// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/runtime-profiler.h" #include "src/assembler.h" #include "src/base/platform/platform.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/compilation-cache.h" #include "src/compiler.h" #include "src/execution.h" #include "src/frames-inl.h" #include "src/full-codegen/full-codegen.h" #include "src/global-handles.h" #include "src/interpreter/interpreter.h" namespace v8 { namespace internal { // Number of times a function has to be seen on the stack before it is // compiled for baseline. static const int kProfilerTicksBeforeBaseline = 0; // Number of times a function has to be seen on the stack before it is // optimized. static const int kProfilerTicksBeforeOptimization = 2; // If the function optimization was disabled due to high deoptimization count, // but the function is hot and has been seen on the stack this number of times, // then we try to reenable optimization for this function. static const int kProfilerTicksBeforeReenablingOptimization = 250; // If a function does not have enough type info (according to // FLAG_type_info_threshold), but has seen a huge number of ticks, // optimize it as it is. static const int kTicksWhenNotEnoughTypeInfo = 100; // We only have one byte to store the number of ticks. STATIC_ASSERT(kProfilerTicksBeforeOptimization < 256); STATIC_ASSERT(kProfilerTicksBeforeReenablingOptimization < 256); STATIC_ASSERT(kTicksWhenNotEnoughTypeInfo < 256); // Maximum size in bytes of generate code for a function to allow OSR. static const int kOSRCodeSizeAllowanceBase = 100 * FullCodeGenerator::kCodeSizeMultiplier; static const int kOSRCodeSizeAllowanceBaseIgnition = 10 * interpreter::Interpreter::kCodeSizeMultiplier; static const int kOSRCodeSizeAllowancePerTick = 4 * FullCodeGenerator::kCodeSizeMultiplier; static const int kOSRCodeSizeAllowancePerTickIgnition = 2 * interpreter::Interpreter::kCodeSizeMultiplier; // Maximum size in bytes of generated code for a function to be optimized // the very first time it is seen on the stack. static const int kMaxSizeEarlyOpt = 5 * FullCodeGenerator::kCodeSizeMultiplier; static const int kMaxSizeEarlyOptIgnition = 5 * interpreter::Interpreter::kCodeSizeMultiplier; // Certain functions are simply too big to be worth optimizing. // We aren't using the code size multiplier here because there is no // "kMaxSizeOpt" with which we would need to normalize. This constant is // only for optimization decisions coming into TurboFan from Ignition. static const int kMaxSizeOptIgnition = 250 * 1024; #define OPTIMIZATION_REASON_LIST(V) \ V(DoNotOptimize, "do not optimize") \ V(HotAndStable, "hot and stable") \ V(HotEnoughForBaseline, "hot enough for baseline") \ V(HotWithoutMuchTypeInfo, "not much type info but very hot") \ V(SmallFunction, "small function") enum class OptimizationReason : uint8_t { #define OPTIMIZATION_REASON_CONSTANTS(Constant, message) k##Constant, OPTIMIZATION_REASON_LIST(OPTIMIZATION_REASON_CONSTANTS) #undef OPTIMIZATION_REASON_CONSTANTS }; char const* OptimizationReasonToString(OptimizationReason reason) { static char const* reasons[] = { #define OPTIMIZATION_REASON_TEXTS(Constant, message) message, OPTIMIZATION_REASON_LIST(OPTIMIZATION_REASON_TEXTS) #undef OPTIMIZATION_REASON_TEXTS }; size_t const index = static_cast(reason); DCHECK_LT(index, arraysize(reasons)); return reasons[index]; } std::ostream& operator<<(std::ostream& os, OptimizationReason reason) { return os << OptimizationReasonToString(reason); } RuntimeProfiler::RuntimeProfiler(Isolate* isolate) : isolate_(isolate), any_ic_changed_(false) { } static void GetICCounts(JSFunction* function, int* ic_with_type_info_count, int* ic_generic_count, int* ic_total_count, int* type_info_percentage, int* generic_percentage) { *ic_total_count = 0; *ic_generic_count = 0; *ic_with_type_info_count = 0; if (function->code()->kind() == Code::FUNCTION) { Code* shared_code = function->shared()->code(); Object* raw_info = shared_code->type_feedback_info(); if (raw_info->IsTypeFeedbackInfo()) { TypeFeedbackInfo* info = TypeFeedbackInfo::cast(raw_info); *ic_with_type_info_count = info->ic_with_type_info_count(); *ic_generic_count = info->ic_generic_count(); *ic_total_count = info->ic_total_count(); } } // Harvest vector-ics as well FeedbackVector* vector = function->feedback_vector(); int with = 0, gen = 0, type_vector_ic_count = 0; const bool is_interpreted = function->shared()->IsInterpreted(); vector->ComputeCounts(&with, &gen, &type_vector_ic_count, is_interpreted); *ic_total_count += type_vector_ic_count; *ic_with_type_info_count += with; *ic_generic_count += gen; if (*ic_total_count > 0) { *type_info_percentage = 100 * *ic_with_type_info_count / *ic_total_count; *generic_percentage = 100 * *ic_generic_count / *ic_total_count; } else { *type_info_percentage = 100; // Compared against lower bound. *generic_percentage = 0; // Compared against upper bound. } } static void TraceRecompile(JSFunction* function, const char* reason, const char* type) { if (FLAG_trace_opt && function->shared()->PassesFilter(FLAG_hydrogen_filter)) { PrintF("[marking "); function->ShortPrint(); PrintF(" for %s recompilation, reason: %s", type, reason); if (FLAG_type_info_threshold > 0) { int typeinfo, generic, total, type_percentage, generic_percentage; GetICCounts(function, &typeinfo, &generic, &total, &type_percentage, &generic_percentage); PrintF(", ICs with typeinfo: %d/%d (%d%%)", typeinfo, total, type_percentage); PrintF(", generic ICs: %d/%d (%d%%)", generic, total, generic_percentage); } PrintF("]\n"); } } void RuntimeProfiler::Optimize(JSFunction* function, OptimizationReason reason) { DCHECK_NE(reason, OptimizationReason::kDoNotOptimize); TraceRecompile(function, OptimizationReasonToString(reason), "optimized"); function->AttemptConcurrentOptimization(); } void RuntimeProfiler::Baseline(JSFunction* function, OptimizationReason reason) { DCHECK_NE(reason, OptimizationReason::kDoNotOptimize); TraceRecompile(function, OptimizationReasonToString(reason), "baseline"); DCHECK(function->shared()->IsInterpreted()); function->MarkForBaseline(); } void RuntimeProfiler::AttemptOnStackReplacement(JavaScriptFrame* frame, int loop_nesting_levels) { JSFunction* function = frame->function(); SharedFunctionInfo* shared = function->shared(); if (!FLAG_use_osr || !function->shared()->IsUserJavaScript()) { return; } // If the code is not optimizable, don't try OSR. if (shared->optimization_disabled()) return; // We are not prepared to do OSR for a function that already has an // allocated arguments object. The optimized code would bypass it for // arguments accesses, which is unsound. Don't try OSR. if (shared->uses_arguments()) return; // We're using on-stack replacement: modify unoptimized code so that // certain back edges in any unoptimized frame will trigger on-stack // replacement for that frame. // - Ignition: Store new loop nesting level in BytecodeArray header. // - FullCodegen: Patch back edges up to new level using BackEdgeTable. if (FLAG_trace_osr) { PrintF("[OSR - arming back edges in "); function->PrintName(); PrintF("]\n"); } if (frame->type() == StackFrame::JAVA_SCRIPT) { DCHECK(shared->HasBaselineCode()); DCHECK(BackEdgeTable::Verify(shared->GetIsolate(), shared->code())); for (int i = 0; i < loop_nesting_levels; i++) { BackEdgeTable::Patch(isolate_, shared->code()); } } else if (frame->type() == StackFrame::INTERPRETED) { DCHECK(shared->HasBytecodeArray()); if (!FLAG_ignition_osr) return; // Only use this when enabled. int level = shared->bytecode_array()->osr_loop_nesting_level(); shared->bytecode_array()->set_osr_loop_nesting_level( Min(level + loop_nesting_levels, AbstractCode::kMaxLoopNestingMarker)); } else { UNREACHABLE(); } } void RuntimeProfiler::MaybeOptimizeFullCodegen(JSFunction* function, JavaScriptFrame* frame, int frame_count) { SharedFunctionInfo* shared = function->shared(); Code* shared_code = shared->code(); if (shared_code->kind() != Code::FUNCTION) return; if (function->IsInOptimizationQueue()) return; if (FLAG_always_osr) { AttemptOnStackReplacement(frame, AbstractCode::kMaxLoopNestingMarker); // Fall through and do a normal optimized compile as well. } else if (!frame->is_optimized() && (function->IsMarkedForOptimization() || function->IsMarkedForConcurrentOptimization() || function->IsOptimized())) { // Attempt OSR if we are still running unoptimized code even though the // the function has long been marked or even already been optimized. int ticks = shared_code->profiler_ticks(); int64_t allowance = kOSRCodeSizeAllowanceBase + static_cast(ticks) * kOSRCodeSizeAllowancePerTick; if (shared_code->CodeSize() > allowance && ticks < Code::ProfilerTicksField::kMax) { shared_code->set_profiler_ticks(ticks + 1); } else { AttemptOnStackReplacement(frame); } return; } // Only record top-level code on top of the execution stack and // avoid optimizing excessively large scripts since top-level code // will be executed only once. const int kMaxToplevelSourceSize = 10 * 1024; if (shared->is_toplevel() && (frame_count > 1 || shared->SourceSize() > kMaxToplevelSourceSize)) { return; } // Do not record non-optimizable functions. if (shared->optimization_disabled()) { if (shared->deopt_count() >= FLAG_max_opt_count) { // If optimization was disabled due to many deoptimizations, // then check if the function is hot and try to reenable optimization. int ticks = shared_code->profiler_ticks(); if (ticks >= kProfilerTicksBeforeReenablingOptimization) { shared_code->set_profiler_ticks(0); shared->TryReenableOptimization(); } else { shared_code->set_profiler_ticks(ticks + 1); } } return; } if (frame->is_optimized()) return; int ticks = shared_code->profiler_ticks(); if (ticks >= kProfilerTicksBeforeOptimization) { int typeinfo, generic, total, type_percentage, generic_percentage; GetICCounts(function, &typeinfo, &generic, &total, &type_percentage, &generic_percentage); if (type_percentage >= FLAG_type_info_threshold && generic_percentage <= FLAG_generic_ic_threshold) { // If this particular function hasn't had any ICs patched for enough // ticks, optimize it now. Optimize(function, OptimizationReason::kHotAndStable); } else if (ticks >= kTicksWhenNotEnoughTypeInfo) { Optimize(function, OptimizationReason::kHotWithoutMuchTypeInfo); } else { shared_code->set_profiler_ticks(ticks + 1); if (FLAG_trace_opt_verbose) { PrintF("[not yet optimizing "); function->PrintName(); PrintF(", not enough type info: %d/%d (%d%%)]\n", typeinfo, total, type_percentage); } } } else if (!any_ic_changed_ && shared_code->instruction_size() < kMaxSizeEarlyOpt) { // If no IC was patched since the last tick and this function is very // small, optimistically optimize it now. int typeinfo, generic, total, type_percentage, generic_percentage; GetICCounts(function, &typeinfo, &generic, &total, &type_percentage, &generic_percentage); if (type_percentage >= FLAG_type_info_threshold && generic_percentage <= FLAG_generic_ic_threshold) { Optimize(function, OptimizationReason::kSmallFunction); } else { shared_code->set_profiler_ticks(ticks + 1); } } else { shared_code->set_profiler_ticks(ticks + 1); } } void RuntimeProfiler::MaybeBaselineIgnition(JSFunction* function, JavaScriptFrame* frame) { if (function->IsInOptimizationQueue()) return; if (FLAG_always_osr) { AttemptOnStackReplacement(frame, AbstractCode::kMaxLoopNestingMarker); // Fall through and do a normal baseline compile as well. } else if (MaybeOSRIgnition(function, frame)) { return; } SharedFunctionInfo* shared = function->shared(); int ticks = shared->profiler_ticks(); if (shared->optimization_disabled() && shared->disable_optimization_reason() == kOptimizationDisabledForTest) { // Don't baseline functions which have been marked by NeverOptimizeFunction // in a test. return; } if (ticks >= kProfilerTicksBeforeBaseline) { Baseline(function, OptimizationReason::kHotEnoughForBaseline); } } void RuntimeProfiler::MaybeOptimizeIgnition(JSFunction* function, JavaScriptFrame* frame) { if (function->IsInOptimizationQueue()) return; if (FLAG_always_osr) { AttemptOnStackReplacement(frame, AbstractCode::kMaxLoopNestingMarker); // Fall through and do a normal optimized compile as well. } else if (MaybeOSRIgnition(function, frame)) { return; } SharedFunctionInfo* shared = function->shared(); int ticks = shared->profiler_ticks(); if (shared->optimization_disabled()) { if (shared->deopt_count() >= FLAG_max_opt_count) { // If optimization was disabled due to many deoptimizations, // then check if the function is hot and try to reenable optimization. if (ticks >= kProfilerTicksBeforeReenablingOptimization) { shared->set_profiler_ticks(0); shared->TryReenableOptimization(); } } return; } if (frame->is_optimized()) return; OptimizationReason reason = ShouldOptimizeIgnition(function, frame); if (reason != OptimizationReason::kDoNotOptimize) { Optimize(function, reason); } } bool RuntimeProfiler::MaybeOSRIgnition(JSFunction* function, JavaScriptFrame* frame) { SharedFunctionInfo* shared = function->shared(); int ticks = shared->profiler_ticks(); // TODO(rmcilroy): Also ensure we only OSR top-level code if it is smaller // than kMaxToplevelSourceSize. bool osr_before_baselined = function->IsMarkedForBaseline() && ShouldOptimizeIgnition(function, frame) != OptimizationReason::kDoNotOptimize; if (!frame->is_optimized() && (osr_before_baselined || function->IsMarkedForOptimization() || function->IsMarkedForConcurrentOptimization() || function->IsOptimized())) { // Attempt OSR if we are still running interpreted code even though the // the function has long been marked or even already been optimized. int64_t allowance = kOSRCodeSizeAllowanceBaseIgnition + static_cast(ticks) * kOSRCodeSizeAllowancePerTickIgnition; if (shared->bytecode_array()->Size() <= allowance) { AttemptOnStackReplacement(frame); } return true; } return false; } OptimizationReason RuntimeProfiler::ShouldOptimizeIgnition( JSFunction* function, JavaScriptFrame* frame) { SharedFunctionInfo* shared = function->shared(); int ticks = shared->profiler_ticks(); if (shared->bytecode_array()->Size() > kMaxSizeOptIgnition) { return OptimizationReason::kDoNotOptimize; } if (ticks >= kProfilerTicksBeforeOptimization) { int typeinfo, generic, total, type_percentage, generic_percentage; GetICCounts(function, &typeinfo, &generic, &total, &type_percentage, &generic_percentage); if (type_percentage >= FLAG_type_info_threshold) { // If this particular function hasn't had any ICs patched for enough // ticks, optimize it now. return OptimizationReason::kHotAndStable; } else if (ticks >= kTicksWhenNotEnoughTypeInfo) { return OptimizationReason::kHotWithoutMuchTypeInfo; } else { if (FLAG_trace_opt_verbose) { PrintF("[not yet optimizing "); function->PrintName(); PrintF(", not enough type info: %d/%d (%d%%)]\n", typeinfo, total, type_percentage); } return OptimizationReason::kDoNotOptimize; } } else if (!any_ic_changed_ && shared->bytecode_array()->Size() < kMaxSizeEarlyOptIgnition) { // If no IC was patched since the last tick and this function is very // small, optimistically optimize it now. int typeinfo, generic, total, type_percentage, generic_percentage; GetICCounts(function, &typeinfo, &generic, &total, &type_percentage, &generic_percentage); if (type_percentage >= FLAG_type_info_threshold) { return OptimizationReason::kSmallFunction; } } return OptimizationReason::kDoNotOptimize; } void RuntimeProfiler::MarkCandidatesForOptimization() { HandleScope scope(isolate_); if (!isolate_->use_crankshaft()) return; DisallowHeapAllocation no_gc; // Run through the JavaScript frames and collect them. If we already // have a sample of the function, we mark it for optimizations // (eagerly or lazily). int frame_count = 0; int frame_count_limit = FLAG_frame_count; for (JavaScriptFrameIterator it(isolate_); frame_count++ < frame_count_limit && !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); JSFunction* function = frame->function(); Compiler::CompilationTier next_tier = Compiler::NextCompilationTier(function); if (function->shared()->IsInterpreted()) { if (next_tier == Compiler::BASELINE) { MaybeBaselineIgnition(function, frame); } else { DCHECK_EQ(next_tier, Compiler::OPTIMIZED); MaybeOptimizeIgnition(function, frame); } } else { DCHECK_EQ(next_tier, Compiler::OPTIMIZED); MaybeOptimizeFullCodegen(function, frame, frame_count); } // Update shared function info ticks after checking for whether functions // should be optimized to keep FCG (which updates ticks on code) and // Ignition (which updates ticks on shared function info) in sync. List functions(4); frame->GetFunctions(&functions); for (int i = functions.length(); --i >= 0;) { SharedFunctionInfo* shared_function_info = functions[i]; int ticks = shared_function_info->profiler_ticks(); if (ticks < Smi::kMaxValue) { shared_function_info->set_profiler_ticks(ticks + 1); } } } any_ic_changed_ = false; } } // namespace internal } // namespace v8