// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "liveobjectlist-inl.h" #include "macro-assembler.h" #include "mark-compact.h" #include "platform.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // HeapObjectIterator HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { // You can't actually iterate over the anchor page. It is not a real page, // just an anchor for the double linked page list. Initialize as if we have // reached the end of the anchor page, then the first iteration will move on // to the first page. Initialize(space, NULL, NULL, kAllPagesInSpace, NULL); } HeapObjectIterator::HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func) { // You can't actually iterate over the anchor page. It is not a real page, // just an anchor for the double linked page list. Initialize the current // address and end as NULL, then the first iteration will move on // to the first page. Initialize(space, NULL, NULL, kAllPagesInSpace, size_func); } HeapObjectIterator::HeapObjectIterator(Page* page, HeapObjectCallback size_func) { Space* owner = page->owner(); ASSERT(owner == HEAP->old_pointer_space() || owner == HEAP->old_data_space() || owner == HEAP->map_space() || owner == HEAP->cell_space() || owner == HEAP->code_space()); Initialize(reinterpret_cast(owner), page->area_start(), page->area_end(), kOnePageOnly, size_func); ASSERT(page->WasSweptPrecisely()); } void HeapObjectIterator::Initialize(PagedSpace* space, Address cur, Address end, HeapObjectIterator::PageMode mode, HeapObjectCallback size_f) { // Check that we actually can iterate this space. ASSERT(!space->was_swept_conservatively()); space_ = space; cur_addr_ = cur; cur_end_ = end; page_mode_ = mode; size_func_ = size_f; } // We have hit the end of the page and should advance to the next block of // objects. This happens at the end of the page. bool HeapObjectIterator::AdvanceToNextPage() { ASSERT(cur_addr_ == cur_end_); if (page_mode_ == kOnePageOnly) return false; Page* cur_page; if (cur_addr_ == NULL) { cur_page = space_->anchor(); } else { cur_page = Page::FromAddress(cur_addr_ - 1); ASSERT(cur_addr_ == cur_page->area_end()); } cur_page = cur_page->next_page(); if (cur_page == space_->anchor()) return false; cur_addr_ = cur_page->area_start(); cur_end_ = cur_page->area_end(); ASSERT(cur_page->WasSweptPrecisely()); return true; } // ----------------------------------------------------------------------------- // CodeRange CodeRange::CodeRange(Isolate* isolate) : isolate_(isolate), code_range_(NULL), free_list_(0), allocation_list_(0), current_allocation_block_index_(0) { } bool CodeRange::SetUp(const size_t requested) { ASSERT(code_range_ == NULL); code_range_ = new VirtualMemory(requested); CHECK(code_range_ != NULL); if (!code_range_->IsReserved()) { delete code_range_; code_range_ = NULL; return false; } // We are sure that we have mapped a block of requested addresses. ASSERT(code_range_->size() == requested); LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested)); Address base = reinterpret_cast
(code_range_->address()); Address aligned_base = RoundUp(reinterpret_cast
(code_range_->address()), MemoryChunk::kAlignment); size_t size = code_range_->size() - (aligned_base - base); allocation_list_.Add(FreeBlock(aligned_base, size)); current_allocation_block_index_ = 0; return true; } int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, const FreeBlock* right) { // The entire point of CodeRange is that the difference between two // addresses in the range can be represented as a signed 32-bit int, // so the cast is semantically correct. return static_cast(left->start - right->start); } void CodeRange::GetNextAllocationBlock(size_t requested) { for (current_allocation_block_index_++; current_allocation_block_index_ < allocation_list_.length(); current_allocation_block_index_++) { if (requested <= allocation_list_[current_allocation_block_index_].size) { return; // Found a large enough allocation block. } } // Sort and merge the free blocks on the free list and the allocation list. free_list_.AddAll(allocation_list_); allocation_list_.Clear(); free_list_.Sort(&CompareFreeBlockAddress); for (int i = 0; i < free_list_.length();) { FreeBlock merged = free_list_[i]; i++; // Add adjacent free blocks to the current merged block. while (i < free_list_.length() && free_list_[i].start == merged.start + merged.size) { merged.size += free_list_[i].size; i++; } if (merged.size > 0) { allocation_list_.Add(merged); } } free_list_.Clear(); for (current_allocation_block_index_ = 0; current_allocation_block_index_ < allocation_list_.length(); current_allocation_block_index_++) { if (requested <= allocation_list_[current_allocation_block_index_].size) { return; // Found a large enough allocation block. } } // Code range is full or too fragmented. V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock"); } Address CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) { ASSERT(current_allocation_block_index_ < allocation_list_.length()); if (requested > allocation_list_[current_allocation_block_index_].size) { // Find an allocation block large enough. This function call may // call V8::FatalProcessOutOfMemory if it cannot find a large enough block. GetNextAllocationBlock(requested); } // Commit the requested memory at the start of the current allocation block. size_t aligned_requested = RoundUp(requested, MemoryChunk::kAlignment); FreeBlock current = allocation_list_[current_allocation_block_index_]; if (aligned_requested >= (current.size - Page::kPageSize)) { // Don't leave a small free block, useless for a large object or chunk. *allocated = current.size; } else { *allocated = aligned_requested; } ASSERT(*allocated <= current.size); ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment)); if (!MemoryAllocator::CommitCodePage(code_range_, current.start, *allocated)) { *allocated = 0; return NULL; } allocation_list_[current_allocation_block_index_].start += *allocated; allocation_list_[current_allocation_block_index_].size -= *allocated; if (*allocated == current.size) { GetNextAllocationBlock(0); // This block is used up, get the next one. } return current.start; } void CodeRange::FreeRawMemory(Address address, size_t length) { ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment)); free_list_.Add(FreeBlock(address, length)); code_range_->Uncommit(address, length); } void CodeRange::TearDown() { delete code_range_; // Frees all memory in the virtual memory range. code_range_ = NULL; free_list_.Free(); allocation_list_.Free(); } // ----------------------------------------------------------------------------- // MemoryAllocator // MemoryAllocator::MemoryAllocator(Isolate* isolate) : isolate_(isolate), capacity_(0), capacity_executable_(0), size_(0), size_executable_(0) { } bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) { capacity_ = RoundUp(capacity, Page::kPageSize); capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); ASSERT_GE(capacity_, capacity_executable_); size_ = 0; size_executable_ = 0; return true; } void MemoryAllocator::TearDown() { // Check that spaces were torn down before MemoryAllocator. ASSERT(size_ == 0); // TODO(gc) this will be true again when we fix FreeMemory. // ASSERT(size_executable_ == 0); capacity_ = 0; capacity_executable_ = 0; } void MemoryAllocator::FreeMemory(VirtualMemory* reservation, Executability executable) { // TODO(gc) make code_range part of memory allocator? ASSERT(reservation->IsReserved()); size_t size = reservation->size(); ASSERT(size_ >= size); size_ -= size; isolate_->counters()->memory_allocated()->Decrement(static_cast(size)); if (executable == EXECUTABLE) { ASSERT(size_executable_ >= size); size_executable_ -= size; } // Code which is part of the code-range does not have its own VirtualMemory. ASSERT(!isolate_->code_range()->contains( static_cast
(reservation->address()))); ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); reservation->Release(); } void MemoryAllocator::FreeMemory(Address base, size_t size, Executability executable) { // TODO(gc) make code_range part of memory allocator? ASSERT(size_ >= size); size_ -= size; isolate_->counters()->memory_allocated()->Decrement(static_cast(size)); if (executable == EXECUTABLE) { ASSERT(size_executable_ >= size); size_executable_ -= size; } if (isolate_->code_range()->contains(static_cast
(base))) { ASSERT(executable == EXECUTABLE); isolate_->code_range()->FreeRawMemory(base, size); } else { ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); bool result = VirtualMemory::ReleaseRegion(base, size); USE(result); ASSERT(result); } } Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment, VirtualMemory* controller) { VirtualMemory reservation(size, alignment); if (!reservation.IsReserved()) return NULL; size_ += reservation.size(); Address base = RoundUp(static_cast
(reservation.address()), alignment); controller->TakeControl(&reservation); return base; } Address MemoryAllocator::AllocateAlignedMemory(size_t size, size_t alignment, Executability executable, VirtualMemory* controller) { VirtualMemory reservation; Address base = ReserveAlignedMemory(size, alignment, &reservation); if (base == NULL) return NULL; if (executable == EXECUTABLE) { if (!CommitCodePage(&reservation, base, size)) { base = NULL; } } else { if (!reservation.Commit(base, size, false)) { base = NULL; } } if (base == NULL) { // Failed to commit the body. Release the mapping and any partially // commited regions inside it. reservation.Release(); return NULL; } controller->TakeControl(&reservation); return base; } void Page::InitializeAsAnchor(PagedSpace* owner) { set_owner(owner); set_prev_page(this); set_next_page(this); } NewSpacePage* NewSpacePage::Initialize(Heap* heap, Address start, SemiSpace* semi_space) { Address area_start = start + NewSpacePage::kObjectStartOffset; Address area_end = start + Page::kPageSize; MemoryChunk* chunk = MemoryChunk::Initialize(heap, start, Page::kPageSize, area_start, area_end, NOT_EXECUTABLE, semi_space); chunk->set_next_chunk(NULL); chunk->set_prev_chunk(NULL); chunk->initialize_scan_on_scavenge(true); bool in_to_space = (semi_space->id() != kFromSpace); chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE : MemoryChunk::IN_FROM_SPACE); ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE : MemoryChunk::IN_TO_SPACE)); NewSpacePage* page = static_cast(chunk); heap->incremental_marking()->SetNewSpacePageFlags(page); return page; } void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) { set_owner(semi_space); set_next_chunk(this); set_prev_chunk(this); // Flags marks this invalid page as not being in new-space. // All real new-space pages will be in new-space. SetFlags(0, ~0); } MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size, Address area_start, Address area_end, Executability executable, Space* owner) { MemoryChunk* chunk = FromAddress(base); ASSERT(base == chunk->address()); chunk->heap_ = heap; chunk->size_ = size; chunk->area_start_ = area_start; chunk->area_end_ = area_end; chunk->flags_ = 0; chunk->set_owner(owner); chunk->InitializeReservedMemory(); chunk->slots_buffer_ = NULL; chunk->skip_list_ = NULL; chunk->ResetLiveBytes(); Bitmap::Clear(chunk); chunk->initialize_scan_on_scavenge(false); chunk->SetFlag(WAS_SWEPT_PRECISELY); ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); if (executable == EXECUTABLE) { chunk->SetFlag(IS_EXECUTABLE); } if (owner == heap->old_data_space()) { chunk->SetFlag(CONTAINS_ONLY_DATA); } return chunk; } void MemoryChunk::InsertAfter(MemoryChunk* other) { next_chunk_ = other->next_chunk_; prev_chunk_ = other; other->next_chunk_->prev_chunk_ = this; other->next_chunk_ = this; } void MemoryChunk::Unlink() { if (!InNewSpace() && IsFlagSet(SCAN_ON_SCAVENGE)) { heap_->decrement_scan_on_scavenge_pages(); ClearFlag(SCAN_ON_SCAVENGE); } next_chunk_->prev_chunk_ = prev_chunk_; prev_chunk_->next_chunk_ = next_chunk_; prev_chunk_ = NULL; next_chunk_ = NULL; } MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size, Executability executable, Space* owner) { size_t chunk_size; Heap* heap = isolate_->heap(); Address base = NULL; VirtualMemory reservation; Address area_start = NULL; Address area_end = NULL; if (executable == EXECUTABLE) { chunk_size = RoundUp(CodePageAreaStartOffset() + body_size, OS::CommitPageSize()) + CodePageGuardSize(); // Check executable memory limit. if (size_executable_ + chunk_size > capacity_executable_) { LOG(isolate_, StringEvent("MemoryAllocator::AllocateRawMemory", "V8 Executable Allocation capacity exceeded")); return NULL; } // Allocate executable memory either from code range or from the // OS. if (isolate_->code_range()->exists()) { base = isolate_->code_range()->AllocateRawMemory(chunk_size, &chunk_size); ASSERT(IsAligned(reinterpret_cast(base), MemoryChunk::kAlignment)); if (base == NULL) return NULL; size_ += chunk_size; // Update executable memory size. size_executable_ += chunk_size; } else { base = AllocateAlignedMemory(chunk_size, MemoryChunk::kAlignment, executable, &reservation); if (base == NULL) return NULL; // Update executable memory size. size_executable_ += reservation.size(); } #ifdef DEBUG ZapBlock(base, CodePageGuardStartOffset()); ZapBlock(base + CodePageAreaStartOffset(), body_size); #endif area_start = base + CodePageAreaStartOffset(); area_end = area_start + body_size; } else { chunk_size = MemoryChunk::kObjectStartOffset + body_size; base = AllocateAlignedMemory(chunk_size, MemoryChunk::kAlignment, executable, &reservation); if (base == NULL) return NULL; #ifdef DEBUG ZapBlock(base, chunk_size); #endif area_start = base + Page::kObjectStartOffset; area_end = base + chunk_size; } isolate_->counters()->memory_allocated()-> Increment(static_cast(chunk_size)); LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); if (owner != NULL) { ObjectSpace space = static_cast(1 << owner->identity()); PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); } MemoryChunk* result = MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end, executable, owner); result->set_reserved_memory(&reservation); return result; } Page* MemoryAllocator::AllocatePage(PagedSpace* owner, Executability executable) { MemoryChunk* chunk = AllocateChunk(owner->AreaSize(), executable, owner); if (chunk == NULL) return NULL; return Page::Initialize(isolate_->heap(), chunk, executable, owner); } LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size, Executability executable, Space* owner) { MemoryChunk* chunk = AllocateChunk(object_size, executable, owner); if (chunk == NULL) return NULL; return LargePage::Initialize(isolate_->heap(), chunk); } void MemoryAllocator::Free(MemoryChunk* chunk) { LOG(isolate_, DeleteEvent("MemoryChunk", chunk)); if (chunk->owner() != NULL) { ObjectSpace space = static_cast(1 << chunk->owner()->identity()); PerformAllocationCallback(space, kAllocationActionFree, chunk->size()); } isolate_->heap()->RememberUnmappedPage( reinterpret_cast
(chunk), chunk->IsEvacuationCandidate()); delete chunk->slots_buffer(); delete chunk->skip_list(); VirtualMemory* reservation = chunk->reserved_memory(); if (reservation->IsReserved()) { FreeMemory(reservation, chunk->executable()); } else { FreeMemory(chunk->address(), chunk->size(), chunk->executable()); } } bool MemoryAllocator::CommitBlock(Address start, size_t size, Executability executable) { if (!VirtualMemory::CommitRegion(start, size, executable)) return false; #ifdef DEBUG ZapBlock(start, size); #endif isolate_->counters()->memory_allocated()->Increment(static_cast(size)); return true; } bool MemoryAllocator::UncommitBlock(Address start, size_t size) { if (!VirtualMemory::UncommitRegion(start, size)) return false; isolate_->counters()->memory_allocated()->Decrement(static_cast(size)); return true; } void MemoryAllocator::ZapBlock(Address start, size_t size) { for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { Memory::Address_at(start + s) = kZapValue; } } void MemoryAllocator::PerformAllocationCallback(ObjectSpace space, AllocationAction action, size_t size) { for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { MemoryAllocationCallbackRegistration registration = memory_allocation_callbacks_[i]; if ((registration.space & space) == space && (registration.action & action) == action) registration.callback(space, action, static_cast(size)); } } bool MemoryAllocator::MemoryAllocationCallbackRegistered( MemoryAllocationCallback callback) { for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { if (memory_allocation_callbacks_[i].callback == callback) return true; } return false; } void MemoryAllocator::AddMemoryAllocationCallback( MemoryAllocationCallback callback, ObjectSpace space, AllocationAction action) { ASSERT(callback != NULL); MemoryAllocationCallbackRegistration registration(callback, space, action); ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback)); return memory_allocation_callbacks_.Add(registration); } void MemoryAllocator::RemoveMemoryAllocationCallback( MemoryAllocationCallback callback) { ASSERT(callback != NULL); for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { if (memory_allocation_callbacks_[i].callback == callback) { memory_allocation_callbacks_.Remove(i); return; } } UNREACHABLE(); } #ifdef DEBUG void MemoryAllocator::ReportStatistics() { float pct = static_cast(capacity_ - size_) / capacity_; PrintF(" capacity: %" V8_PTR_PREFIX "d" ", used: %" V8_PTR_PREFIX "d" ", available: %%%d\n\n", capacity_, size_, static_cast(pct*100)); } #endif int MemoryAllocator::CodePageGuardStartOffset() { // We are guarding code pages: the first OS page after the header // will be protected as non-writable. return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize()); } int MemoryAllocator::CodePageGuardSize() { return static_cast(OS::CommitPageSize()); } int MemoryAllocator::CodePageAreaStartOffset() { // We are guarding code pages: the first OS page after the header // will be protected as non-writable. return CodePageGuardStartOffset() + CodePageGuardSize(); } int MemoryAllocator::CodePageAreaEndOffset() { // We are guarding code pages: the last OS page will be protected as // non-writable. return Page::kPageSize - static_cast(OS::CommitPageSize()); } bool MemoryAllocator::CommitCodePage(VirtualMemory* vm, Address start, size_t size) { // Commit page header (not executable). if (!vm->Commit(start, CodePageGuardStartOffset(), false)) { return false; } // Create guard page after the header. if (!vm->Guard(start + CodePageGuardStartOffset())) { return false; } // Commit page body (executable). size_t area_size = size - CodePageAreaStartOffset() - CodePageGuardSize(); if (!vm->Commit(start + CodePageAreaStartOffset(), area_size, true)) { return false; } // Create guard page after the allocatable area. if (!vm->Guard(start + CodePageAreaStartOffset() + area_size)) { return false; } return true; } // ----------------------------------------------------------------------------- // MemoryChunk implementation void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) { MemoryChunk* chunk = MemoryChunk::FromAddress(address); if (!chunk->InNewSpace() && !static_cast(chunk)->WasSwept()) { static_cast(chunk->owner())->IncrementUnsweptFreeBytes(-by); } chunk->IncrementLiveBytes(by); } // ----------------------------------------------------------------------------- // PagedSpace implementation PagedSpace::PagedSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id, Executability executable) : Space(heap, id, executable), free_list_(this), was_swept_conservatively_(false), first_unswept_page_(Page::FromAddress(NULL)), unswept_free_bytes_(0) { if (id == CODE_SPACE) { area_size_ = heap->isolate()->memory_allocator()-> CodePageAreaSize(); } else { area_size_ = Page::kPageSize - Page::kObjectStartOffset; } max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) * AreaSize(); accounting_stats_.Clear(); allocation_info_.top = NULL; allocation_info_.limit = NULL; anchor_.InitializeAsAnchor(this); } bool PagedSpace::SetUp() { return true; } bool PagedSpace::HasBeenSetUp() { return true; } void PagedSpace::TearDown() { PageIterator iterator(this); while (iterator.has_next()) { heap()->isolate()->memory_allocator()->Free(iterator.next()); } anchor_.set_next_page(&anchor_); anchor_.set_prev_page(&anchor_); accounting_stats_.Clear(); } MaybeObject* PagedSpace::FindObject(Address addr) { // Note: this function can only be called on precisely swept spaces. ASSERT(!heap()->mark_compact_collector()->in_use()); if (!Contains(addr)) return Failure::Exception(); Page* p = Page::FromAddress(addr); HeapObjectIterator it(p, NULL); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { Address cur = obj->address(); Address next = cur + obj->Size(); if ((cur <= addr) && (addr < next)) return obj; } UNREACHABLE(); return Failure::Exception(); } bool PagedSpace::CanExpand() { ASSERT(max_capacity_ % AreaSize() == 0); ASSERT(Capacity() % AreaSize() == 0); if (Capacity() == max_capacity_) return false; ASSERT(Capacity() < max_capacity_); // Are we going to exceed capacity for this space? if ((Capacity() + Page::kPageSize) > max_capacity_) return false; return true; } bool PagedSpace::Expand() { if (!CanExpand()) return false; Page* p = heap()->isolate()->memory_allocator()-> AllocatePage(this, executable()); if (p == NULL) return false; ASSERT(Capacity() <= max_capacity_); p->InsertAfter(anchor_.prev_page()); return true; } int PagedSpace::CountTotalPages() { PageIterator it(this); int count = 0; while (it.has_next()) { it.next(); count++; } return count; } void PagedSpace::ReleasePage(Page* page) { ASSERT(page->LiveBytes() == 0); ASSERT(AreaSize() == page->area_size()); // Adjust list of unswept pages if the page is the head of the list. if (first_unswept_page_ == page) { first_unswept_page_ = page->next_page(); if (first_unswept_page_ == anchor()) { first_unswept_page_ = Page::FromAddress(NULL); } } if (page->WasSwept()) { intptr_t size = free_list_.EvictFreeListItems(page); accounting_stats_.AllocateBytes(size); ASSERT_EQ(AreaSize(), static_cast(size)); } else { DecreaseUnsweptFreeBytes(page); } if (Page::FromAllocationTop(allocation_info_.top) == page) { allocation_info_.top = allocation_info_.limit = NULL; } page->Unlink(); if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) { heap()->isolate()->memory_allocator()->Free(page); } else { heap()->QueueMemoryChunkForFree(page); } ASSERT(Capacity() > 0); ASSERT(Capacity() % AreaSize() == 0); accounting_stats_.ShrinkSpace(AreaSize()); } void PagedSpace::ReleaseAllUnusedPages() { PageIterator it(this); while (it.has_next()) { Page* page = it.next(); if (!page->WasSwept()) { if (page->LiveBytes() == 0) ReleasePage(page); } else { HeapObject* obj = HeapObject::FromAddress(page->area_start()); if (obj->IsFreeSpace() && FreeSpace::cast(obj)->size() == AreaSize()) { // Sometimes we allocate memory from free list but don't // immediately initialize it (e.g. see PagedSpace::ReserveSpace // called from Heap::ReserveSpace that can cause GC before // reserved space is actually initialized). // Thus we can't simply assume that obj represents a valid // node still owned by a free list // Instead we should verify that the page is fully covered // by free list items. FreeList::SizeStats sizes; free_list_.CountFreeListItems(page, &sizes); if (sizes.Total() == AreaSize()) { ReleasePage(page); } } } } heap()->FreeQueuedChunks(); } #ifdef DEBUG void PagedSpace::Print() { } #endif #ifdef DEBUG void PagedSpace::Verify(ObjectVisitor* visitor) { // We can only iterate over the pages if they were swept precisely. if (was_swept_conservatively_) return; bool allocation_pointer_found_in_space = (allocation_info_.top == allocation_info_.limit); PageIterator page_iterator(this); while (page_iterator.has_next()) { Page* page = page_iterator.next(); ASSERT(page->owner() == this); if (page == Page::FromAllocationTop(allocation_info_.top)) { allocation_pointer_found_in_space = true; } ASSERT(page->WasSweptPrecisely()); HeapObjectIterator it(page, NULL); Address end_of_previous_object = page->area_start(); Address top = page->area_end(); int black_size = 0; for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { ASSERT(end_of_previous_object <= object->address()); // The first word should be a map, and we expect all map pointers to // be in map space. Map* map = object->map(); ASSERT(map->IsMap()); ASSERT(heap()->map_space()->Contains(map)); // Perform space-specific object verification. VerifyObject(object); // The object itself should look OK. object->Verify(); // All the interior pointers should be contained in the heap. int size = object->Size(); object->IterateBody(map->instance_type(), size, visitor); if (Marking::IsBlack(Marking::MarkBitFrom(object))) { black_size += size; } ASSERT(object->address() + size <= top); end_of_previous_object = object->address() + size; } ASSERT_LE(black_size, page->LiveBytes()); } ASSERT(allocation_pointer_found_in_space); } #endif // ----------------------------------------------------------------------------- // NewSpace implementation bool NewSpace::SetUp(int reserved_semispace_capacity, int maximum_semispace_capacity) { // Set up new space based on the preallocated memory block defined by // start and size. The provided space is divided into two semi-spaces. // To support fast containment testing in the new space, the size of // this chunk must be a power of two and it must be aligned to its size. int initial_semispace_capacity = heap()->InitialSemiSpaceSize(); size_t size = 2 * reserved_semispace_capacity; Address base = heap()->isolate()->memory_allocator()->ReserveAlignedMemory( size, size, &reservation_); if (base == NULL) return false; chunk_base_ = base; chunk_size_ = static_cast(size); LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_)); ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); ASSERT(IsPowerOf2(maximum_semispace_capacity)); // Allocate and set up the histogram arrays if necessary. allocated_histogram_ = NewArray(LAST_TYPE + 1); promoted_histogram_ = NewArray(LAST_TYPE + 1); #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ promoted_histogram_[name].set_name(#name); INSTANCE_TYPE_LIST(SET_NAME) #undef SET_NAME ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize()); ASSERT(static_cast(chunk_size_) >= 2 * heap()->ReservedSemiSpaceSize()); ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0)); to_space_.SetUp(chunk_base_, initial_semispace_capacity, maximum_semispace_capacity); from_space_.SetUp(chunk_base_ + reserved_semispace_capacity, initial_semispace_capacity, maximum_semispace_capacity); if (!to_space_.Commit()) { return false; } start_ = chunk_base_; address_mask_ = ~(2 * reserved_semispace_capacity - 1); object_mask_ = address_mask_ | kHeapObjectTagMask; object_expected_ = reinterpret_cast(start_) | kHeapObjectTag; ResetAllocationInfo(); return true; } void NewSpace::TearDown() { if (allocated_histogram_) { DeleteArray(allocated_histogram_); allocated_histogram_ = NULL; } if (promoted_histogram_) { DeleteArray(promoted_histogram_); promoted_histogram_ = NULL; } start_ = NULL; allocation_info_.top = NULL; allocation_info_.limit = NULL; to_space_.TearDown(); from_space_.TearDown(); LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_)); ASSERT(reservation_.IsReserved()); heap()->isolate()->memory_allocator()->FreeMemory(&reservation_, NOT_EXECUTABLE); chunk_base_ = NULL; chunk_size_ = 0; } void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); } void NewSpace::Grow() { // Double the semispace size but only up to maximum capacity. ASSERT(Capacity() < MaximumCapacity()); int new_capacity = Min(MaximumCapacity(), 2 * static_cast(Capacity())); if (to_space_.GrowTo(new_capacity)) { // Only grow from space if we managed to grow to-space. if (!from_space_.GrowTo(new_capacity)) { // If we managed to grow to-space but couldn't grow from-space, // attempt to shrink to-space. if (!to_space_.ShrinkTo(from_space_.Capacity())) { // We are in an inconsistent state because we could not // commit/uncommit memory from new space. V8::FatalProcessOutOfMemory("Failed to grow new space."); } } } ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } void NewSpace::Shrink() { int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt()); int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize); if (rounded_new_capacity < Capacity() && to_space_.ShrinkTo(rounded_new_capacity)) { // Only shrink from-space if we managed to shrink to-space. from_space_.Reset(); if (!from_space_.ShrinkTo(rounded_new_capacity)) { // If we managed to shrink to-space but couldn't shrink from // space, attempt to grow to-space again. if (!to_space_.GrowTo(from_space_.Capacity())) { // We are in an inconsistent state because we could not // commit/uncommit memory from new space. V8::FatalProcessOutOfMemory("Failed to shrink new space."); } } } allocation_info_.limit = to_space_.page_high(); ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } void NewSpace::UpdateAllocationInfo() { allocation_info_.top = to_space_.page_low(); allocation_info_.limit = to_space_.page_high(); // Lower limit during incremental marking. if (heap()->incremental_marking()->IsMarking() && inline_allocation_limit_step() != 0) { Address new_limit = allocation_info_.top + inline_allocation_limit_step(); allocation_info_.limit = Min(new_limit, allocation_info_.limit); } ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); } void NewSpace::ResetAllocationInfo() { to_space_.Reset(); UpdateAllocationInfo(); pages_used_ = 0; // Clear all mark-bits in the to-space. NewSpacePageIterator it(&to_space_); while (it.has_next()) { Bitmap::Clear(it.next()); } } bool NewSpace::AddFreshPage() { Address top = allocation_info_.top; if (NewSpacePage::IsAtStart(top)) { // The current page is already empty. Don't try to make another. // We should only get here if someone asks to allocate more // than what can be stored in a single page. // TODO(gc): Change the limit on new-space allocation to prevent this // from happening (all such allocations should go directly to LOSpace). return false; } if (!to_space_.AdvancePage()) { // Failed to get a new page in to-space. return false; } // Clear remainder of current page. Address limit = NewSpacePage::FromLimit(top)->area_end(); if (heap()->gc_state() == Heap::SCAVENGE) { heap()->promotion_queue()->SetNewLimit(limit); heap()->promotion_queue()->ActivateGuardIfOnTheSamePage(); } int remaining_in_page = static_cast(limit - top); heap()->CreateFillerObjectAt(top, remaining_in_page); pages_used_++; UpdateAllocationInfo(); return true; } MaybeObject* NewSpace::SlowAllocateRaw(int size_in_bytes) { Address old_top = allocation_info_.top; Address new_top = old_top + size_in_bytes; Address high = to_space_.page_high(); if (allocation_info_.limit < high) { // Incremental marking has lowered the limit to get a // chance to do a step. allocation_info_.limit = Min( allocation_info_.limit + inline_allocation_limit_step_, high); int bytes_allocated = static_cast(new_top - top_on_previous_step_); heap()->incremental_marking()->Step( bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); top_on_previous_step_ = new_top; return AllocateRaw(size_in_bytes); } else if (AddFreshPage()) { // Switched to new page. Try allocating again. int bytes_allocated = static_cast(old_top - top_on_previous_step_); heap()->incremental_marking()->Step( bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); top_on_previous_step_ = to_space_.page_low(); return AllocateRaw(size_in_bytes); } else { return Failure::RetryAfterGC(); } } #ifdef DEBUG // We do not use the SemiSpaceIterator because verification doesn't assume // that it works (it depends on the invariants we are checking). void NewSpace::Verify() { // The allocation pointer should be in the space or at the very end. ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); // There should be objects packed in from the low address up to the // allocation pointer. Address current = to_space_.first_page()->area_start(); CHECK_EQ(current, to_space_.space_start()); while (current != top()) { if (!NewSpacePage::IsAtEnd(current)) { // The allocation pointer should not be in the middle of an object. CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) || current < top()); HeapObject* object = HeapObject::FromAddress(current); // The first word should be a map, and we expect all map pointers to // be in map space. Map* map = object->map(); CHECK(map->IsMap()); CHECK(heap()->map_space()->Contains(map)); // The object should not be code or a map. CHECK(!object->IsMap()); CHECK(!object->IsCode()); // The object itself should look OK. object->Verify(); // All the interior pointers should be contained in the heap. VerifyPointersVisitor visitor; int size = object->Size(); object->IterateBody(map->instance_type(), size, &visitor); current += size; } else { // At end of page, switch to next page. NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page(); // Next page should be valid. CHECK(!page->is_anchor()); current = page->area_start(); } } // Check semi-spaces. ASSERT_EQ(from_space_.id(), kFromSpace); ASSERT_EQ(to_space_.id(), kToSpace); from_space_.Verify(); to_space_.Verify(); } #endif // ----------------------------------------------------------------------------- // SemiSpace implementation void SemiSpace::SetUp(Address start, int initial_capacity, int maximum_capacity) { // Creates a space in the young generation. The constructor does not // allocate memory from the OS. A SemiSpace is given a contiguous chunk of // memory of size 'capacity' when set up, and does not grow or shrink // otherwise. In the mark-compact collector, the memory region of the from // space is used as the marking stack. It requires contiguous memory // addresses. ASSERT(maximum_capacity >= Page::kPageSize); initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize); capacity_ = initial_capacity; maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize); committed_ = false; start_ = start; address_mask_ = ~(maximum_capacity - 1); object_mask_ = address_mask_ | kHeapObjectTagMask; object_expected_ = reinterpret_cast(start) | kHeapObjectTag; age_mark_ = start_; } void SemiSpace::TearDown() { start_ = NULL; capacity_ = 0; } bool SemiSpace::Commit() { ASSERT(!is_committed()); int pages = capacity_ / Page::kPageSize; Address end = start_ + maximum_capacity_; Address start = end - pages * Page::kPageSize; if (!heap()->isolate()->memory_allocator()->CommitBlock(start, capacity_, executable())) { return false; } NewSpacePage* page = anchor(); for (int i = 1; i <= pages; i++) { NewSpacePage* new_page = NewSpacePage::Initialize(heap(), end - i * Page::kPageSize, this); new_page->InsertAfter(page); page = new_page; } committed_ = true; Reset(); return true; } bool SemiSpace::Uncommit() { ASSERT(is_committed()); Address start = start_ + maximum_capacity_ - capacity_; if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) { return false; } anchor()->set_next_page(anchor()); anchor()->set_prev_page(anchor()); committed_ = false; return true; } bool SemiSpace::GrowTo(int new_capacity) { if (!is_committed()) { if (!Commit()) return false; } ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); ASSERT(new_capacity <= maximum_capacity_); ASSERT(new_capacity > capacity_); int pages_before = capacity_ / Page::kPageSize; int pages_after = new_capacity / Page::kPageSize; Address end = start_ + maximum_capacity_; Address start = end - new_capacity; size_t delta = new_capacity - capacity_; ASSERT(IsAligned(delta, OS::AllocateAlignment())); if (!heap()->isolate()->memory_allocator()->CommitBlock( start, delta, executable())) { return false; } capacity_ = new_capacity; NewSpacePage* last_page = anchor()->prev_page(); ASSERT(last_page != anchor()); for (int i = pages_before + 1; i <= pages_after; i++) { Address page_address = end - i * Page::kPageSize; NewSpacePage* new_page = NewSpacePage::Initialize(heap(), page_address, this); new_page->InsertAfter(last_page); Bitmap::Clear(new_page); // Duplicate the flags that was set on the old page. new_page->SetFlags(last_page->GetFlags(), NewSpacePage::kCopyOnFlipFlagsMask); last_page = new_page; } return true; } bool SemiSpace::ShrinkTo(int new_capacity) { ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); ASSERT(new_capacity >= initial_capacity_); ASSERT(new_capacity < capacity_); if (is_committed()) { // Semispaces grow backwards from the end of their allocated capacity, // so we find the before and after start addresses relative to the // end of the space. Address space_end = start_ + maximum_capacity_; Address old_start = space_end - capacity_; size_t delta = capacity_ - new_capacity; ASSERT(IsAligned(delta, OS::AllocateAlignment())); MemoryAllocator* allocator = heap()->isolate()->memory_allocator(); if (!allocator->UncommitBlock(old_start, delta)) { return false; } int pages_after = new_capacity / Page::kPageSize; NewSpacePage* new_last_page = NewSpacePage::FromAddress(space_end - pages_after * Page::kPageSize); new_last_page->set_next_page(anchor()); anchor()->set_prev_page(new_last_page); ASSERT((current_page_ <= first_page()) && (current_page_ >= new_last_page)); } capacity_ = new_capacity; return true; } void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) { anchor_.set_owner(this); // Fixup back-pointers to anchor. Address of anchor changes // when we swap. anchor_.prev_page()->set_next_page(&anchor_); anchor_.next_page()->set_prev_page(&anchor_); bool becomes_to_space = (id_ == kFromSpace); id_ = becomes_to_space ? kToSpace : kFromSpace; NewSpacePage* page = anchor_.next_page(); while (page != &anchor_) { page->set_owner(this); page->SetFlags(flags, mask); if (becomes_to_space) { page->ClearFlag(MemoryChunk::IN_FROM_SPACE); page->SetFlag(MemoryChunk::IN_TO_SPACE); page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); page->ResetLiveBytes(); } else { page->SetFlag(MemoryChunk::IN_FROM_SPACE); page->ClearFlag(MemoryChunk::IN_TO_SPACE); } ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) || page->IsFlagSet(MemoryChunk::IN_FROM_SPACE)); page = page->next_page(); } } void SemiSpace::Reset() { ASSERT(anchor_.next_page() != &anchor_); current_page_ = anchor_.next_page(); } void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) { // We won't be swapping semispaces without data in them. ASSERT(from->anchor_.next_page() != &from->anchor_); ASSERT(to->anchor_.next_page() != &to->anchor_); // Swap bits. SemiSpace tmp = *from; *from = *to; *to = tmp; // Fixup back-pointers to the page list anchor now that its address // has changed. // Swap to/from-space bits on pages. // Copy GC flags from old active space (from-space) to new (to-space). intptr_t flags = from->current_page()->GetFlags(); to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask); from->FlipPages(0, 0); } void SemiSpace::set_age_mark(Address mark) { ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this); age_mark_ = mark; // Mark all pages up to the one containing mark. NewSpacePageIterator it(space_start(), mark); while (it.has_next()) { it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); } } #ifdef DEBUG void SemiSpace::Print() { } void SemiSpace::Verify() { bool is_from_space = (id_ == kFromSpace); NewSpacePage* page = anchor_.next_page(); CHECK(anchor_.semi_space() == this); while (page != &anchor_) { CHECK(page->semi_space() == this); CHECK(page->InNewSpace()); CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE : MemoryChunk::IN_TO_SPACE)); CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE : MemoryChunk::IN_FROM_SPACE)); CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING)); if (!is_from_space) { // The pointers-from-here-are-interesting flag isn't updated dynamically // on from-space pages, so it might be out of sync with the marking state. if (page->heap()->incremental_marking()->IsMarking()) { CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); } else { CHECK(!page->IsFlagSet( MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); } // TODO(gc): Check that the live_bytes_count_ field matches the // black marking on the page (if we make it match in new-space). } CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); CHECK(page->prev_page()->next_page() == page); page = page->next_page(); } } void SemiSpace::AssertValidRange(Address start, Address end) { // Addresses belong to same semi-space NewSpacePage* page = NewSpacePage::FromLimit(start); NewSpacePage* end_page = NewSpacePage::FromLimit(end); SemiSpace* space = page->semi_space(); CHECK_EQ(space, end_page->semi_space()); // Start address is before end address, either on same page, // or end address is on a later page in the linked list of // semi-space pages. if (page == end_page) { CHECK(start <= end); } else { while (page != end_page) { page = page->next_page(); CHECK_NE(page, space->anchor()); } } } #endif // ----------------------------------------------------------------------------- // SemiSpaceIterator implementation. SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { Initialize(space->bottom(), space->top(), NULL); } SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func) { Initialize(space->bottom(), space->top(), size_func); } SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { Initialize(start, space->top(), NULL); } SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) { Initialize(from, to, NULL); } void SemiSpaceIterator::Initialize(Address start, Address end, HeapObjectCallback size_func) { SemiSpace::AssertValidRange(start, end); current_ = start; limit_ = end; size_func_ = size_func; } #ifdef DEBUG // heap_histograms is shared, always clear it before using it. static void ClearHistograms() { Isolate* isolate = Isolate::Current(); // We reset the name each time, though it hasn't changed. #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name); INSTANCE_TYPE_LIST(DEF_TYPE_NAME) #undef DEF_TYPE_NAME #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear(); INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) #undef CLEAR_HISTOGRAM isolate->js_spill_information()->Clear(); } static void ClearCodeKindStatistics() { Isolate* isolate = Isolate::Current(); for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { isolate->code_kind_statistics()[i] = 0; } } static void ReportCodeKindStatistics() { Isolate* isolate = Isolate::Current(); const char* table[Code::NUMBER_OF_KINDS] = { NULL }; #define CASE(name) \ case Code::name: table[Code::name] = #name; \ break for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { switch (static_cast(i)) { CASE(FUNCTION); CASE(OPTIMIZED_FUNCTION); CASE(STUB); CASE(BUILTIN); CASE(LOAD_IC); CASE(KEYED_LOAD_IC); CASE(STORE_IC); CASE(KEYED_STORE_IC); CASE(CALL_IC); CASE(KEYED_CALL_IC); CASE(UNARY_OP_IC); CASE(BINARY_OP_IC); CASE(COMPARE_IC); CASE(TO_BOOLEAN_IC); } } #undef CASE PrintF("\n Code kind histograms: \n"); for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { if (isolate->code_kind_statistics()[i] > 0) { PrintF(" %-20s: %10d bytes\n", table[i], isolate->code_kind_statistics()[i]); } } PrintF("\n"); } static int CollectHistogramInfo(HeapObject* obj) { Isolate* isolate = Isolate::Current(); InstanceType type = obj->map()->instance_type(); ASSERT(0 <= type && type <= LAST_TYPE); ASSERT(isolate->heap_histograms()[type].name() != NULL); isolate->heap_histograms()[type].increment_number(1); isolate->heap_histograms()[type].increment_bytes(obj->Size()); if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { JSObject::cast(obj)->IncrementSpillStatistics( isolate->js_spill_information()); } return obj->Size(); } static void ReportHistogram(bool print_spill) { Isolate* isolate = Isolate::Current(); PrintF("\n Object Histogram:\n"); for (int i = 0; i <= LAST_TYPE; i++) { if (isolate->heap_histograms()[i].number() > 0) { PrintF(" %-34s%10d (%10d bytes)\n", isolate->heap_histograms()[i].name(), isolate->heap_histograms()[i].number(), isolate->heap_histograms()[i].bytes()); } } PrintF("\n"); // Summarize string types. int string_number = 0; int string_bytes = 0; #define INCREMENT(type, size, name, camel_name) \ string_number += isolate->heap_histograms()[type].number(); \ string_bytes += isolate->heap_histograms()[type].bytes(); STRING_TYPE_LIST(INCREMENT) #undef INCREMENT if (string_number > 0) { PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, string_bytes); } if (FLAG_collect_heap_spill_statistics && print_spill) { isolate->js_spill_information()->Print(); } } #endif // DEBUG // Support for statistics gathering for --heap-stats and --log-gc. void NewSpace::ClearHistograms() { for (int i = 0; i <= LAST_TYPE; i++) { allocated_histogram_[i].clear(); promoted_histogram_[i].clear(); } } // Because the copying collector does not touch garbage objects, we iterate // the new space before a collection to get a histogram of allocated objects. // This only happens when --log-gc flag is set. void NewSpace::CollectStatistics() { ClearHistograms(); SemiSpaceIterator it(this); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) RecordAllocation(obj); } static void DoReportStatistics(Isolate* isolate, HistogramInfo* info, const char* description) { LOG(isolate, HeapSampleBeginEvent("NewSpace", description)); // Lump all the string types together. int string_number = 0; int string_bytes = 0; #define INCREMENT(type, size, name, camel_name) \ string_number += info[type].number(); \ string_bytes += info[type].bytes(); STRING_TYPE_LIST(INCREMENT) #undef INCREMENT if (string_number > 0) { LOG(isolate, HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); } // Then do the other types. for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { if (info[i].number() > 0) { LOG(isolate, HeapSampleItemEvent(info[i].name(), info[i].number(), info[i].bytes())); } } LOG(isolate, HeapSampleEndEvent("NewSpace", description)); } void NewSpace::ReportStatistics() { #ifdef DEBUG if (FLAG_heap_stats) { float pct = static_cast(Available()) / Capacity(); PrintF(" capacity: %" V8_PTR_PREFIX "d" ", available: %" V8_PTR_PREFIX "d, %%%d\n", Capacity(), Available(), static_cast(pct*100)); PrintF("\n Object Histogram:\n"); for (int i = 0; i <= LAST_TYPE; i++) { if (allocated_histogram_[i].number() > 0) { PrintF(" %-34s%10d (%10d bytes)\n", allocated_histogram_[i].name(), allocated_histogram_[i].number(), allocated_histogram_[i].bytes()); } } PrintF("\n"); } #endif // DEBUG if (FLAG_log_gc) { Isolate* isolate = ISOLATE; DoReportStatistics(isolate, allocated_histogram_, "allocated"); DoReportStatistics(isolate, promoted_histogram_, "promoted"); } } void NewSpace::RecordAllocation(HeapObject* obj) { InstanceType type = obj->map()->instance_type(); ASSERT(0 <= type && type <= LAST_TYPE); allocated_histogram_[type].increment_number(1); allocated_histogram_[type].increment_bytes(obj->Size()); } void NewSpace::RecordPromotion(HeapObject* obj) { InstanceType type = obj->map()->instance_type(); ASSERT(0 <= type && type <= LAST_TYPE); promoted_histogram_[type].increment_number(1); promoted_histogram_[type].increment_bytes(obj->Size()); } // ----------------------------------------------------------------------------- // Free lists for old object spaces implementation void FreeListNode::set_size(Heap* heap, int size_in_bytes) { ASSERT(size_in_bytes > 0); ASSERT(IsAligned(size_in_bytes, kPointerSize)); // We write a map and possibly size information to the block. If the block // is big enough to be a FreeSpace with at least one extra word (the next // pointer), we set its map to be the free space map and its size to an // appropriate array length for the desired size from HeapObject::Size(). // If the block is too small (eg, one or two words), to hold both a size // field and a next pointer, we give it a filler map that gives it the // correct size. if (size_in_bytes > FreeSpace::kHeaderSize) { set_map_no_write_barrier(heap->raw_unchecked_free_space_map()); // Can't use FreeSpace::cast because it fails during deserialization. FreeSpace* this_as_free_space = reinterpret_cast(this); this_as_free_space->set_size(size_in_bytes); } else if (size_in_bytes == kPointerSize) { set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map()); } else if (size_in_bytes == 2 * kPointerSize) { set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map()); } else { UNREACHABLE(); } // We would like to ASSERT(Size() == size_in_bytes) but this would fail during // deserialization because the free space map is not done yet. } FreeListNode* FreeListNode::next() { ASSERT(IsFreeListNode(this)); if (map() == HEAP->raw_unchecked_free_space_map()) { ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); return reinterpret_cast( Memory::Address_at(address() + kNextOffset)); } else { return reinterpret_cast( Memory::Address_at(address() + kPointerSize)); } } FreeListNode** FreeListNode::next_address() { ASSERT(IsFreeListNode(this)); if (map() == HEAP->raw_unchecked_free_space_map()) { ASSERT(Size() >= kNextOffset + kPointerSize); return reinterpret_cast(address() + kNextOffset); } else { return reinterpret_cast(address() + kPointerSize); } } void FreeListNode::set_next(FreeListNode* next) { ASSERT(IsFreeListNode(this)); // While we are booting the VM the free space map will actually be null. So // we have to make sure that we don't try to use it for anything at that // stage. if (map() == HEAP->raw_unchecked_free_space_map()) { ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); Memory::Address_at(address() + kNextOffset) = reinterpret_cast
(next); } else { Memory::Address_at(address() + kPointerSize) = reinterpret_cast
(next); } } FreeList::FreeList(PagedSpace* owner) : owner_(owner), heap_(owner->heap()) { Reset(); } void FreeList::Reset() { available_ = 0; small_list_ = NULL; medium_list_ = NULL; large_list_ = NULL; huge_list_ = NULL; } int FreeList::Free(Address start, int size_in_bytes) { if (size_in_bytes == 0) return 0; FreeListNode* node = FreeListNode::FromAddress(start); node->set_size(heap_, size_in_bytes); // Early return to drop too-small blocks on the floor. if (size_in_bytes < kSmallListMin) return size_in_bytes; // Insert other blocks at the head of a free list of the appropriate // magnitude. if (size_in_bytes <= kSmallListMax) { node->set_next(small_list_); small_list_ = node; } else if (size_in_bytes <= kMediumListMax) { node->set_next(medium_list_); medium_list_ = node; } else if (size_in_bytes <= kLargeListMax) { node->set_next(large_list_); large_list_ = node; } else { node->set_next(huge_list_); huge_list_ = node; } available_ += size_in_bytes; ASSERT(IsVeryLong() || available_ == SumFreeLists()); return 0; } FreeListNode* FreeList::PickNodeFromList(FreeListNode** list, int* node_size) { FreeListNode* node = *list; if (node == NULL) return NULL; while (node != NULL && Page::FromAddress(node->address())->IsEvacuationCandidate()) { available_ -= node->Size(); node = node->next(); } if (node != NULL) { *node_size = node->Size(); *list = node->next(); } else { *list = NULL; } return node; } FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { FreeListNode* node = NULL; if (size_in_bytes <= kSmallAllocationMax) { node = PickNodeFromList(&small_list_, node_size); if (node != NULL) return node; } if (size_in_bytes <= kMediumAllocationMax) { node = PickNodeFromList(&medium_list_, node_size); if (node != NULL) return node; } if (size_in_bytes <= kLargeAllocationMax) { node = PickNodeFromList(&large_list_, node_size); if (node != NULL) return node; } for (FreeListNode** cur = &huge_list_; *cur != NULL; cur = (*cur)->next_address()) { FreeListNode* cur_node = *cur; while (cur_node != NULL && Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) { available_ -= reinterpret_cast(cur_node)->Size(); cur_node = cur_node->next(); } *cur = cur_node; if (cur_node == NULL) break; ASSERT((*cur)->map() == HEAP->raw_unchecked_free_space_map()); FreeSpace* cur_as_free_space = reinterpret_cast(*cur); int size = cur_as_free_space->Size(); if (size >= size_in_bytes) { // Large enough node found. Unlink it from the list. node = *cur; *node_size = size; *cur = node->next(); break; } } return node; } // Allocation on the old space free list. If it succeeds then a new linear // allocation space has been set up with the top and limit of the space. If // the allocation fails then NULL is returned, and the caller can perform a GC // or allocate a new page before retrying. HeapObject* FreeList::Allocate(int size_in_bytes) { ASSERT(0 < size_in_bytes); ASSERT(size_in_bytes <= kMaxBlockSize); ASSERT(IsAligned(size_in_bytes, kPointerSize)); // Don't free list allocate if there is linear space available. ASSERT(owner_->limit() - owner_->top() < size_in_bytes); int new_node_size = 0; FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); if (new_node == NULL) return NULL; available_ -= new_node_size; ASSERT(IsVeryLong() || available_ == SumFreeLists()); int bytes_left = new_node_size - size_in_bytes; ASSERT(bytes_left >= 0); int old_linear_size = static_cast(owner_->limit() - owner_->top()); // Mark the old linear allocation area with a free space map so it can be // skipped when scanning the heap. This also puts it back in the free list // if it is big enough. owner_->Free(owner_->top(), old_linear_size); #ifdef DEBUG for (int i = 0; i < size_in_bytes / kPointerSize; i++) { reinterpret_cast(new_node->address())[i] = Smi::FromInt(0); } #endif owner_->heap()->incremental_marking()->OldSpaceStep( size_in_bytes - old_linear_size); // The old-space-step might have finished sweeping and restarted marking. // Verify that it did not turn the page of the new node into an evacuation // candidate. ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node)); const int kThreshold = IncrementalMarking::kAllocatedThreshold; // Memory in the linear allocation area is counted as allocated. We may free // a little of this again immediately - see below. owner_->Allocate(new_node_size); if (bytes_left > kThreshold && owner_->heap()->incremental_marking()->IsMarkingIncomplete() && FLAG_incremental_marking_steps) { int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold); // We don't want to give too large linear areas to the allocator while // incremental marking is going on, because we won't check again whether // we want to do another increment until the linear area is used up. owner_->Free(new_node->address() + size_in_bytes + linear_size, new_node_size - size_in_bytes - linear_size); owner_->SetTop(new_node->address() + size_in_bytes, new_node->address() + size_in_bytes + linear_size); } else if (bytes_left > 0) { // Normally we give the rest of the node to the allocator as its new // linear allocation area. owner_->SetTop(new_node->address() + size_in_bytes, new_node->address() + new_node_size); } else { // TODO(gc) Try not freeing linear allocation region when bytes_left // are zero. owner_->SetTop(NULL, NULL); } return new_node; } static intptr_t CountFreeListItemsInList(FreeListNode* n, Page* p) { intptr_t sum = 0; while (n != NULL) { if (Page::FromAddress(n->address()) == p) { FreeSpace* free_space = reinterpret_cast(n); sum += free_space->Size(); } n = n->next(); } return sum; } void FreeList::CountFreeListItems(Page* p, SizeStats* sizes) { sizes->huge_size_ = CountFreeListItemsInList(huge_list_, p); if (sizes->huge_size_ < p->area_size()) { sizes->small_size_ = CountFreeListItemsInList(small_list_, p); sizes->medium_size_ = CountFreeListItemsInList(medium_list_, p); sizes->large_size_ = CountFreeListItemsInList(large_list_, p); } else { sizes->small_size_ = 0; sizes->medium_size_ = 0; sizes->large_size_ = 0; } } static intptr_t EvictFreeListItemsInList(FreeListNode** n, Page* p) { intptr_t sum = 0; while (*n != NULL) { if (Page::FromAddress((*n)->address()) == p) { FreeSpace* free_space = reinterpret_cast(*n); sum += free_space->Size(); *n = (*n)->next(); } else { n = (*n)->next_address(); } } return sum; } intptr_t FreeList::EvictFreeListItems(Page* p) { intptr_t sum = EvictFreeListItemsInList(&huge_list_, p); if (sum < p->area_size()) { sum += EvictFreeListItemsInList(&small_list_, p) + EvictFreeListItemsInList(&medium_list_, p) + EvictFreeListItemsInList(&large_list_, p); } available_ -= static_cast(sum); return sum; } #ifdef DEBUG intptr_t FreeList::SumFreeList(FreeListNode* cur) { intptr_t sum = 0; while (cur != NULL) { ASSERT(cur->map() == HEAP->raw_unchecked_free_space_map()); FreeSpace* cur_as_free_space = reinterpret_cast(cur); sum += cur_as_free_space->Size(); cur = cur->next(); } return sum; } static const int kVeryLongFreeList = 500; int FreeList::FreeListLength(FreeListNode* cur) { int length = 0; while (cur != NULL) { length++; cur = cur->next(); if (length == kVeryLongFreeList) return length; } return length; } bool FreeList::IsVeryLong() { if (FreeListLength(small_list_) == kVeryLongFreeList) return true; if (FreeListLength(medium_list_) == kVeryLongFreeList) return true; if (FreeListLength(large_list_) == kVeryLongFreeList) return true; if (FreeListLength(huge_list_) == kVeryLongFreeList) return true; return false; } // This can take a very long time because it is linear in the number of entries // on the free list, so it should not be called if FreeListLength returns // kVeryLongFreeList. intptr_t FreeList::SumFreeLists() { intptr_t sum = SumFreeList(small_list_); sum += SumFreeList(medium_list_); sum += SumFreeList(large_list_); sum += SumFreeList(huge_list_); return sum; } #endif // ----------------------------------------------------------------------------- // OldSpace implementation bool NewSpace::ReserveSpace(int bytes) { // We can't reliably unpack a partial snapshot that needs more new space // space than the minimum NewSpace size. The limit can be set lower than // the end of new space either because there is more space on the next page // or because we have lowered the limit in order to get periodic incremental // marking. The most reliable way to ensure that there is linear space is // to do the allocation, then rewind the limit. ASSERT(bytes <= InitialCapacity()); MaybeObject* maybe = AllocateRaw(bytes); Object* object = NULL; if (!maybe->ToObject(&object)) return false; HeapObject* allocation = HeapObject::cast(object); Address top = allocation_info_.top; if ((top - bytes) == allocation->address()) { allocation_info_.top = allocation->address(); return true; } // There may be a borderline case here where the allocation succeeded, but // the limit and top have moved on to a new page. In that case we try again. return ReserveSpace(bytes); } void PagedSpace::PrepareForMarkCompact() { // We don't have a linear allocation area while sweeping. It will be restored // on the first allocation after the sweep. // Mark the old linear allocation area with a free space map so it can be // skipped when scanning the heap. int old_linear_size = static_cast(limit() - top()); Free(top(), old_linear_size); SetTop(NULL, NULL); // Stop lazy sweeping and clear marking bits for unswept pages. if (first_unswept_page_ != NULL) { Page* p = first_unswept_page_; do { // Do not use ShouldBeSweptLazily predicate here. // New evacuation candidates were selected but they still have // to be swept before collection starts. if (!p->WasSwept()) { Bitmap::Clear(p); if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " lazily abandoned.\n", reinterpret_cast(p)); } } p = p->next_page(); } while (p != anchor()); } first_unswept_page_ = Page::FromAddress(NULL); unswept_free_bytes_ = 0; // Clear the free list before a full GC---it will be rebuilt afterward. free_list_.Reset(); } bool PagedSpace::ReserveSpace(int size_in_bytes) { ASSERT(size_in_bytes <= AreaSize()); ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes)); Address current_top = allocation_info_.top; Address new_top = current_top + size_in_bytes; if (new_top <= allocation_info_.limit) return true; HeapObject* new_area = free_list_.Allocate(size_in_bytes); if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes); if (new_area == NULL) return false; int old_linear_size = static_cast(limit() - top()); // Mark the old linear allocation area with a free space so it can be // skipped when scanning the heap. This also puts it back in the free list // if it is big enough. Free(top(), old_linear_size); SetTop(new_area->address(), new_area->address() + size_in_bytes); Allocate(size_in_bytes); return true; } // You have to call this last, since the implementation from PagedSpace // doesn't know that memory was 'promised' to large object space. bool LargeObjectSpace::ReserveSpace(int bytes) { return heap()->OldGenerationCapacityAvailable() >= bytes && (!heap()->incremental_marking()->IsStopped() || heap()->OldGenerationSpaceAvailable() >= bytes); } bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) { if (IsSweepingComplete()) return true; intptr_t freed_bytes = 0; Page* p = first_unswept_page_; do { Page* next_page = p->next_page(); if (ShouldBeSweptLazily(p)) { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " lazily advanced.\n", reinterpret_cast(p)); } DecreaseUnsweptFreeBytes(p); freed_bytes += MarkCompactCollector::SweepConservatively(this, p); } p = next_page; } while (p != anchor() && freed_bytes < bytes_to_sweep); if (p == anchor()) { first_unswept_page_ = Page::FromAddress(NULL); } else { first_unswept_page_ = p; } heap()->LowerOldGenLimits(freed_bytes); heap()->FreeQueuedChunks(); return IsSweepingComplete(); } void PagedSpace::EvictEvacuationCandidatesFromFreeLists() { if (allocation_info_.top >= allocation_info_.limit) return; if (Page::FromAllocationTop(allocation_info_.top)->IsEvacuationCandidate()) { // Create filler object to keep page iterable if it was iterable. int remaining = static_cast(allocation_info_.limit - allocation_info_.top); heap()->CreateFillerObjectAt(allocation_info_.top, remaining); allocation_info_.top = NULL; allocation_info_.limit = NULL; } } HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) { // Allocation in this space has failed. // If there are unswept pages advance lazy sweeper then sweep one page before // allocating a new page. if (first_unswept_page_->is_valid()) { AdvanceSweeper(size_in_bytes); // Retry the free list allocation. HeapObject* object = free_list_.Allocate(size_in_bytes); if (object != NULL) return object; } // Free list allocation failed and there is no next page. Fail if we have // hit the old generation size limit that should cause a garbage // collection. if (!heap()->always_allocate() && heap()->OldGenerationAllocationLimitReached()) { return NULL; } // Try to expand the space and allocate in the new next page. if (Expand()) { return free_list_.Allocate(size_in_bytes); } // Last ditch, sweep all the remaining pages to try to find space. This may // cause a pause. if (!IsSweepingComplete()) { AdvanceSweeper(kMaxInt); // Retry the free list allocation. HeapObject* object = free_list_.Allocate(size_in_bytes); if (object != NULL) return object; } // Finally, fail. return NULL; } #ifdef DEBUG void PagedSpace::ReportCodeStatistics() { Isolate* isolate = Isolate::Current(); CommentStatistic* comments_statistics = isolate->paged_space_comments_statistics(); ReportCodeKindStatistics(); PrintF("Code comment statistics (\" [ comment-txt : size/ " "count (average)\"):\n"); for (int i = 0; i <= CommentStatistic::kMaxComments; i++) { const CommentStatistic& cs = comments_statistics[i]; if (cs.size > 0) { PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, cs.size/cs.count); } } PrintF("\n"); } void PagedSpace::ResetCodeStatistics() { Isolate* isolate = Isolate::Current(); CommentStatistic* comments_statistics = isolate->paged_space_comments_statistics(); ClearCodeKindStatistics(); for (int i = 0; i < CommentStatistic::kMaxComments; i++) { comments_statistics[i].Clear(); } comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown"; comments_statistics[CommentStatistic::kMaxComments].size = 0; comments_statistics[CommentStatistic::kMaxComments].count = 0; } // Adds comment to 'comment_statistics' table. Performance OK as long as // 'kMaxComments' is small static void EnterComment(Isolate* isolate, const char* comment, int delta) { CommentStatistic* comments_statistics = isolate->paged_space_comments_statistics(); // Do not count empty comments if (delta <= 0) return; CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments]; // Search for a free or matching entry in 'comments_statistics': 'cs' // points to result. for (int i = 0; i < CommentStatistic::kMaxComments; i++) { if (comments_statistics[i].comment == NULL) { cs = &comments_statistics[i]; cs->comment = comment; break; } else if (strcmp(comments_statistics[i].comment, comment) == 0) { cs = &comments_statistics[i]; break; } } // Update entry for 'comment' cs->size += delta; cs->count += 1; } // Call for each nested comment start (start marked with '[ xxx', end marked // with ']'. RelocIterator 'it' must point to a comment reloc info. static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) { ASSERT(!it->done()); ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); const char* tmp = reinterpret_cast(it->rinfo()->data()); if (tmp[0] != '[') { // Not a nested comment; skip return; } // Search for end of nested comment or a new nested comment const char* const comment_txt = reinterpret_cast(it->rinfo()->data()); const byte* prev_pc = it->rinfo()->pc(); int flat_delta = 0; it->next(); while (true) { // All nested comments must be terminated properly, and therefore exit // from loop. ASSERT(!it->done()); if (it->rinfo()->rmode() == RelocInfo::COMMENT) { const char* const txt = reinterpret_cast(it->rinfo()->data()); flat_delta += static_cast(it->rinfo()->pc() - prev_pc); if (txt[0] == ']') break; // End of nested comment // A new comment CollectCommentStatistics(isolate, it); // Skip code that was covered with previous comment prev_pc = it->rinfo()->pc(); } it->next(); } EnterComment(isolate, comment_txt, flat_delta); } // Collects code size statistics: // - by code kind // - by code comment void PagedSpace::CollectCodeStatistics() { Isolate* isolate = heap()->isolate(); HeapObjectIterator obj_it(this); for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { if (obj->IsCode()) { Code* code = Code::cast(obj); isolate->code_kind_statistics()[code->kind()] += code->Size(); RelocIterator it(code); int delta = 0; const byte* prev_pc = code->instruction_start(); while (!it.done()) { if (it.rinfo()->rmode() == RelocInfo::COMMENT) { delta += static_cast(it.rinfo()->pc() - prev_pc); CollectCommentStatistics(isolate, &it); prev_pc = it.rinfo()->pc(); } it.next(); } ASSERT(code->instruction_start() <= prev_pc && prev_pc <= code->instruction_end()); delta += static_cast(code->instruction_end() - prev_pc); EnterComment(isolate, "NoComment", delta); } } } void PagedSpace::ReportStatistics() { int pct = static_cast(Available() * 100 / Capacity()); PrintF(" capacity: %" V8_PTR_PREFIX "d" ", waste: %" V8_PTR_PREFIX "d" ", available: %" V8_PTR_PREFIX "d, %%%d\n", Capacity(), Waste(), Available(), pct); if (was_swept_conservatively_) return; ClearHistograms(); HeapObjectIterator obj_it(this); for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) CollectHistogramInfo(obj); ReportHistogram(true); } #endif // ----------------------------------------------------------------------------- // FixedSpace implementation void FixedSpace::PrepareForMarkCompact() { // Call prepare of the super class. PagedSpace::PrepareForMarkCompact(); // During a non-compacting collection, everything below the linear // allocation pointer except wasted top-of-page blocks is considered // allocated and we will rediscover available bytes during the // collection. accounting_stats_.AllocateBytes(free_list_.available()); // Clear the free list before a full GC---it will be rebuilt afterward. free_list_.Reset(); } // ----------------------------------------------------------------------------- // MapSpace implementation #ifdef DEBUG void MapSpace::VerifyObject(HeapObject* object) { // The object should be a map or a free-list node. ASSERT(object->IsMap() || object->IsFreeSpace()); } #endif // ----------------------------------------------------------------------------- // GlobalPropertyCellSpace implementation #ifdef DEBUG void CellSpace::VerifyObject(HeapObject* object) { // The object should be a global object property cell or a free-list node. ASSERT(object->IsJSGlobalPropertyCell() || object->map() == heap()->two_pointer_filler_map()); } #endif // ----------------------------------------------------------------------------- // LargeObjectIterator LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { current_ = space->first_page_; size_func_ = NULL; } LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func) { current_ = space->first_page_; size_func_ = size_func; } HeapObject* LargeObjectIterator::Next() { if (current_ == NULL) return NULL; HeapObject* object = current_->GetObject(); current_ = current_->next_page(); return object; } // ----------------------------------------------------------------------------- // LargeObjectSpace static bool ComparePointers(void* key1, void* key2) { return key1 == key2; } LargeObjectSpace::LargeObjectSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis max_capacity_(max_capacity), first_page_(NULL), size_(0), page_count_(0), objects_size_(0), chunk_map_(ComparePointers, 1024) {} bool LargeObjectSpace::SetUp() { first_page_ = NULL; size_ = 0; page_count_ = 0; objects_size_ = 0; chunk_map_.Clear(); return true; } void LargeObjectSpace::TearDown() { while (first_page_ != NULL) { LargePage* page = first_page_; first_page_ = first_page_->next_page(); LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address())); ObjectSpace space = static_cast(1 << identity()); heap()->isolate()->memory_allocator()->PerformAllocationCallback( space, kAllocationActionFree, page->size()); heap()->isolate()->memory_allocator()->Free(page); } SetUp(); } MaybeObject* LargeObjectSpace::AllocateRaw(int object_size, Executability executable) { // Check if we want to force a GC before growing the old space further. // If so, fail the allocation. if (!heap()->always_allocate() && heap()->OldGenerationAllocationLimitReached()) { return Failure::RetryAfterGC(identity()); } if (Size() + object_size > max_capacity_) { return Failure::RetryAfterGC(identity()); } LargePage* page = heap()->isolate()->memory_allocator()-> AllocateLargePage(object_size, executable, this); if (page == NULL) return Failure::RetryAfterGC(identity()); ASSERT(page->area_size() >= object_size); size_ += static_cast(page->size()); objects_size_ += object_size; page_count_++; page->set_next_page(first_page_); first_page_ = page; // Register all MemoryChunk::kAlignment-aligned chunks covered by // this large page in the chunk map. uintptr_t base = reinterpret_cast(page) / MemoryChunk::kAlignment; uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment; for (uintptr_t key = base; key <= limit; key++) { HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast(key), static_cast(key), true); ASSERT(entry != NULL); entry->value = page; } HeapObject* object = page->GetObject(); #ifdef DEBUG // Make the object consistent so the heap can be vefified in OldSpaceStep. reinterpret_cast(object->address())[0] = heap()->fixed_array_map(); reinterpret_cast(object->address())[1] = Smi::FromInt(0); #endif heap()->incremental_marking()->OldSpaceStep(object_size); return object; } // GC support MaybeObject* LargeObjectSpace::FindObject(Address a) { LargePage* page = FindPage(a); if (page != NULL) { return page->GetObject(); } return Failure::Exception(); } LargePage* LargeObjectSpace::FindPage(Address a) { uintptr_t key = reinterpret_cast(a) / MemoryChunk::kAlignment; HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast(key), static_cast(key), false); if (e != NULL) { ASSERT(e->value != NULL); LargePage* page = reinterpret_cast(e->value); ASSERT(page->is_valid()); if (page->Contains(a)) { return page; } } return NULL; } void LargeObjectSpace::FreeUnmarkedObjects() { LargePage* previous = NULL; LargePage* current = first_page_; while (current != NULL) { HeapObject* object = current->GetObject(); // Can this large page contain pointers to non-trivial objects. No other // pointer object is this big. bool is_pointer_object = object->IsFixedArray(); MarkBit mark_bit = Marking::MarkBitFrom(object); if (mark_bit.Get()) { mark_bit.Clear(); MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size()); previous = current; current = current->next_page(); } else { LargePage* page = current; // Cut the chunk out from the chunk list. current = current->next_page(); if (previous == NULL) { first_page_ = current; } else { previous->set_next_page(current); } // Free the chunk. heap()->mark_compact_collector()->ReportDeleteIfNeeded( object, heap()->isolate()); size_ -= static_cast(page->size()); objects_size_ -= object->Size(); page_count_--; // Remove entries belonging to this page. // Use variable alignment to help pass length check (<= 80 characters) // of single line in tools/presubmit.py. const intptr_t alignment = MemoryChunk::kAlignment; uintptr_t base = reinterpret_cast(page)/alignment; uintptr_t limit = base + (page->size()-1)/alignment; for (uintptr_t key = base; key <= limit; key++) { chunk_map_.Remove(reinterpret_cast(key), static_cast(key)); } if (is_pointer_object) { heap()->QueueMemoryChunkForFree(page); } else { heap()->isolate()->memory_allocator()->Free(page); } } } heap()->FreeQueuedChunks(); } bool LargeObjectSpace::Contains(HeapObject* object) { Address address = object->address(); MemoryChunk* chunk = MemoryChunk::FromAddress(address); bool owned = (chunk->owner() == this); SLOW_ASSERT(!owned || !FindObject(address)->IsFailure()); return owned; } #ifdef DEBUG // We do not assume that the large object iterator works, because it depends // on the invariants we are checking during verification. void LargeObjectSpace::Verify() { for (LargePage* chunk = first_page_; chunk != NULL; chunk = chunk->next_page()) { // Each chunk contains an object that starts at the large object page's // object area start. HeapObject* object = chunk->GetObject(); Page* page = Page::FromAddress(object->address()); ASSERT(object->address() == page->area_start()); // The first word should be a map, and we expect all map pointers to be // in map space. Map* map = object->map(); ASSERT(map->IsMap()); ASSERT(heap()->map_space()->Contains(map)); // We have only code, sequential strings, external strings // (sequential strings that have been morphed into external // strings), fixed arrays, and byte arrays in large object space. ASSERT(object->IsCode() || object->IsSeqString() || object->IsExternalString() || object->IsFixedArray() || object->IsFixedDoubleArray() || object->IsByteArray()); // The object itself should look OK. object->Verify(); // Byte arrays and strings don't have interior pointers. if (object->IsCode()) { VerifyPointersVisitor code_visitor; object->IterateBody(map->instance_type(), object->Size(), &code_visitor); } else if (object->IsFixedArray()) { FixedArray* array = FixedArray::cast(object); for (int j = 0; j < array->length(); j++) { Object* element = array->get(j); if (element->IsHeapObject()) { HeapObject* element_object = HeapObject::cast(element); ASSERT(heap()->Contains(element_object)); ASSERT(element_object->map()->IsMap()); } } } } } void LargeObjectSpace::Print() { LargeObjectIterator it(this); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { obj->Print(); } } void LargeObjectSpace::ReportStatistics() { PrintF(" size: %" V8_PTR_PREFIX "d\n", size_); int num_objects = 0; ClearHistograms(); LargeObjectIterator it(this); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { num_objects++; CollectHistogramInfo(obj); } PrintF(" number of objects %d, " "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_); if (num_objects > 0) ReportHistogram(false); } void LargeObjectSpace::CollectCodeStatistics() { Isolate* isolate = heap()->isolate(); LargeObjectIterator obj_it(this); for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { if (obj->IsCode()) { Code* code = Code::cast(obj); isolate->code_kind_statistics()[code->kind()] += code->Size(); } } } void Page::Print() { // Make a best-effort to print the objects in the page. PrintF("Page@%p in %s\n", this->address(), AllocationSpaceName(this->owner()->identity())); printf(" --------------------------------------\n"); HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction()); unsigned mark_size = 0; for (HeapObject* object = objects.Next(); object != NULL; object = objects.Next()) { bool is_marked = Marking::MarkBitFrom(object).Get(); PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little. if (is_marked) { mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object); } object->ShortPrint(); PrintF("\n"); } printf(" --------------------------------------\n"); printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes()); } #endif // DEBUG } } // namespace v8::internal