// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "assembler.h" #include "regexp-stack.h" #include "regexp-macro-assembler.h" #include "simulator.h" namespace v8 { namespace internal { RegExpMacroAssembler::RegExpMacroAssembler() : slow_safe_compiler_(false) { } RegExpMacroAssembler::~RegExpMacroAssembler() { } bool RegExpMacroAssembler::CanReadUnaligned() { #ifdef V8_HOST_CAN_READ_UNALIGNED return true; #else return false; #endif } #ifndef V8_INTERPRETED_REGEXP // Avoid unused code, e.g., on ARM. NativeRegExpMacroAssembler::NativeRegExpMacroAssembler() : RegExpMacroAssembler() { } NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() { } bool NativeRegExpMacroAssembler::CanReadUnaligned() { #ifdef V8_TARGET_CAN_READ_UNALIGNED return !slow_safe(); #else return false; #endif } const byte* NativeRegExpMacroAssembler::StringCharacterPosition( String* subject, int start_index) { // Not just flat, but ultra flat. ASSERT(subject->IsExternalString() || subject->IsSeqString()); ASSERT(start_index >= 0); ASSERT(start_index <= subject->length()); if (subject->IsAsciiRepresentation()) { const byte* address; if (StringShape(subject).IsExternal()) { const char* data = ExternalAsciiString::cast(subject)->GetChars(); address = reinterpret_cast(data); } else { ASSERT(subject->IsSeqAsciiString()); char* data = SeqAsciiString::cast(subject)->GetChars(); address = reinterpret_cast(data); } return address + start_index; } const uc16* data; if (StringShape(subject).IsExternal()) { data = ExternalTwoByteString::cast(subject)->GetChars(); } else { ASSERT(subject->IsSeqTwoByteString()); data = SeqTwoByteString::cast(subject)->GetChars(); } return reinterpret_cast(data + start_index); } NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match( Handle regexp_code, Handle subject, int* offsets_vector, int offsets_vector_length, int previous_index, Isolate* isolate) { ASSERT(subject->IsFlat()); ASSERT(previous_index >= 0); ASSERT(previous_index <= subject->length()); // No allocations before calling the regexp, but we can't use // AssertNoAllocation, since regexps might be preempted, and another thread // might do allocation anyway. String* subject_ptr = *subject; // Character offsets into string. int start_offset = previous_index; int char_length = subject_ptr->length() - start_offset; int slice_offset = 0; // The string has been flattened, so if it is a cons string it contains the // full string in the first part. if (StringShape(subject_ptr).IsCons()) { ASSERT_EQ(0, ConsString::cast(subject_ptr)->second()->length()); subject_ptr = ConsString::cast(subject_ptr)->first(); } else if (StringShape(subject_ptr).IsSliced()) { SlicedString* slice = SlicedString::cast(subject_ptr); subject_ptr = slice->parent(); slice_offset = slice->offset(); } // Ensure that an underlying string has the same ASCII-ness. bool is_ascii = subject_ptr->IsAsciiRepresentation(); ASSERT(subject_ptr->IsExternalString() || subject_ptr->IsSeqString()); // String is now either Sequential or External int char_size_shift = is_ascii ? 0 : 1; const byte* input_start = StringCharacterPosition(subject_ptr, start_offset + slice_offset); int byte_length = char_length << char_size_shift; const byte* input_end = input_start + byte_length; Result res = Execute(*regexp_code, *subject, start_offset, input_start, input_end, offsets_vector, isolate); return res; } NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute( Code* code, String* input, // This needs to be the unpacked (sliced, cons) string. int start_offset, const byte* input_start, const byte* input_end, int* output, Isolate* isolate) { ASSERT(isolate == Isolate::Current()); // Ensure that the minimum stack has been allocated. RegExpStackScope stack_scope(isolate); Address stack_base = stack_scope.stack()->stack_base(); int direct_call = 0; int result = CALL_GENERATED_REGEXP_CODE(code->entry(), input, start_offset, input_start, input_end, output, stack_base, direct_call, isolate); ASSERT(result <= SUCCESS); ASSERT(result >= RETRY); if (result == EXCEPTION && !isolate->has_pending_exception()) { // We detected a stack overflow (on the backtrack stack) in RegExp code, // but haven't created the exception yet. isolate->StackOverflow(); } return static_cast(result); } const byte NativeRegExpMacroAssembler::word_character_map[] = { 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // '0' - '7' 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // '8' - '9' 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'A' - 'G' 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'H' - 'O' 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'P' - 'W' 0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0xffu, // 'X' - 'Z', '_' 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'a' - 'g' 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'h' - 'o' 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'p' - 'w' 0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // 'x' - 'z' }; int NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16( Address byte_offset1, Address byte_offset2, size_t byte_length, Isolate* isolate) { ASSERT(isolate == Isolate::Current()); unibrow::Mapping* canonicalize = isolate->regexp_macro_assembler_canonicalize(); // This function is not allowed to cause a garbage collection. // A GC might move the calling generated code and invalidate the // return address on the stack. ASSERT(byte_length % 2 == 0); uc16* substring1 = reinterpret_cast(byte_offset1); uc16* substring2 = reinterpret_cast(byte_offset2); size_t length = byte_length >> 1; for (size_t i = 0; i < length; i++) { unibrow::uchar c1 = substring1[i]; unibrow::uchar c2 = substring2[i]; if (c1 != c2) { unibrow::uchar s1[1] = { c1 }; canonicalize->get(c1, '\0', s1); if (s1[0] != c2) { unibrow::uchar s2[1] = { c2 }; canonicalize->get(c2, '\0', s2); if (s1[0] != s2[0]) { return 0; } } } } return 1; } Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer, Address* stack_base, Isolate* isolate) { ASSERT(isolate == Isolate::Current()); RegExpStack* regexp_stack = isolate->regexp_stack(); size_t size = regexp_stack->stack_capacity(); Address old_stack_base = regexp_stack->stack_base(); ASSERT(old_stack_base == *stack_base); ASSERT(stack_pointer <= old_stack_base); ASSERT(static_cast(old_stack_base - stack_pointer) <= size); Address new_stack_base = regexp_stack->EnsureCapacity(size * 2); if (new_stack_base == NULL) { return NULL; } *stack_base = new_stack_base; intptr_t stack_content_size = old_stack_base - stack_pointer; return new_stack_base - stack_content_size; } #endif // V8_INTERPRETED_REGEXP } } // namespace v8::internal