// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_UTILS_H_ #define V8_UTILS_H_ #include #include namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // General helper functions #define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0) // Returns true iff x is a power of 2 (or zero). Cannot be used with the // maximally negative value of the type T (the -1 overflows). template static inline bool IsPowerOf2(T x) { return IS_POWER_OF_TWO(x); } // The C++ standard leaves the semantics of '>>' undefined for // negative signed operands. Most implementations do the right thing, // though. static inline int ArithmeticShiftRight(int x, int s) { return x >> s; } // Compute the 0-relative offset of some absolute value x of type T. // This allows conversion of Addresses and integral types into // 0-relative int offsets. template static inline intptr_t OffsetFrom(T x) { return x - static_cast(0); } // Compute the absolute value of type T for some 0-relative offset x. // This allows conversion of 0-relative int offsets into Addresses and // integral types. template static inline T AddressFrom(intptr_t x) { return static_cast(static_cast(0) + x); } // Return the largest multiple of m which is <= x. template static inline T RoundDown(T x, int m) { ASSERT(IsPowerOf2(m)); return AddressFrom(OffsetFrom(x) & -m); } // Return the smallest multiple of m which is >= x. template static inline T RoundUp(T x, int m) { return RoundDown(x + m - 1, m); } template static int Compare(const T& a, const T& b) { if (a == b) return 0; else if (a < b) return -1; else return 1; } template static int PointerValueCompare(const T* a, const T* b) { return Compare(*a, *b); } // Returns the smallest power of two which is >= x. If you pass in a // number that is already a power of two, it is returned as is. uint32_t RoundUpToPowerOf2(uint32_t x); template static inline bool IsAligned(T value, T alignment) { ASSERT(IsPowerOf2(alignment)); return (value & (alignment - 1)) == 0; } // Returns true if (addr + offset) is aligned. static inline bool IsAddressAligned(Address addr, intptr_t alignment, int offset) { intptr_t offs = OffsetFrom(addr + offset); return IsAligned(offs, alignment); } // Returns the maximum of the two parameters. template static T Max(T a, T b) { return a < b ? b : a; } // Returns the minimum of the two parameters. template static T Min(T a, T b) { return a < b ? a : b; } inline int StrLength(const char* string) { size_t length = strlen(string); ASSERT(length == static_cast(static_cast(length))); return static_cast(length); } // ---------------------------------------------------------------------------- // BitField is a help template for encoding and decode bitfield with // unsigned content. template class BitField { public: // Tells whether the provided value fits into the bit field. static bool is_valid(T value) { return (static_cast(value) & ~((1U << (size)) - 1)) == 0; } // Returns a uint32_t mask of bit field. static uint32_t mask() { // To use all bits of a uint32 in a bitfield without compiler warnings we // have to compute 2^32 without using a shift count of 32. return ((1U << shift) << size) - (1U << shift); } // Returns a uint32_t with the bit field value encoded. static uint32_t encode(T value) { ASSERT(is_valid(value)); return static_cast(value) << shift; } // Extracts the bit field from the value. static T decode(uint32_t value) { return static_cast((value & mask()) >> shift); } }; // ---------------------------------------------------------------------------- // Hash function. uint32_t ComputeIntegerHash(uint32_t key); // ---------------------------------------------------------------------------- // I/O support. // Our version of printf(). Avoids compilation errors that we get // with standard printf when attempting to print pointers, etc. // (the errors are due to the extra compilation flags, which we // want elsewhere). void PrintF(const char* format, ...); // Our version of fflush. void Flush(); // Read a line of characters after printing the prompt to stdout. The resulting // char* needs to be disposed off with DeleteArray by the caller. char* ReadLine(const char* prompt); // Read and return the raw bytes in a file. the size of the buffer is returned // in size. // The returned buffer must be freed by the caller. byte* ReadBytes(const char* filename, int* size, bool verbose = true); // Write size chars from str to the file given by filename. // The file is overwritten. Returns the number of chars written. int WriteChars(const char* filename, const char* str, int size, bool verbose = true); // Write size bytes to the file given by filename. // The file is overwritten. Returns the number of bytes written. int WriteBytes(const char* filename, const byte* bytes, int size, bool verbose = true); // Write the C code // const char* = ""; // const int _len = ; // to the file given by filename. Only the first len chars are written. int WriteAsCFile(const char* filename, const char* varname, const char* str, int size, bool verbose = true); // ---------------------------------------------------------------------------- // Miscellaneous // A static resource holds a static instance that can be reserved in // a local scope using an instance of Access. Attempts to re-reserve // the instance will cause an error. template class StaticResource { public: StaticResource() : is_reserved_(false) {} private: template friend class Access; T instance_; bool is_reserved_; }; // Locally scoped access to a static resource. template class Access { public: explicit Access(StaticResource* resource) : resource_(resource) , instance_(&resource->instance_) { ASSERT(!resource->is_reserved_); resource->is_reserved_ = true; } ~Access() { resource_->is_reserved_ = false; resource_ = NULL; instance_ = NULL; } T* value() { return instance_; } T* operator -> () { return instance_; } private: StaticResource* resource_; T* instance_; }; template class Vector { public: Vector() : start_(NULL), length_(0) {} Vector(T* data, int length) : start_(data), length_(length) { ASSERT(length == 0 || (length > 0 && data != NULL)); } static Vector New(int length) { return Vector(NewArray(length), length); } // Returns a vector using the same backing storage as this one, // spanning from and including 'from', to but not including 'to'. Vector SubVector(int from, int to) { ASSERT(from < length_); ASSERT(to <= length_); ASSERT(from < to); return Vector(start() + from, to - from); } // Returns the length of the vector. int length() const { return length_; } // Returns whether or not the vector is empty. bool is_empty() const { return length_ == 0; } // Returns the pointer to the start of the data in the vector. T* start() const { return start_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](int index) const { ASSERT(0 <= index && index < length_); return start_[index]; } T& first() { return start_[0]; } T& last() { return start_[length_ - 1]; } // Returns a clone of this vector with a new backing store. Vector Clone() const { T* result = NewArray(length_); for (int i = 0; i < length_; i++) result[i] = start_[i]; return Vector(result, length_); } void Sort(int (*cmp)(const T*, const T*)) { typedef int (*RawComparer)(const void*, const void*); qsort(start(), length(), sizeof(T), reinterpret_cast(cmp)); } void Sort() { Sort(PointerValueCompare); } void Truncate(int length) { ASSERT(length <= length_); length_ = length; } // Releases the array underlying this vector. Once disposed the // vector is empty. void Dispose() { DeleteArray(start_); start_ = NULL; length_ = 0; } inline Vector operator+(int offset) { ASSERT(offset < length_); return Vector(start_ + offset, length_ - offset); } // Factory method for creating empty vectors. static Vector empty() { return Vector(NULL, 0); } protected: void set_start(T* start) { start_ = start; } private: T* start_; int length_; }; // A temporary assignment sets a (non-local) variable to a value on // construction and resets it the value on destruction. template class TempAssign { public: TempAssign(T* var, T value): var_(var), old_value_(*var) { *var = value; } ~TempAssign() { *var_ = old_value_; } private: T* var_; T old_value_; }; template class EmbeddedVector : public Vector { public: EmbeddedVector() : Vector(buffer_, kSize) { } // When copying, make underlying Vector to reference our buffer. EmbeddedVector(const EmbeddedVector& rhs) : Vector(rhs) { memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize); set_start(buffer_); } EmbeddedVector& operator=(const EmbeddedVector& rhs) { if (this == &rhs) return *this; Vector::operator=(rhs); memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize); this->set_start(buffer_); return *this; } private: T buffer_[kSize]; }; template class ScopedVector : public Vector { public: explicit ScopedVector(int length) : Vector(NewArray(length), length) { } ~ScopedVector() { DeleteArray(this->start()); } private: DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector); }; inline Vector CStrVector(const char* data) { return Vector(data, StrLength(data)); } inline Vector MutableCStrVector(char* data) { return Vector(data, StrLength(data)); } inline Vector MutableCStrVector(char* data, int max) { int length = StrLength(data); return Vector(data, (length < max) ? length : max); } template inline Vector< Handle > HandleVector(v8::internal::Handle* elms, int length) { return Vector< Handle >( reinterpret_cast*>(elms), length); } // Simple support to read a file into a 0-terminated C-string. // The returned buffer must be freed by the caller. // On return, *exits tells whether the file existed. Vector ReadFile(const char* filename, bool* exists, bool verbose = true); // Simple wrapper that allows an ExternalString to refer to a // Vector. Doesn't assume ownership of the data. class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource { public: explicit AsciiStringAdapter(Vector data) : data_(data) {} virtual const char* data() const { return data_.start(); } virtual size_t length() const { return data_.length(); } private: Vector data_; }; // Helper class for building result strings in a character buffer. The // purpose of the class is to use safe operations that checks the // buffer bounds on all operations in debug mode. class StringBuilder { public: // Create a string builder with a buffer of the given size. The // buffer is allocated through NewArray and must be // deallocated by the caller of Finalize(). explicit StringBuilder(int size); StringBuilder(char* buffer, int size) : buffer_(buffer, size), position_(0) { } ~StringBuilder() { if (!is_finalized()) Finalize(); } int size() const { return buffer_.length(); } // Get the current position in the builder. int position() const { ASSERT(!is_finalized()); return position_; } // Reset the position. void Reset() { position_ = 0; } // Add a single character to the builder. It is not allowed to add // 0-characters; use the Finalize() method to terminate the string // instead. void AddCharacter(char c) { ASSERT(c != '\0'); ASSERT(!is_finalized() && position_ < buffer_.length()); buffer_[position_++] = c; } // Add an entire string to the builder. Uses strlen() internally to // compute the length of the input string. void AddString(const char* s); // Add the first 'n' characters of the given string 's' to the // builder. The input string must have enough characters. void AddSubstring(const char* s, int n); // Add formatted contents to the builder just like printf(). void AddFormatted(const char* format, ...); // Add character padding to the builder. If count is non-positive, // nothing is added to the builder. void AddPadding(char c, int count); // Finalize the string by 0-terminating it and returning the buffer. char* Finalize(); private: Vector buffer_; int position_; bool is_finalized() const { return position_ < 0; } DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); }; // Custom memcpy implementation for platforms where the standard version // may not be good enough. // TODO(lrn): Check whether some IA32 platforms should be excluded. #if defined(V8_TARGET_ARCH_IA32) // TODO(lrn): Extend to other platforms as needed. typedef void (*MemCopyFunction)(void* dest, const void* src, size_t size); // Implemented in codegen-.cc. MemCopyFunction CreateMemCopyFunction(); // Copy memory area to disjoint memory area. static inline void MemCopy(void* dest, const void* src, size_t size) { static MemCopyFunction memcopy = CreateMemCopyFunction(); (*memcopy)(dest, src, size); #ifdef DEBUG CHECK_EQ(0, memcmp(dest, src, size)); #endif } // Limit below which the extra overhead of the MemCopy function is likely // to outweigh the benefits of faster copying. // TODO(lrn): Try to find a more precise value. static const int kMinComplexMemCopy = 256; #else // V8_TARGET_ARCH_IA32 static inline void MemCopy(void* dest, const void* src, size_t size) { memcpy(dest, src, size); } static const int kMinComplexMemCopy = 256; #endif // V8_TARGET_ARCH_IA32 // Copy from ASCII/16bit chars to ASCII/16bit chars. template static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) { sinkchar* limit = dest + chars; #ifdef V8_HOST_CAN_READ_UNALIGNED if (sizeof(*dest) == sizeof(*src)) { if (chars >= static_cast(kMinComplexMemCopy / sizeof(*dest))) { MemCopy(dest, src, chars * sizeof(*dest)); return; } // Number of characters in a uintptr_t. static const int kStepSize = sizeof(uintptr_t) / sizeof(*dest); // NOLINT while (dest <= limit - kStepSize) { *reinterpret_cast(dest) = *reinterpret_cast(src); dest += kStepSize; src += kStepSize; } } #endif while (dest < limit) { *dest++ = static_cast(*src++); } } // Compare ASCII/16bit chars to ASCII/16bit chars. template static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) { const lchar* limit = lhs + chars; #ifdef V8_HOST_CAN_READ_UNALIGNED if (sizeof(*lhs) == sizeof(*rhs)) { // Number of characters in a uintptr_t. static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT while (lhs <= limit - kStepSize) { if (*reinterpret_cast(lhs) != *reinterpret_cast(rhs)) { break; } lhs += kStepSize; rhs += kStepSize; } } #endif while (lhs < limit) { int r = static_cast(*lhs) - static_cast(*rhs); if (r != 0) return r; ++lhs; ++rhs; } return 0; } template static inline void MemsetPointer(T** dest, T* value, int counter) { #if defined(V8_HOST_ARCH_IA32) #define STOS "stosl" #elif defined(V8_HOST_ARCH_X64) #define STOS "stosq" #endif #if defined(__GNUC__) && defined(STOS) asm volatile( "cld;" "rep ; " STOS : "+&c" (counter), "+&D" (dest) : "a" (value) : "memory", "cc"); #else for (int i = 0; i < counter; i++) { dest[i] = value; } #endif #undef STOS } // Copies data from |src| to |dst|. The data spans MUST not overlap. inline void CopyWords(Object** dst, Object** src, int num_words) { ASSERT(Min(dst, src) + num_words <= Max(dst, src)); ASSERT(num_words > 0); // Use block copying memcpy if the segment we're copying is // enough to justify the extra call/setup overhead. static const int kBlockCopyLimit = 16; if (num_words >= kBlockCopyLimit) { memcpy(dst, src, num_words * kPointerSize); } else { int remaining = num_words; do { remaining--; *dst++ = *src++; } while (remaining > 0); } } // Calculate 10^exponent. int TenToThe(int exponent); // The type-based aliasing rule allows the compiler to assume that pointers of // different types (for some definition of different) never alias each other. // Thus the following code does not work: // // float f = foo(); // int fbits = *(int*)(&f); // // The compiler 'knows' that the int pointer can't refer to f since the types // don't match, so the compiler may cache f in a register, leaving random data // in fbits. Using C++ style casts makes no difference, however a pointer to // char data is assumed to alias any other pointer. This is the 'memcpy // exception'. // // Bit_cast uses the memcpy exception to move the bits from a variable of one // type of a variable of another type. Of course the end result is likely to // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) // will completely optimize BitCast away. // // There is an additional use for BitCast. // Recent gccs will warn when they see casts that may result in breakage due to // the type-based aliasing rule. If you have checked that there is no breakage // you can use BitCast to cast one pointer type to another. This confuses gcc // enough that it can no longer see that you have cast one pointer type to // another thus avoiding the warning. template inline Dest BitCast(const Source& source) { // Compile time assertion: sizeof(Dest) == sizeof(Source) // A compile error here means your Dest and Source have different sizes. typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; Dest dest; memcpy(&dest, &source, sizeof(dest)); return dest; } } } // namespace v8::internal #endif // V8_UTILS_H_