;
+ temp.screen_orientation = screen_orientation;
+#endif
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ temp.timestamp = (int64_t) ts.tv_sec * 1000000000 + ts.tv_nsec;
+
+ *data++ = temp;
+ count--;
+ numEventReceived++;
+ }
+
+ // read dummy data per driver's request
+ dmpOrientHandler(screen_orientation);
+ read(dmp_orient_fd, dummy, 4);
+
+ return numEventReceived;
+}
+
+int MPLSensor::getDmpOrientFd()
+{
+ VFUNC_LOG;
+
+ LOGV_IF(EXTRA_VERBOSE, "MPLSensor::getDmpOrientFd returning %d", dmp_orient_fd);
+ return dmp_orient_fd;
+
+}
+
+int MPLSensor::checkDMPOrientation()
+{
+ VFUNC_LOG;
+ return ((mFeatureActiveMask & INV_DMP_DISPL_ORIENTATION) ? 1 : 0);
+}
+
+int MPLSensor::getDmpRate(int64_t *wanted)
+{
+ if (checkDMPOrientation() || checkLPQuaternion()) {
+ // set DMP output rate to FIFO
+ write_sysfs_int(mpu.dmp_output_rate, 1000000000.f / *wanted);
+ LOGV_IF(PROCESS_VERBOSE, "HAL:DMP FIFO rate %.2f Hz", 1000000000.f / *wanted);
+
+ //DMP running rate must be @ 200Hz
+ *wanted= RATE_200HZ;
+ LOGV_IF(PROCESS_VERBOSE, "HAL:DMP rate= %.2f Hz", 1000000000.f / *wanted);
+ }
+ return 0;
+}
+
+int MPLSensor::getPollTime()
+{
+ VHANDLER_LOG;
+ return mPollTime;
+}
+
+bool MPLSensor::hasPendingEvents() const
+{
+ VHANDLER_LOG;
+ // if we are using the polling workaround, force the main
+ // loop to check for data every time
+ return (mPollTime != -1);
+}
+
+/* TODO: support resume suspend when we gain more info about them*/
+void MPLSensor::sleepEvent()
+{
+ VFUNC_LOG;
+}
+
+void MPLSensor::wakeEvent()
+{
+ VFUNC_LOG;
+}
+
+int MPLSensor::inv_float_to_q16(float *fdata, long *ldata)
+{
+ VHANDLER_LOG;
+
+ if (!fdata || !ldata)
+ return -1;
+ ldata[0] = (long)(fdata[0] * 65536.f);
+ ldata[1] = (long)(fdata[1] * 65536.f);
+ ldata[2] = (long)(fdata[2] * 65536.f);
+ return 0;
+}
+
+int MPLSensor::inv_long_to_q16(long *fdata, long *ldata)
+{
+ VHANDLER_LOG;
+
+ if (!fdata || !ldata)
+ return -1;
+ ldata[0] = (fdata[1] * 65536.f);
+ ldata[1] = (fdata[2] * 65536.f);
+ ldata[2] = (fdata[3] * 65536.f);
+ return 0;
+}
+
+int MPLSensor::inv_float_to_round(float *fdata, long *ldata)
+{
+ VHANDLER_LOG;
+
+ if (!fdata || !ldata)
+ return -1;
+ ldata[0] = (long)fdata[0];
+ ldata[1] = (long)fdata[1];
+ ldata[2] = (long)fdata[2];
+ return 0;
+}
+
+int MPLSensor::inv_float_to_round2(float *fdata, short *ldata)
+{
+ VHANDLER_LOG;
+
+ if (!fdata || !ldata)
+ return -1;
+ ldata[0] = (short)fdata[0];
+ ldata[1] = (short)fdata[1];
+ ldata[2] = (short)fdata[2];
+ return 0;
+}
+
+int MPLSensor::inv_read_temperature(long long *data)
+{
+ VHANDLER_LOG;
+
+ int count = 0;
+ char raw_buf[40];
+ long raw = 0;
+
+ long long timestamp = 0;
+
+ memset(raw_buf, 0, sizeof(raw_buf));
+ count = read_attribute_sensor(gyro_temperature_fd, raw_buf,
+ sizeof(raw_buf));
+ if(count < 1) {
+ LOGE("HAL:error reading gyro temperature");
+ return -1;
+ }
+
+ count = sscanf(raw_buf, "%ld%lld", &raw, &timestamp);
+
+ if(count < 0) {
+ return -1;
+ }
+
+ LOGV_IF(ENG_VERBOSE,
+ "HAL:temperature raw = %ld, timestamp = %lld, count = %d",
+ raw, timestamp, count);
+ data[0] = raw;
+ data[1] = timestamp;
+
+ return 0;
+}
+
+int MPLSensor::inv_read_dmp_state(int fd)
+{
+ VFUNC_LOG;
+
+ if(fd < 0)
+ return -1;
+
+ int count = 0;
+ char raw_buf[10];
+ short raw = 0;
+
+ memset(raw_buf, 0, sizeof(raw_buf));
+ count = read_attribute_sensor(fd, raw_buf, sizeof(raw_buf));
+ if(count < 1) {
+ LOGE("HAL:error reading dmp state");
+ close(fd);
+ return -1;
+ }
+ count = sscanf(raw_buf, "%hd", &raw);
+ if(count < 0) {
+ LOGE("HAL:dmp state data is invalid");
+ close(fd);
+ return -1;
+ }
+ LOGV_IF(EXTRA_VERBOSE, "HAL:dmp state = %d, count = %d", raw, count);
+ close(fd);
+ return (int)raw;
+}
+
+int MPLSensor::inv_read_sensor_bias(int fd, long *data)
+{
+ VFUNC_LOG;
+
+ if(fd == -1) {
+ return -1;
+ }
+
+ char buf[50];
+ char x[15], y[15], z[15];
+
+ memset(buf, 0, sizeof(buf));
+ int count = read_attribute_sensor(fd, buf, sizeof(buf));
+ if(count < 1) {
+ LOGE("HAL:Error reading gyro bias");
+ return -1;
+ }
+ count = sscanf(buf, "%[^','],%[^','],%[^',']", x, y, z);
+ if(count) {
+ /* scale appropriately for MPL */
+ LOGV_IF(ENG_VERBOSE,
+ "HAL:pre-scaled bias: X:Y:Z (%ld, %ld, %ld)",
+ atol(x), atol(y), atol(z));
+
+ data[0] = (long)(atol(x) / 10000 * (1L << 16));
+ data[1] = (long)(atol(y) / 10000 * (1L << 16));
+ data[2] = (long)(atol(z) / 10000 * (1L << 16));
+
+ LOGV_IF(ENG_VERBOSE,
+ "HAL:scaled bias: X:Y:Z (%ld, %ld, %ld)",
+ data[0], data[1], data[2]);
+ }
+ return 0;
+}
+
+/** fill in the sensor list based on which sensors are configured.
+ * return the number of configured sensors.
+ * parameter list must point to a memory region of at least 7*sizeof(sensor_t)
+ * parameter len gives the length of the buffer pointed to by list
+ */
+int MPLSensor::populateSensorList(struct sensor_t *list, int len)
+{
+ VFUNC_LOG;
+
+ int numsensors;
+
+ if(len < (int)((sizeof(sSensorList) / sizeof(sensor_t)) * sizeof(sensor_t))) {
+ LOGE("HAL:sensor list too small, not populating.");
+ return -(sizeof(sSensorList) / sizeof(sensor_t));
+ }
+
+ /* fill in the base values */
+ memcpy(list, sSensorList, sizeof (struct sensor_t) * (sizeof(sSensorList) / sizeof(sensor_t)));
+
+ /* first add gyro, accel and compass to the list */
+
+ /* fill in gyro/accel values */
+ fillGyro(chip_ID, list);
+ fillAccel(chip_ID, list);
+
+ // TODO: need fixes for unified HAL and 3rd-party solution
+ mCompassSensor->fillList(&list[MagneticField]);
+
+ if(1) {
+ numsensors = (sizeof(sSensorList) / sizeof(sensor_t));
+ /* all sensors will be added to the list
+ fill in orientation values */
+ fillOrientation(list);
+ /* fill in rotation vector values */
+ fillRV(list);
+ /* fill in gravity values */
+ fillGravity(list);
+ /* fill in Linear accel values */
+ fillLinearAccel(list);
+ } else {
+ /* no 9-axis sensors, zero fill that part of the list */
+ numsensors = 3;
+ memset(list + 3, 0, 4 * sizeof(struct sensor_t));
+ }
+
+ return numsensors;
+}
+
+void MPLSensor::fillAccel(const char* accel, struct sensor_t *list)
+{
+ VFUNC_LOG;
+
+ if (accel) {
+ if(accel != NULL && strcmp(accel, "BMA250") == 0) {
+ list[Accelerometer].maxRange = ACCEL_BMA250_RANGE;
+ list[Accelerometer].resolution = ACCEL_BMA250_RESOLUTION;
+ list[Accelerometer].power = ACCEL_BMA250_POWER;
+ list[Accelerometer].minDelay = ACCEL_BMA250_MINDELAY;
+ return;
+ } else if (accel != NULL && strcmp(accel, "MPU6050") == 0) {
+ list[Accelerometer].maxRange = ACCEL_MPU6050_RANGE;
+ list[Accelerometer].resolution = ACCEL_MPU6050_RESOLUTION;
+ list[Accelerometer].power = ACCEL_MPU6050_POWER;
+ list[Accelerometer].minDelay = ACCEL_MPU6050_MINDELAY;
+ return;
+ } else if (accel != NULL && strcmp(accel, "MPU6500") == 0) {
+ list[Accelerometer].maxRange = ACCEL_MPU6500_RANGE;
+ list[Accelerometer].resolution = ACCEL_MPU6500_RESOLUTION;
+ list[Accelerometer].power = ACCEL_MPU6500_POWER;
+ list[Accelerometer].minDelay = ACCEL_MPU6500_MINDELAY;
+
+ return;
+ } else if (accel != NULL && strcmp(accel, "MPU9150") == 0) {
+ list[Accelerometer].maxRange = ACCEL_MPU9150_RANGE;
+ list[Accelerometer].resolution = ACCEL_MPU9150_RESOLUTION;
+ list[Accelerometer].power = ACCEL_MPU9150_POWER;
+ list[Accelerometer].minDelay = ACCEL_MPU9150_MINDELAY;
+ return;
+ } else if (accel != NULL && strcmp(accel, "MPU3050") == 0) {
+ list[Accelerometer].maxRange = ACCEL_BMA250_RANGE;
+ list[Accelerometer].resolution = ACCEL_BMA250_RESOLUTION;
+ list[Accelerometer].power = ACCEL_BMA250_POWER;
+ list[Accelerometer].minDelay = ACCEL_BMA250_MINDELAY;
+ return;
+ }
+ }
+
+ LOGE("HAL:unknown accel id %s -- "
+ "params default to bma250 and might be wrong.",
+ accel);
+ list[Accelerometer].maxRange = ACCEL_BMA250_RANGE;
+ list[Accelerometer].resolution = ACCEL_BMA250_RESOLUTION;
+ list[Accelerometer].power = ACCEL_BMA250_POWER;
+ list[Accelerometer].minDelay = ACCEL_BMA250_MINDELAY;
+}
+
+void MPLSensor::fillGyro(const char* gyro, struct sensor_t *list)
+{
+ VFUNC_LOG;
+
+ if ( gyro != NULL && strcmp(gyro, "MPU3050") == 0) {
+ list[Gyro].maxRange = GYRO_MPU3050_RANGE;
+ list[Gyro].resolution = GYRO_MPU3050_RESOLUTION;
+ list[Gyro].power = GYRO_MPU3050_POWER;
+ list[Gyro].minDelay = GYRO_MPU3050_MINDELAY;
+ } else if( gyro != NULL && strcmp(gyro, "MPU6050") == 0) {
+ list[Gyro].maxRange = GYRO_MPU6050_RANGE;
+ list[Gyro].resolution = GYRO_MPU6050_RESOLUTION;
+ list[Gyro].power = GYRO_MPU6050_POWER;
+ list[Gyro].minDelay = GYRO_MPU6050_MINDELAY;
+ } else if( gyro != NULL && strcmp(gyro, "MPU6500") == 0) {
+ list[Gyro].maxRange = GYRO_MPU6500_RANGE;
+ list[Gyro].resolution = GYRO_MPU6500_RESOLUTION;
+ list[Gyro].power = GYRO_MPU6500_POWER;
+ list[Gyro].minDelay = GYRO_MPU6500_MINDELAY;
+ } else if( gyro != NULL && strcmp(gyro, "MPU9150") == 0) {
+ list[Gyro].maxRange = GYRO_MPU9150_RANGE;
+ list[Gyro].resolution = GYRO_MPU9150_RESOLUTION;
+ list[Gyro].power = GYRO_MPU9150_POWER;
+ list[Gyro].minDelay = GYRO_MPU9150_MINDELAY;
+ } else {
+ LOGE("HAL:unknown gyro id -- gyro params will be wrong.");
+ LOGE("HAL:default to use mpu3050 params");
+ list[Gyro].maxRange = GYRO_MPU3050_RANGE;
+ list[Gyro].resolution = GYRO_MPU3050_RESOLUTION;
+ list[Gyro].power = GYRO_MPU3050_POWER;
+ list[Gyro].minDelay = GYRO_MPU3050_MINDELAY;
+ }
+
+ list[RawGyro].maxRange = list[Gyro].maxRange;
+ list[RawGyro].resolution = list[Gyro].resolution;
+ list[RawGyro].power = list[Gyro].power;
+ list[RawGyro].minDelay = list[Gyro].minDelay;
+
+ return;
+}
+
+/* fillRV depends on values of accel and compass in the list */
+void MPLSensor::fillRV(struct sensor_t *list)
+{
+ VFUNC_LOG;
+
+ /* compute power on the fly */
+ list[RotationVector].power = list[Gyro].power +
+ list[Accelerometer].power +
+ list[MagneticField].power;
+ list[RotationVector].resolution = .00001;
+ list[RotationVector].maxRange = 1.0;
+ list[RotationVector].minDelay = 5000;
+
+ return;
+}
+
+void MPLSensor::fillOrientation(struct sensor_t *list)
+{
+ VFUNC_LOG;
+
+ list[Orientation].power = list[Gyro].power +
+ list[Accelerometer].power +
+ list[MagneticField].power;
+ list[Orientation].resolution = .00001;
+ list[Orientation].maxRange = 360.0;
+ list[Orientation].minDelay = 5000;
+
+ return;
+}
+
+void MPLSensor::fillGravity( struct sensor_t *list)
+{
+ VFUNC_LOG;
+
+ list[Gravity].power = list[Gyro].power +
+ list[Accelerometer].power +
+ list[MagneticField].power;
+ list[Gravity].resolution = .00001;
+ list[Gravity].maxRange = 9.81;
+ list[Gravity].minDelay = 5000;
+
+ return;
+}
+
+void MPLSensor::fillLinearAccel(struct sensor_t *list)
+{
+ VFUNC_LOG;
+
+ list[LinearAccel].power = list[Gyro].power +
+ list[Accelerometer].power +
+ list[MagneticField].power;
+ list[LinearAccel].resolution = list[Accelerometer].resolution;
+ list[LinearAccel].maxRange = list[Accelerometer].maxRange;
+ list[LinearAccel].minDelay = 5000;
+
+ return;
+}
+
+int MPLSensor::inv_init_sysfs_attributes(void)
+{
+ VFUNC_LOG;
+
+ unsigned char i;
+ char sysfs_path[MAX_SYSFS_NAME_LEN], iio_trigger_path[MAX_SYSFS_NAME_LEN];
+ char *sptr;
+ char **dptr;
+
+ sysfs_names_ptr =
+ (char*)calloc(1, sizeof(char[MAX_SYSFS_ATTRB][MAX_SYSFS_NAME_LEN]));
+ sptr = sysfs_names_ptr;
+ if (sptr == NULL) {
+ LOGE("HAL:couldn't alloc mem for sysfs paths");
+ return -1;
+ }
+
+ dptr = (char**)&mpu;
+ i = 0;
+ do {
+ *dptr++ = sptr;
+ sptr += sizeof(char[MAX_SYSFS_NAME_LEN]);
+ } while (++i < MAX_SYSFS_ATTRB);
+
+ // get proper (in absolute/relative) IIO path & build MPU's sysfs paths
+ // inv_get_sysfs_abs_path(sysfs_path);
+ if(INV_SUCCESS != inv_get_sysfs_path(sysfs_path)) {
+ ALOGE("MPLSensor failed get sysfs path");
+ return -1;
+ }
+
+ if(INV_SUCCESS != inv_get_iio_trigger_path(iio_trigger_path)) {
+ ALOGE("MPLSensor failed get iio trigger path");
+ return -1;
+ }
+
+ sprintf(mpu.key, "%s%s", sysfs_path, "/key");
+ sprintf(mpu.chip_enable, "%s%s", sysfs_path, "/buffer/enable");
+ sprintf(mpu.buffer_length, "%s%s", sysfs_path, "/buffer/length");
+ sprintf(mpu.power_state, "%s%s", sysfs_path, "/power_state");
+ sprintf(mpu.in_timestamp_en, "%s%s", sysfs_path, "/scan_elements/in_timestamp_en");
+ sprintf(mpu.trigger_name, "%s%s", iio_trigger_path, "/name");
+ sprintf(mpu.current_trigger, "%s%s", sysfs_path, "/trigger/current_trigger");
+
+ sprintf(mpu.dmp_firmware, "%s%s", sysfs_path,"/dmp_firmware");
+ sprintf(mpu.firmware_loaded,"%s%s", sysfs_path, "/firmware_loaded");
+ sprintf(mpu.dmp_on,"%s%s", sysfs_path, "/dmp_on");
+ sprintf(mpu.dmp_int_on,"%s%s", sysfs_path, "/dmp_int_on");
+ sprintf(mpu.dmp_event_int_on,"%s%s", sysfs_path, "/dmp_event_int_on");
+ sprintf(mpu.dmp_output_rate,"%s%s", sysfs_path, "/dmp_output_rate");
+ sprintf(mpu.tap_on, "%s%s", sysfs_path, "/tap_on");
+
+ // TODO: for self test
+ sprintf(mpu.self_test, "%s%s", sysfs_path, "/self_test");
+
+ sprintf(mpu.temperature, "%s%s", sysfs_path, "/temperature");
+ sprintf(mpu.gyro_enable, "%s%s", sysfs_path, "/gyro_enable");
+ sprintf(mpu.gyro_fifo_rate, "%s%s", sysfs_path, "/sampling_frequency");
+ sprintf(mpu.gyro_orient, "%s%s", sysfs_path, "/gyro_matrix");
+ sprintf(mpu.gyro_x_fifo_enable, "%s%s", sysfs_path, "/scan_elements/in_anglvel_x_en");
+ sprintf(mpu.gyro_y_fifo_enable, "%s%s", sysfs_path, "/scan_elements/in_anglvel_y_en");
+ sprintf(mpu.gyro_z_fifo_enable, "%s%s", sysfs_path, "/scan_elements/in_anglvel_z_en");
+
+ sprintf(mpu.accel_enable, "%s%s", sysfs_path, "/accl_enable");
+ sprintf(mpu.accel_fifo_rate, "%s%s", sysfs_path, "/sampling_frequency");
+ sprintf(mpu.accel_orient, "%s%s", sysfs_path, "/accl_matrix");
+
+
+#ifndef THIRD_PARTY_ACCEL //MPUxxxx
+ sprintf(mpu.accel_fsr, "%s%s", sysfs_path, "/in_accel_scale");
+ // TODO: for bias settings
+ sprintf(mpu.accel_bias, "%s%s", sysfs_path, "/accl_bias");
+#endif
+
+ sprintf(mpu.accel_x_fifo_enable, "%s%s", sysfs_path, "/scan_elements/in_accel_x_en");
+ sprintf(mpu.accel_y_fifo_enable, "%s%s", sysfs_path, "/scan_elements/in_accel_y_en");
+ sprintf(mpu.accel_z_fifo_enable, "%s%s", sysfs_path, "/scan_elements/in_accel_z_en");
+
+ sprintf(mpu.quaternion_on, "%s%s", sysfs_path, "/quaternion_on");
+ sprintf(mpu.in_quat_r_en, "%s%s", sysfs_path, "/scan_elements/in_quaternion_r_en");
+ sprintf(mpu.in_quat_x_en, "%s%s", sysfs_path, "/scan_elements/in_quaternion_x_en");
+ sprintf(mpu.in_quat_y_en, "%s%s", sysfs_path, "/scan_elements/in_quaternion_y_en");
+ sprintf(mpu.in_quat_z_en, "%s%s", sysfs_path, "/scan_elements/in_quaternion_z_en");
+
+ sprintf(mpu.display_orientation_on, "%s%s", sysfs_path, "/display_orientation_on");
+ sprintf(mpu.event_display_orientation, "%s%s", sysfs_path, "/event_display_orientation");
+
+#if SYSFS_VERBOSE
+ // test print sysfs paths
+ dptr = (char**)&mpu;
+ for (i = 0; i < MAX_SYSFS_ATTRB; i++) {
+ LOGE("HAL:sysfs path: %s", *dptr++);
+ }
+#endif
+ return 0;
+}
+
+/* TODO: stop manually testing/using 0 and 1 instead of
+ * false and true, but just use 0 and non-0.
+ * This allows passing 0 and non-0 ints around instead of
+ * having to convert to 1 and test against 1.
+ */
+bool MPLSensor::isMpu3050()
+{
+ return !strcmp(chip_ID, "mpu3050") || !strcmp(chip_ID, "MPU3050");
+}
+
+int MPLSensor::isLowPowerQuatEnabled()
+{
+#ifdef ENABLE_LP_QUAT_FEAT
+ return !isMpu3050();
+#else
+ return 0;
+#endif
+}
+
+int MPLSensor::isDmpDisplayOrientationOn()
+{
+#ifdef ENABLE_DMP_DISPL_ORIENT_FEAT
+ return !isMpu3050();
+#else
+ return 0;
+#endif
+}