/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsCpuIntrinsic.h" #include "rsCpuIntrinsicInlines.h" using namespace android; using namespace android::renderscript; namespace android { namespace renderscript { class RsdCpuScriptIntrinsicConvolve5x5 : public RsdCpuScriptIntrinsic { public: virtual void populateScript(Script *); virtual void invokeFreeChildren(); virtual void setGlobalVar(uint32_t slot, const void *data, size_t dataLength); virtual void setGlobalObj(uint32_t slot, ObjectBase *data); virtual ~RsdCpuScriptIntrinsicConvolve5x5(); RsdCpuScriptIntrinsicConvolve5x5(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); protected: float mFp[28]; short mIp[28]; ObjectBaseRef alloc; static void kernelU1(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep); static void kernelU2(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep); static void kernelU4(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep); static void kernelF1(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep); static void kernelF2(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep); static void kernelF4(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep); }; } } void RsdCpuScriptIntrinsicConvolve5x5::setGlobalObj(uint32_t slot, ObjectBase *data) { rsAssert(slot == 1); alloc.set(static_cast(data)); } void RsdCpuScriptIntrinsicConvolve5x5::setGlobalVar(uint32_t slot, const void *data, size_t dataLength) { rsAssert(slot == 0); memcpy (&mFp, data, dataLength); for(int ct=0; ct < 25; ct++) { if (mFp[ct] >= 0) { mIp[ct] = (short)(mFp[ct] * 256.f + 0.5f); } else { mIp[ct] = (short)(mFp[ct] * 256.f - 0.5f); } } } static void OneU4(const RsExpandKernelParams *p, uint32_t x, uchar4 *out, const uchar4 *py0, const uchar4 *py1, const uchar4 *py2, const uchar4 *py3, const uchar4 *py4, const float* coeff) { uint32_t x0 = rsMax((int32_t)x-2, 0); uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = x; uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(p->dimX-1)); uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(p->dimX-1)); float4 px = convert_float4(py0[x0]) * coeff[0] + convert_float4(py0[x1]) * coeff[1] + convert_float4(py0[x2]) * coeff[2] + convert_float4(py0[x3]) * coeff[3] + convert_float4(py0[x4]) * coeff[4] + convert_float4(py1[x0]) * coeff[5] + convert_float4(py1[x1]) * coeff[6] + convert_float4(py1[x2]) * coeff[7] + convert_float4(py1[x3]) * coeff[8] + convert_float4(py1[x4]) * coeff[9] + convert_float4(py2[x0]) * coeff[10] + convert_float4(py2[x1]) * coeff[11] + convert_float4(py2[x2]) * coeff[12] + convert_float4(py2[x3]) * coeff[13] + convert_float4(py2[x4]) * coeff[14] + convert_float4(py3[x0]) * coeff[15] + convert_float4(py3[x1]) * coeff[16] + convert_float4(py3[x2]) * coeff[17] + convert_float4(py3[x3]) * coeff[18] + convert_float4(py3[x4]) * coeff[19] + convert_float4(py4[x0]) * coeff[20] + convert_float4(py4[x1]) * coeff[21] + convert_float4(py4[x2]) * coeff[22] + convert_float4(py4[x3]) * coeff[23] + convert_float4(py4[x4]) * coeff[24]; px = clamp(px, 0.f, 255.f); *out = convert_uchar4(px); } static void OneU2(const RsExpandKernelParams *p, uint32_t x, uchar2 *out, const uchar2 *py0, const uchar2 *py1, const uchar2 *py2, const uchar2 *py3, const uchar2 *py4, const float* coeff) { uint32_t x0 = rsMax((int32_t)x-2, 0); uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = x; uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(p->dimX-1)); uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(p->dimX-1)); float2 px = convert_float2(py0[x0]) * coeff[0] + convert_float2(py0[x1]) * coeff[1] + convert_float2(py0[x2]) * coeff[2] + convert_float2(py0[x3]) * coeff[3] + convert_float2(py0[x4]) * coeff[4] + convert_float2(py1[x0]) * coeff[5] + convert_float2(py1[x1]) * coeff[6] + convert_float2(py1[x2]) * coeff[7] + convert_float2(py1[x3]) * coeff[8] + convert_float2(py1[x4]) * coeff[9] + convert_float2(py2[x0]) * coeff[10] + convert_float2(py2[x1]) * coeff[11] + convert_float2(py2[x2]) * coeff[12] + convert_float2(py2[x3]) * coeff[13] + convert_float2(py2[x4]) * coeff[14] + convert_float2(py3[x0]) * coeff[15] + convert_float2(py3[x1]) * coeff[16] + convert_float2(py3[x2]) * coeff[17] + convert_float2(py3[x3]) * coeff[18] + convert_float2(py3[x4]) * coeff[19] + convert_float2(py4[x0]) * coeff[20] + convert_float2(py4[x1]) * coeff[21] + convert_float2(py4[x2]) * coeff[22] + convert_float2(py4[x3]) * coeff[23] + convert_float2(py4[x4]) * coeff[24]; px = clamp(px, 0.f, 255.f); *out = convert_uchar2(px); } static void OneU1(const RsExpandKernelParams *p, uint32_t x, uchar *out, const uchar *py0, const uchar *py1, const uchar *py2, const uchar *py3, const uchar *py4, const float* coeff) { uint32_t x0 = rsMax((int32_t)x-2, 0); uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = x; uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(p->dimX-1)); uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(p->dimX-1)); float px = (float)(py0[x0]) * coeff[0] + (float)(py0[x1]) * coeff[1] + (float)(py0[x2]) * coeff[2] + (float)(py0[x3]) * coeff[3] + (float)(py0[x4]) * coeff[4] + (float)(py1[x0]) * coeff[5] + (float)(py1[x1]) * coeff[6] + (float)(py1[x2]) * coeff[7] + (float)(py1[x3]) * coeff[8] + (float)(py1[x4]) * coeff[9] + (float)(py2[x0]) * coeff[10] + (float)(py2[x1]) * coeff[11] + (float)(py2[x2]) * coeff[12] + (float)(py2[x3]) * coeff[13] + (float)(py2[x4]) * coeff[14] + (float)(py3[x0]) * coeff[15] + (float)(py3[x1]) * coeff[16] + (float)(py3[x2]) * coeff[17] + (float)(py3[x3]) * coeff[18] + (float)(py3[x4]) * coeff[19] + (float)(py4[x0]) * coeff[20] + (float)(py4[x1]) * coeff[21] + (float)(py4[x2]) * coeff[22] + (float)(py4[x3]) * coeff[23] + (float)(py4[x4]) * coeff[24]; px = clamp(px, 0.f, 255.f); *out = px; } static void OneF4(const RsExpandKernelParams *p, uint32_t x, float4 *out, const float4 *py0, const float4 *py1, const float4 *py2, const float4 *py3, const float4 *py4, const float* coeff) { uint32_t x0 = rsMax((int32_t)x-2, 0); uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = x; uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(p->dimX-1)); uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(p->dimX-1)); float4 px = py0[x0] * coeff[0] + py0[x1] * coeff[1] + py0[x2] * coeff[2] + py0[x3] * coeff[3] + py0[x4] * coeff[4] + py1[x0] * coeff[5] + py1[x1] * coeff[6] + py1[x2] * coeff[7] + py1[x3] * coeff[8] + py1[x4] * coeff[9] + py2[x0] * coeff[10] + py2[x1] * coeff[11] + py2[x2] * coeff[12] + py2[x3] * coeff[13] + py2[x4] * coeff[14] + py3[x0] * coeff[15] + py3[x1] * coeff[16] + py3[x2] * coeff[17] + py3[x3] * coeff[18] + py3[x4] * coeff[19] + py4[x0] * coeff[20] + py4[x1] * coeff[21] + py4[x2] * coeff[22] + py4[x3] * coeff[23] + py4[x4] * coeff[24]; *out = px; } static void OneF2(const RsExpandKernelParams *p, uint32_t x, float2 *out, const float2 *py0, const float2 *py1, const float2 *py2, const float2 *py3, const float2 *py4, const float* coeff) { uint32_t x0 = rsMax((int32_t)x-2, 0); uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = x; uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(p->dimX-1)); uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(p->dimX-1)); float2 px = py0[x0] * coeff[0] + py0[x1] * coeff[1] + py0[x2] * coeff[2] + py0[x3] * coeff[3] + py0[x4] * coeff[4] + py1[x0] * coeff[5] + py1[x1] * coeff[6] + py1[x2] * coeff[7] + py1[x3] * coeff[8] + py1[x4] * coeff[9] + py2[x0] * coeff[10] + py2[x1] * coeff[11] + py2[x2] * coeff[12] + py2[x3] * coeff[13] + py2[x4] * coeff[14] + py3[x0] * coeff[15] + py3[x1] * coeff[16] + py3[x2] * coeff[17] + py3[x3] * coeff[18] + py3[x4] * coeff[19] + py4[x0] * coeff[20] + py4[x1] * coeff[21] + py4[x2] * coeff[22] + py4[x3] * coeff[23] + py4[x4] * coeff[24]; *out = px; } static void OneF1(const RsExpandKernelParams *p, uint32_t x, float *out, const float *py0, const float *py1, const float *py2, const float *py3, const float *py4, const float* coeff) { uint32_t x0 = rsMax((int32_t)x-2, 0); uint32_t x1 = rsMax((int32_t)x-1, 0); uint32_t x2 = x; uint32_t x3 = rsMin((int32_t)x+1, (int32_t)(p->dimX-1)); uint32_t x4 = rsMin((int32_t)x+2, (int32_t)(p->dimX-1)); float px = py0[x0] * coeff[0] + py0[x1] * coeff[1] + py0[x2] * coeff[2] + py0[x3] * coeff[3] + py0[x4] * coeff[4] + py1[x0] * coeff[5] + py1[x1] * coeff[6] + py1[x2] * coeff[7] + py1[x3] * coeff[8] + py1[x4] * coeff[9] + py2[x0] * coeff[10] + py2[x1] * coeff[11] + py2[x2] * coeff[12] + py2[x3] * coeff[13] + py2[x4] * coeff[14] + py3[x0] * coeff[15] + py3[x1] * coeff[16] + py3[x2] * coeff[17] + py3[x3] * coeff[18] + py3[x4] * coeff[19] + py4[x0] * coeff[20] + py4[x1] * coeff[21] + py4[x2] * coeff[22] + py4[x3] * coeff[23] + py4[x4] * coeff[24]; *out = px; } extern "C" void rsdIntrinsicConvolve5x5_K(void *dst, const void *y0, const void *y1, const void *y2, const void *y3, const void *y4, const short *coef, uint32_t count); void RsdCpuScriptIntrinsicConvolve5x5::kernelU4(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)p->usr; if (!cp->alloc.get()) { ALOGE("Convolve5x5 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->alloc->mHal.drvState.lod[0].stride; uint32_t y0 = rsMax((int32_t)p->y-2, 0); uint32_t y1 = rsMax((int32_t)p->y-1, 0); uint32_t y2 = p->y; uint32_t y3 = rsMin((int32_t)p->y+1, (int32_t)(p->dimY-1)); uint32_t y4 = rsMin((int32_t)p->y+2, (int32_t)(p->dimY-1)); const uchar4 *py0 = (const uchar4 *)(pin + stride * y0); const uchar4 *py1 = (const uchar4 *)(pin + stride * y1); const uchar4 *py2 = (const uchar4 *)(pin + stride * y2); const uchar4 *py3 = (const uchar4 *)(pin + stride * y3); const uchar4 *py4 = (const uchar4 *)(pin + stride * y4); uchar4 *out = (uchar4 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; while((x1 < x2) && (x1 < 2)) { OneU4(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } #if defined(ARCH_X86_HAVE_SSSE3) // for x86 SIMD, require minimum of 7 elements (4 for SIMD, // 3 for end boundary where x may hit the end boundary) if (gArchUseSIMD &&((x1 + 6) < x2)) { // subtract 3 for end boundary uint32_t len = (x2 - x1 - 3) >> 2; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->mIp, len); out += len << 2; x1 += len << 2; } #endif #if defined(ARCH_ARM_USE_INTRINSICS) if(gArchUseSIMD && ((x1 + 3) < x2)) { uint32_t len = (x2 - x1 - 3) >> 1; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->mIp, len); out += len << 1; x1 += len << 1; } #endif while(x1 < x2) { OneU4(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } } void RsdCpuScriptIntrinsicConvolve5x5::kernelU2(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)p->usr; if (!cp->alloc.get()) { ALOGE("Convolve5x5 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->alloc->mHal.drvState.lod[0].stride; uint32_t y0 = rsMax((int32_t)p->y-2, 0); uint32_t y1 = rsMax((int32_t)p->y-1, 0); uint32_t y2 = p->y; uint32_t y3 = rsMin((int32_t)p->y+1, (int32_t)(p->dimY-1)); uint32_t y4 = rsMin((int32_t)p->y+2, (int32_t)(p->dimY-1)); const uchar2 *py0 = (const uchar2 *)(pin + stride * y0); const uchar2 *py1 = (const uchar2 *)(pin + stride * y1); const uchar2 *py2 = (const uchar2 *)(pin + stride * y2); const uchar2 *py3 = (const uchar2 *)(pin + stride * y3); const uchar2 *py4 = (const uchar2 *)(pin + stride * y4); uchar2 *out = (uchar2 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; while((x1 < x2) && (x1 < 2)) { OneU2(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } #if 0//defined(ARCH_ARM_HAVE_NEON) if((x1 + 3) < x2) { uint32_t len = (x2 - x1 - 3) >> 1; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len); out += len << 1; x1 += len << 1; } #endif while(x1 < x2) { OneU2(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } } void RsdCpuScriptIntrinsicConvolve5x5::kernelU1(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)p->usr; if (!cp->alloc.get()) { ALOGE("Convolve5x5 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->alloc->mHal.drvState.lod[0].stride; uint32_t y0 = rsMax((int32_t)p->y-2, 0); uint32_t y1 = rsMax((int32_t)p->y-1, 0); uint32_t y2 = p->y; uint32_t y3 = rsMin((int32_t)p->y+1, (int32_t)(p->dimY-1)); uint32_t y4 = rsMin((int32_t)p->y+2, (int32_t)(p->dimY-1)); const uchar *py0 = (const uchar *)(pin + stride * y0); const uchar *py1 = (const uchar *)(pin + stride * y1); const uchar *py2 = (const uchar *)(pin + stride * y2); const uchar *py3 = (const uchar *)(pin + stride * y3); const uchar *py4 = (const uchar *)(pin + stride * y4); uchar *out = (uchar *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; while((x1 < x2) && (x1 < 2)) { OneU1(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } #if 0//defined(ARCH_ARM_HAVE_NEON) if((x1 + 3) < x2) { uint32_t len = (x2 - x1 - 3) >> 1; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len); out += len << 1; x1 += len << 1; } #endif while(x1 < x2) { OneU1(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } } void RsdCpuScriptIntrinsicConvolve5x5::kernelF4(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)p->usr; if (!cp->alloc.get()) { ALOGE("Convolve5x5 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->alloc->mHal.drvState.lod[0].stride; uint32_t y0 = rsMax((int32_t)p->y-2, 0); uint32_t y1 = rsMax((int32_t)p->y-1, 0); uint32_t y2 = p->y; uint32_t y3 = rsMin((int32_t)p->y+1, (int32_t)(p->dimY-1)); uint32_t y4 = rsMin((int32_t)p->y+2, (int32_t)(p->dimY-1)); const float4 *py0 = (const float4 *)(pin + stride * y0); const float4 *py1 = (const float4 *)(pin + stride * y1); const float4 *py2 = (const float4 *)(pin + stride * y2); const float4 *py3 = (const float4 *)(pin + stride * y3); const float4 *py4 = (const float4 *)(pin + stride * y4); float4 *out = (float4 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; while((x1 < x2) && (x1 < 2)) { OneF4(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } #if 0//defined(ARCH_ARM_HAVE_NEON) if((x1 + 3) < x2) { uint32_t len = (x2 - x1 - 3) >> 1; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len); out += len << 1; x1 += len << 1; } #endif while(x1 < x2) { OneF4(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } } void RsdCpuScriptIntrinsicConvolve5x5::kernelF2(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)p->usr; if (!cp->alloc.get()) { ALOGE("Convolve5x5 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->alloc->mHal.drvState.lod[0].stride; uint32_t y0 = rsMax((int32_t)p->y-2, 0); uint32_t y1 = rsMax((int32_t)p->y-1, 0); uint32_t y2 = p->y; uint32_t y3 = rsMin((int32_t)p->y+1, (int32_t)(p->dimY-1)); uint32_t y4 = rsMin((int32_t)p->y+2, (int32_t)(p->dimY-1)); const float2 *py0 = (const float2 *)(pin + stride * y0); const float2 *py1 = (const float2 *)(pin + stride * y1); const float2 *py2 = (const float2 *)(pin + stride * y2); const float2 *py3 = (const float2 *)(pin + stride * y3); const float2 *py4 = (const float2 *)(pin + stride * y4); float2 *out = (float2 *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; while((x1 < x2) && (x1 < 2)) { OneF2(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } #if 0//defined(ARCH_ARM_HAVE_NEON) if((x1 + 3) < x2) { uint32_t len = (x2 - x1 - 3) >> 1; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len); out += len << 1; x1 += len << 1; } #endif while(x1 < x2) { OneF2(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } } void RsdCpuScriptIntrinsicConvolve5x5::kernelF1(const RsExpandKernelParams *p, uint32_t xstart, uint32_t xend, uint32_t outstep) { RsdCpuScriptIntrinsicConvolve5x5 *cp = (RsdCpuScriptIntrinsicConvolve5x5 *)p->usr; if (!cp->alloc.get()) { ALOGE("Convolve5x5 executed without input, skipping"); return; } const uchar *pin = (const uchar *)cp->alloc->mHal.drvState.lod[0].mallocPtr; const size_t stride = cp->alloc->mHal.drvState.lod[0].stride; uint32_t y0 = rsMax((int32_t)p->y-2, 0); uint32_t y1 = rsMax((int32_t)p->y-1, 0); uint32_t y2 = p->y; uint32_t y3 = rsMin((int32_t)p->y+1, (int32_t)(p->dimY-1)); uint32_t y4 = rsMin((int32_t)p->y+2, (int32_t)(p->dimY-1)); const float *py0 = (const float *)(pin + stride * y0); const float *py1 = (const float *)(pin + stride * y1); const float *py2 = (const float *)(pin + stride * y2); const float *py3 = (const float *)(pin + stride * y3); const float *py4 = (const float *)(pin + stride * y4); float *out = (float *)p->out; uint32_t x1 = xstart; uint32_t x2 = xend; while((x1 < x2) && (x1 < 2)) { OneF1(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } #if 0//defined(ARCH_ARM_HAVE_NEON) if((x1 + 3) < x2) { uint32_t len = (x2 - x1 - 3) >> 1; rsdIntrinsicConvolve5x5_K(out, py0, py1, py2, py3, py4, cp->ip, len); out += len << 1; x1 += len << 1; } #endif while(x1 < x2) { OneF1(p, x1, out, py0, py1, py2, py3, py4, cp->mFp); out++; x1++; } } RsdCpuScriptIntrinsicConvolve5x5::RsdCpuScriptIntrinsicConvolve5x5( RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) : RsdCpuScriptIntrinsic(ctx, s, e, RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5) { if (e->getType() == RS_TYPE_FLOAT_32) { switch(e->getVectorSize()) { case 1: mRootPtr = &kernelF1; break; case 2: mRootPtr = &kernelF2; break; case 3: case 4: mRootPtr = &kernelF4; break; } } else { switch(e->getVectorSize()) { case 1: mRootPtr = &kernelU1; break; case 2: mRootPtr = &kernelU2; break; case 3: case 4: mRootPtr = &kernelU4; break; } } for(int ct=0; ct < 25; ct++) { mFp[ct] = 1.f / 25.f; mIp[ct] = (short)(mFp[ct] * 256.f); } } RsdCpuScriptIntrinsicConvolve5x5::~RsdCpuScriptIntrinsicConvolve5x5() { } void RsdCpuScriptIntrinsicConvolve5x5::populateScript(Script *s) { s->mHal.info.exportedVariableCount = 2; } void RsdCpuScriptIntrinsicConvolve5x5::invokeFreeChildren() { alloc.clear(); } RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) { return new RsdCpuScriptIntrinsicConvolve5x5(ctx, s, e); }