// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/objects.h" #include "src/assembler-inl.h" #include "src/bootstrapper.h" #include "src/disasm.h" #include "src/disassembler.h" #include "src/field-type.h" #include "src/layout-descriptor.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/objects/literal-objects.h" #include "src/objects/module-info.h" #include "src/ostreams.h" #include "src/regexp/jsregexp.h" #include "src/transitions.h" namespace v8 { namespace internal { #ifdef VERIFY_HEAP void Object::ObjectVerify() { if (IsSmi()) { Smi::cast(this)->SmiVerify(); } else { HeapObject::cast(this)->HeapObjectVerify(); } CHECK(!IsConstructor() || IsCallable()); } void Object::VerifyPointer(Object* p) { if (p->IsHeapObject()) { HeapObject::VerifyHeapPointer(p); } else { CHECK(p->IsSmi()); } } void Smi::SmiVerify() { CHECK(IsSmi()); CHECK(!IsCallable()); CHECK(!IsConstructor()); } void HeapObject::HeapObjectVerify() { VerifyHeapPointer(map()); CHECK(map()->IsMap()); InstanceType instance_type = map()->instance_type(); if (instance_type < FIRST_NONSTRING_TYPE) { String::cast(this)->StringVerify(); return; } switch (instance_type) { case SYMBOL_TYPE: Symbol::cast(this)->SymbolVerify(); break; case MAP_TYPE: Map::cast(this)->MapVerify(); break; case HEAP_NUMBER_TYPE: case MUTABLE_HEAP_NUMBER_TYPE: HeapNumber::cast(this)->HeapNumberVerify(); break; case FIXED_ARRAY_TYPE: FixedArray::cast(this)->FixedArrayVerify(); break; case FIXED_DOUBLE_ARRAY_TYPE: FixedDoubleArray::cast(this)->FixedDoubleArrayVerify(); break; case BYTE_ARRAY_TYPE: ByteArray::cast(this)->ByteArrayVerify(); break; case BYTECODE_ARRAY_TYPE: BytecodeArray::cast(this)->BytecodeArrayVerify(); break; case TRANSITION_ARRAY_TYPE: TransitionArray::cast(this)->TransitionArrayVerify(); break; case FREE_SPACE_TYPE: FreeSpace::cast(this)->FreeSpaceVerify(); break; #define VERIFY_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ Fixed##Type##Array::cast(this)->FixedTypedArrayVerify(); \ break; TYPED_ARRAYS(VERIFY_TYPED_ARRAY) #undef VERIFY_TYPED_ARRAY case CODE_TYPE: Code::cast(this)->CodeVerify(); break; case ODDBALL_TYPE: Oddball::cast(this)->OddballVerify(); break; case JS_OBJECT_TYPE: case JS_ERROR_TYPE: case JS_ARGUMENTS_TYPE: case JS_API_OBJECT_TYPE: case JS_SPECIAL_API_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: JSObject::cast(this)->JSObjectVerify(); break; case JS_GENERATOR_OBJECT_TYPE: JSGeneratorObject::cast(this)->JSGeneratorObjectVerify(); break; case JS_VALUE_TYPE: JSValue::cast(this)->JSValueVerify(); break; case JS_DATE_TYPE: JSDate::cast(this)->JSDateVerify(); break; case JS_BOUND_FUNCTION_TYPE: JSBoundFunction::cast(this)->JSBoundFunctionVerify(); break; case JS_FUNCTION_TYPE: JSFunction::cast(this)->JSFunctionVerify(); break; case JS_GLOBAL_PROXY_TYPE: JSGlobalProxy::cast(this)->JSGlobalProxyVerify(); break; case JS_GLOBAL_OBJECT_TYPE: JSGlobalObject::cast(this)->JSGlobalObjectVerify(); break; case CELL_TYPE: Cell::cast(this)->CellVerify(); break; case PROPERTY_CELL_TYPE: PropertyCell::cast(this)->PropertyCellVerify(); break; case WEAK_CELL_TYPE: WeakCell::cast(this)->WeakCellVerify(); break; case JS_ARRAY_TYPE: JSArray::cast(this)->JSArrayVerify(); break; case JS_MODULE_NAMESPACE_TYPE: JSModuleNamespace::cast(this)->JSModuleNamespaceVerify(); break; case JS_SET_TYPE: JSSet::cast(this)->JSSetVerify(); break; case JS_MAP_TYPE: JSMap::cast(this)->JSMapVerify(); break; case JS_SET_ITERATOR_TYPE: JSSetIterator::cast(this)->JSSetIteratorVerify(); break; case JS_MAP_ITERATOR_TYPE: JSMapIterator::cast(this)->JSMapIteratorVerify(); break; case JS_TYPED_ARRAY_KEY_ITERATOR_TYPE: case JS_FAST_ARRAY_KEY_ITERATOR_TYPE: case JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE: case JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_INT8_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_UINT16_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_INT16_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_UINT32_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_INT32_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FLOAT32_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FLOAT64_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_UINT8_CLAMPED_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FAST_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FAST_HOLEY_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FAST_HOLEY_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FAST_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_FAST_HOLEY_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_GENERIC_ARRAY_KEY_VALUE_ITERATOR_TYPE: case JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE: case JS_INT8_ARRAY_VALUE_ITERATOR_TYPE: case JS_UINT16_ARRAY_VALUE_ITERATOR_TYPE: case JS_INT16_ARRAY_VALUE_ITERATOR_TYPE: case JS_UINT32_ARRAY_VALUE_ITERATOR_TYPE: case JS_INT32_ARRAY_VALUE_ITERATOR_TYPE: case JS_FLOAT32_ARRAY_VALUE_ITERATOR_TYPE: case JS_FLOAT64_ARRAY_VALUE_ITERATOR_TYPE: case JS_UINT8_CLAMPED_ARRAY_VALUE_ITERATOR_TYPE: case JS_FAST_ARRAY_VALUE_ITERATOR_TYPE: case JS_FAST_HOLEY_ARRAY_VALUE_ITERATOR_TYPE: case JS_FAST_SMI_ARRAY_VALUE_ITERATOR_TYPE: case JS_FAST_HOLEY_SMI_ARRAY_VALUE_ITERATOR_TYPE: case JS_FAST_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE: case JS_FAST_HOLEY_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE: case JS_GENERIC_ARRAY_VALUE_ITERATOR_TYPE: JSArrayIterator::cast(this)->JSArrayIteratorVerify(); break; case JS_STRING_ITERATOR_TYPE: JSStringIterator::cast(this)->JSStringIteratorVerify(); break; case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE: JSAsyncFromSyncIterator::cast(this)->JSAsyncFromSyncIteratorVerify(); break; case JS_WEAK_MAP_TYPE: JSWeakMap::cast(this)->JSWeakMapVerify(); break; case JS_WEAK_SET_TYPE: JSWeakSet::cast(this)->JSWeakSetVerify(); break; case JS_PROMISE_CAPABILITY_TYPE: JSPromiseCapability::cast(this)->JSPromiseCapabilityVerify(); break; case JS_PROMISE_TYPE: JSPromise::cast(this)->JSPromiseVerify(); break; case JS_REGEXP_TYPE: JSRegExp::cast(this)->JSRegExpVerify(); break; case FILLER_TYPE: break; case JS_PROXY_TYPE: JSProxy::cast(this)->JSProxyVerify(); break; case FOREIGN_TYPE: Foreign::cast(this)->ForeignVerify(); break; case SHARED_FUNCTION_INFO_TYPE: SharedFunctionInfo::cast(this)->SharedFunctionInfoVerify(); break; case JS_MESSAGE_OBJECT_TYPE: JSMessageObject::cast(this)->JSMessageObjectVerify(); break; case JS_ARRAY_BUFFER_TYPE: JSArrayBuffer::cast(this)->JSArrayBufferVerify(); break; case JS_TYPED_ARRAY_TYPE: JSTypedArray::cast(this)->JSTypedArrayVerify(); break; case JS_DATA_VIEW_TYPE: JSDataView::cast(this)->JSDataViewVerify(); break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ Name::cast(this)->Name##Verify(); \ break; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: UNREACHABLE(); break; } } void HeapObject::VerifyHeapPointer(Object* p) { CHECK(p->IsHeapObject()); HeapObject* ho = HeapObject::cast(p); CHECK(ho->GetHeap()->Contains(ho)); } void Symbol::SymbolVerify() { CHECK(IsSymbol()); CHECK(HasHashCode()); CHECK(Hash() > 0u); CHECK(name()->IsUndefined(GetIsolate()) || name()->IsString()); } void HeapNumber::HeapNumberVerify() { CHECK(IsHeapNumber() || IsMutableHeapNumber()); } void ByteArray::ByteArrayVerify() { CHECK(IsByteArray()); } void BytecodeArray::BytecodeArrayVerify() { // TODO(oth): Walk bytecodes and immediate values to validate sanity. // - All bytecodes are known and well formed. // - Jumps must go to new instructions starts. // - No Illegal bytecodes. // - No consecutive sequences of prefix Wide / ExtraWide. CHECK(IsBytecodeArray()); CHECK(constant_pool()->IsFixedArray()); VerifyHeapPointer(constant_pool()); } void FreeSpace::FreeSpaceVerify() { CHECK(IsFreeSpace()); } template void FixedTypedArray::FixedTypedArrayVerify() { CHECK(IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == Traits::kInstanceType); if (base_pointer() == this) { CHECK(external_pointer() == ExternalReference::fixed_typed_array_base_data_offset().address()); } else { CHECK(base_pointer() == nullptr); } } bool JSObject::ElementsAreSafeToExamine() { // If a GC was caused while constructing this object, the elements // pointer may point to a one pointer filler map. return reinterpret_cast(elements()) != GetHeap()->one_pointer_filler_map(); } void JSObject::JSObjectVerify() { VerifyHeapPointer(properties()); VerifyHeapPointer(elements()); if (HasSloppyArgumentsElements()) { CHECK(this->elements()->IsFixedArray()); CHECK_GE(this->elements()->length(), 2); } if (HasFastProperties()) { int actual_unused_property_fields = map()->GetInObjectProperties() + properties()->length() - map()->NextFreePropertyIndex(); if (map()->unused_property_fields() != actual_unused_property_fields) { // This could actually happen in the middle of StoreTransitionStub // when the new extended backing store is already set into the object and // the allocation of the MutableHeapNumber triggers GC (in this case map // is not updated yet). CHECK_EQ(map()->unused_property_fields(), actual_unused_property_fields - JSObject::kFieldsAdded); } DescriptorArray* descriptors = map()->instance_descriptors(); Isolate* isolate = GetIsolate(); for (int i = 0; i < map()->NumberOfOwnDescriptors(); i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.location() == kField) { DCHECK_EQ(kData, details.kind()); Representation r = descriptors->GetDetails(i).representation(); FieldIndex index = FieldIndex::ForDescriptor(map(), i); if (IsUnboxedDoubleField(index)) { DCHECK(r.IsDouble()); continue; } Object* value = RawFastPropertyAt(index); if (r.IsDouble()) DCHECK(value->IsMutableHeapNumber()); if (value->IsUninitialized(isolate)) continue; if (r.IsSmi()) DCHECK(value->IsSmi()); if (r.IsHeapObject()) DCHECK(value->IsHeapObject()); FieldType* field_type = descriptors->GetFieldType(i); bool type_is_none = field_type->IsNone(); bool type_is_any = field_type->IsAny(); if (r.IsNone()) { CHECK(type_is_none); } else if (!type_is_any && !(type_is_none && r.IsHeapObject())) { // If allocation folding is off then GC could happen during inner // object literal creation and we will end up having and undefined // value that does not match the field type. CHECK(!field_type->NowStable() || field_type->NowContains(value) || (!FLAG_use_allocation_folding && value->IsUndefined(isolate))); } } } } // If a GC was caused while constructing this object, the elements // pointer may point to a one pointer filler map. if (ElementsAreSafeToExamine()) { CHECK_EQ((map()->has_fast_smi_or_object_elements() || (elements() == GetHeap()->empty_fixed_array()) || HasFastStringWrapperElements()), (elements()->map() == GetHeap()->fixed_array_map() || elements()->map() == GetHeap()->fixed_cow_array_map())); CHECK(map()->has_fast_object_elements() == HasFastObjectElements()); } } void Map::MapVerify() { Heap* heap = GetHeap(); CHECK(!heap->InNewSpace(this)); CHECK(FIRST_TYPE <= instance_type() && instance_type() <= LAST_TYPE); CHECK(instance_size() == kVariableSizeSentinel || (kPointerSize <= instance_size() && static_cast(instance_size()) < heap->Capacity())); CHECK(GetBackPointer()->IsUndefined(heap->isolate()) || !Map::cast(GetBackPointer())->is_stable()); VerifyHeapPointer(prototype()); VerifyHeapPointer(instance_descriptors()); SLOW_DCHECK(instance_descriptors()->IsSortedNoDuplicates()); SLOW_DCHECK(TransitionArray::IsSortedNoDuplicates(this)); SLOW_DCHECK(TransitionArray::IsConsistentWithBackPointers(this)); // TODO(ishell): turn it back to SLOW_DCHECK. CHECK(!FLAG_unbox_double_fields || layout_descriptor()->IsConsistentWithMap(this)); } void Map::DictionaryMapVerify() { MapVerify(); CHECK(is_dictionary_map()); CHECK(instance_descriptors()->IsEmpty()); CHECK_EQ(0, unused_property_fields()); CHECK_EQ(Heap::GetStaticVisitorIdForMap(this), visitor_id()); } void Map::VerifyOmittedMapChecks() { if (!FLAG_omit_map_checks_for_leaf_maps) return; if (!is_stable() || is_deprecated() || is_dictionary_map()) { CHECK(dependent_code()->IsEmpty(DependentCode::kPrototypeCheckGroup)); } } void TypeFeedbackInfo::TypeFeedbackInfoVerify() { VerifyObjectField(kStorage1Offset); VerifyObjectField(kStorage2Offset); VerifyObjectField(kStorage3Offset); } void AliasedArgumentsEntry::AliasedArgumentsEntryVerify() { VerifySmiField(kAliasedContextSlot); } void FixedArray::FixedArrayVerify() { for (int i = 0; i < length(); i++) { Object* e = get(i); VerifyPointer(e); } } void FixedDoubleArray::FixedDoubleArrayVerify() { for (int i = 0; i < length(); i++) { if (!is_the_hole(i)) { uint64_t value = get_representation(i); uint64_t unexpected = bit_cast(std::numeric_limits::quiet_NaN()) & V8_UINT64_C(0x7FF8000000000000); // Create implementation specific sNaN by inverting relevant bit. unexpected ^= V8_UINT64_C(0x0008000000000000); CHECK((value & V8_UINT64_C(0x7FF8000000000000)) != unexpected || (value & V8_UINT64_C(0x0007FFFFFFFFFFFF)) == V8_UINT64_C(0)); } } } void TransitionArray::TransitionArrayVerify() { for (int i = 0; i < length(); i++) { Object* e = get(i); VerifyPointer(e); } CHECK_LE(LengthFor(number_of_transitions()), length()); CHECK(next_link()->IsUndefined(GetIsolate()) || next_link()->IsSmi() || next_link()->IsTransitionArray()); } void JSGeneratorObject::JSGeneratorObjectVerify() { // In an expression like "new g()", there can be a point where a generator // object is allocated but its fields are all undefined, as it hasn't yet been // initialized by the generator. Hence these weak checks. VerifyObjectField(kFunctionOffset); VerifyObjectField(kContextOffset); VerifyObjectField(kReceiverOffset); VerifyObjectField(kRegisterFileOffset); VerifyObjectField(kContinuationOffset); } void JSValue::JSValueVerify() { Object* v = value(); if (v->IsHeapObject()) { VerifyHeapPointer(v); } } void JSDate::JSDateVerify() { if (value()->IsHeapObject()) { VerifyHeapPointer(value()); } Isolate* isolate = GetIsolate(); CHECK(value()->IsUndefined(isolate) || value()->IsSmi() || value()->IsHeapNumber()); CHECK(year()->IsUndefined(isolate) || year()->IsSmi() || year()->IsNaN()); CHECK(month()->IsUndefined(isolate) || month()->IsSmi() || month()->IsNaN()); CHECK(day()->IsUndefined(isolate) || day()->IsSmi() || day()->IsNaN()); CHECK(weekday()->IsUndefined(isolate) || weekday()->IsSmi() || weekday()->IsNaN()); CHECK(hour()->IsUndefined(isolate) || hour()->IsSmi() || hour()->IsNaN()); CHECK(min()->IsUndefined(isolate) || min()->IsSmi() || min()->IsNaN()); CHECK(sec()->IsUndefined(isolate) || sec()->IsSmi() || sec()->IsNaN()); CHECK(cache_stamp()->IsUndefined(isolate) || cache_stamp()->IsSmi() || cache_stamp()->IsNaN()); if (month()->IsSmi()) { int month = Smi::cast(this->month())->value(); CHECK(0 <= month && month <= 11); } if (day()->IsSmi()) { int day = Smi::cast(this->day())->value(); CHECK(1 <= day && day <= 31); } if (hour()->IsSmi()) { int hour = Smi::cast(this->hour())->value(); CHECK(0 <= hour && hour <= 23); } if (min()->IsSmi()) { int min = Smi::cast(this->min())->value(); CHECK(0 <= min && min <= 59); } if (sec()->IsSmi()) { int sec = Smi::cast(this->sec())->value(); CHECK(0 <= sec && sec <= 59); } if (weekday()->IsSmi()) { int weekday = Smi::cast(this->weekday())->value(); CHECK(0 <= weekday && weekday <= 6); } if (cache_stamp()->IsSmi()) { CHECK(Smi::cast(cache_stamp())->value() <= Smi::cast(isolate->date_cache()->stamp())->value()); } } void JSMessageObject::JSMessageObjectVerify() { CHECK(IsJSMessageObject()); VerifyObjectField(kStartPositionOffset); VerifyObjectField(kEndPositionOffset); VerifyObjectField(kArgumentsOffset); VerifyObjectField(kScriptOffset); VerifyObjectField(kStackFramesOffset); } void String::StringVerify() { CHECK(IsString()); CHECK(length() >= 0 && length() <= Smi::kMaxValue); CHECK_IMPLIES(length() == 0, this == GetHeap()->empty_string()); if (IsInternalizedString()) { CHECK(!GetHeap()->InNewSpace(this)); } if (IsConsString()) { ConsString::cast(this)->ConsStringVerify(); } else if (IsSlicedString()) { SlicedString::cast(this)->SlicedStringVerify(); } else if (IsThinString()) { ThinString::cast(this)->ThinStringVerify(); } } void ConsString::ConsStringVerify() { CHECK(this->first()->IsString()); CHECK(this->second() == GetHeap()->empty_string() || this->second()->IsString()); CHECK(this->length() >= ConsString::kMinLength); CHECK(this->length() == this->first()->length() + this->second()->length()); if (this->IsFlat()) { // A flat cons can only be created by String::SlowFlatten. // Afterwards, the first part may be externalized or internalized. CHECK(this->first()->IsSeqString() || this->first()->IsExternalString() || this->first()->IsThinString()); } } void ThinString::ThinStringVerify() { CHECK(this->actual()->IsInternalizedString()); CHECK(this->actual()->IsSeqString() || this->actual()->IsExternalString()); } void SlicedString::SlicedStringVerify() { CHECK(!this->parent()->IsConsString()); CHECK(!this->parent()->IsSlicedString()); CHECK(this->length() >= SlicedString::kMinLength); } void JSBoundFunction::JSBoundFunctionVerify() { CHECK(IsJSBoundFunction()); JSObjectVerify(); VerifyObjectField(kBoundThisOffset); VerifyObjectField(kBoundTargetFunctionOffset); VerifyObjectField(kBoundArgumentsOffset); CHECK(bound_target_function()->IsCallable()); CHECK(IsCallable()); CHECK_EQ(IsConstructor(), bound_target_function()->IsConstructor()); } void JSFunction::JSFunctionVerify() { CHECK(IsJSFunction()); VerifyObjectField(kPrototypeOrInitialMapOffset); VerifyObjectField(kNextFunctionLinkOffset); CHECK(code()->IsCode()); CHECK(next_function_link() == NULL || next_function_link()->IsUndefined(GetIsolate()) || next_function_link()->IsJSFunction()); CHECK(map()->is_callable()); } void SharedFunctionInfo::SharedFunctionInfoVerify() { CHECK(IsSharedFunctionInfo()); VerifyObjectField(kCodeOffset); VerifyObjectField(kDebugInfoOffset); VerifyObjectField(kFeedbackMetadataOffset); VerifyObjectField(kFunctionDataOffset); VerifyObjectField(kFunctionIdentifierOffset); VerifyObjectField(kInstanceClassNameOffset); VerifyObjectField(kNameOffset); VerifyObjectField(kOptimizedCodeMapOffset); VerifyObjectField(kOuterScopeInfoOffset); VerifyObjectField(kScopeInfoOffset); VerifyObjectField(kScriptOffset); CHECK(function_data()->IsUndefined(GetIsolate()) || IsApiFunction() || HasBytecodeArray() || HasAsmWasmData()); CHECK(function_identifier()->IsUndefined(GetIsolate()) || HasBuiltinFunctionId() || HasInferredName()); if (scope_info()->length() > 0) { CHECK(kind() == scope_info()->function_kind()); CHECK_EQ(kind() == kModule, scope_info()->scope_type() == MODULE_SCOPE); } } void JSGlobalProxy::JSGlobalProxyVerify() { CHECK(IsJSGlobalProxy()); JSObjectVerify(); VerifyObjectField(JSGlobalProxy::kNativeContextOffset); // Make sure that this object has no properties, elements. CHECK_EQ(0, properties()->length()); CHECK_EQ(0, FixedArray::cast(elements())->length()); } void JSGlobalObject::JSGlobalObjectVerify() { CHECK(IsJSGlobalObject()); // Do not check the dummy global object for the builtins. if (GlobalDictionary::cast(properties())->NumberOfElements() == 0 && elements()->length() == 0) { return; } JSObjectVerify(); } void Oddball::OddballVerify() { CHECK(IsOddball()); Heap* heap = GetHeap(); VerifyHeapPointer(to_string()); Object* number = to_number(); if (number->IsHeapObject()) { CHECK(number == heap->nan_value() || number == heap->hole_nan_value()); } else { CHECK(number->IsSmi()); int value = Smi::cast(number)->value(); // Hidden oddballs have negative smis. const int kLeastHiddenOddballNumber = -7; CHECK_LE(value, 1); CHECK(value >= kLeastHiddenOddballNumber); } if (map() == heap->undefined_map()) { CHECK(this == heap->undefined_value()); } else if (map() == heap->the_hole_map()) { CHECK(this == heap->the_hole_value()); } else if (map() == heap->null_map()) { CHECK(this == heap->null_value()); } else if (map() == heap->boolean_map()) { CHECK(this == heap->true_value() || this == heap->false_value()); } else if (map() == heap->uninitialized_map()) { CHECK(this == heap->uninitialized_value()); } else if (map() == heap->no_interceptor_result_sentinel_map()) { CHECK(this == heap->no_interceptor_result_sentinel()); } else if (map() == heap->arguments_marker_map()) { CHECK(this == heap->arguments_marker()); } else if (map() == heap->termination_exception_map()) { CHECK(this == heap->termination_exception()); } else if (map() == heap->exception_map()) { CHECK(this == heap->exception()); } else if (map() == heap->optimized_out_map()) { CHECK(this == heap->optimized_out()); } else if (map() == heap->stale_register_map()) { CHECK(this == heap->stale_register()); } else { UNREACHABLE(); } } void Cell::CellVerify() { CHECK(IsCell()); VerifyObjectField(kValueOffset); } void PropertyCell::PropertyCellVerify() { CHECK(IsPropertyCell()); VerifyObjectField(kValueOffset); } void WeakCell::WeakCellVerify() { CHECK(IsWeakCell()); VerifyObjectField(kValueOffset); VerifyObjectField(kNextOffset); } void Code::CodeVerify() { CHECK(IsAligned(reinterpret_cast(instruction_start()), kCodeAlignment)); relocation_info()->ObjectVerify(); Address last_gc_pc = NULL; Isolate* isolate = GetIsolate(); for (RelocIterator it(this); !it.done(); it.next()) { it.rinfo()->Verify(isolate); // Ensure that GC will not iterate twice over the same pointer. if (RelocInfo::IsGCRelocMode(it.rinfo()->rmode())) { CHECK(it.rinfo()->pc() != last_gc_pc); last_gc_pc = it.rinfo()->pc(); } } CHECK(raw_type_feedback_info() == Smi::kZero || raw_type_feedback_info()->IsSmi() == IsCodeStubOrIC()); } void Code::VerifyEmbeddedObjectsDependency() { if (!CanContainWeakObjects()) return; WeakCell* cell = CachedWeakCell(); DisallowHeapAllocation no_gc; Isolate* isolate = GetIsolate(); HandleScope scope(isolate); int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { Object* obj = it.rinfo()->target_object(); if (IsWeakObject(obj)) { if (obj->IsMap()) { Map* map = Map::cast(obj); CHECK(map->dependent_code()->Contains(DependentCode::kWeakCodeGroup, cell)); } else if (obj->IsJSObject()) { if (isolate->heap()->InNewSpace(obj)) { ArrayList* list = GetIsolate()->heap()->weak_new_space_object_to_code_list(); bool found = false; for (int i = 0; i < list->Length(); i += 2) { WeakCell* obj_cell = WeakCell::cast(list->Get(i)); if (!obj_cell->cleared() && obj_cell->value() == obj && WeakCell::cast(list->Get(i + 1)) == cell) { found = true; break; } } CHECK(found); } else { Handle key_obj(HeapObject::cast(obj), isolate); DependentCode* dep = GetIsolate()->heap()->LookupWeakObjectToCodeDependency(key_obj); dep->Contains(DependentCode::kWeakCodeGroup, cell); } } } } } void JSArray::JSArrayVerify() { JSObjectVerify(); Isolate* isolate = GetIsolate(); CHECK(length()->IsNumber() || length()->IsUndefined(isolate)); // If a GC was caused while constructing this array, the elements // pointer may point to a one pointer filler map. if (!ElementsAreSafeToExamine()) return; if (elements()->IsUndefined(isolate)) return; CHECK(elements()->IsFixedArray() || elements()->IsFixedDoubleArray()); if (!length()->IsNumber()) return; // Verify that the length and the elements backing store are in sync. if (length()->IsSmi() && HasFastElements()) { int size = Smi::cast(length())->value(); // Holey / Packed backing stores might have slack or might have not been // properly initialized yet. CHECK(size <= elements()->length() || elements() == isolate->heap()->empty_fixed_array()); } else { CHECK(HasDictionaryElements()); uint32_t array_length; CHECK(length()->ToArrayLength(&array_length)); if (array_length == 0xffffffff) { CHECK(length()->ToArrayLength(&array_length)); } if (array_length != 0) { SeededNumberDictionary* dict = SeededNumberDictionary::cast(elements()); // The dictionary can never have more elements than the array length + 1. // If the backing store grows the verification might be triggered with // the old length in place. uint32_t nof_elements = static_cast(dict->NumberOfElements()); if (nof_elements != 0) nof_elements--; CHECK_LE(nof_elements, array_length); } } } void JSSet::JSSetVerify() { CHECK(IsJSSet()); JSObjectVerify(); VerifyHeapPointer(table()); CHECK(table()->IsOrderedHashTable() || table()->IsUndefined(GetIsolate())); // TODO(arv): Verify OrderedHashTable too. } void JSMap::JSMapVerify() { CHECK(IsJSMap()); JSObjectVerify(); VerifyHeapPointer(table()); CHECK(table()->IsOrderedHashTable() || table()->IsUndefined(GetIsolate())); // TODO(arv): Verify OrderedHashTable too. } void JSSetIterator::JSSetIteratorVerify() { CHECK(IsJSSetIterator()); JSObjectVerify(); VerifyHeapPointer(table()); Isolate* isolate = GetIsolate(); CHECK(table()->IsOrderedHashTable() || table()->IsUndefined(isolate)); CHECK(index()->IsSmi() || index()->IsUndefined(isolate)); CHECK(kind()->IsSmi() || kind()->IsUndefined(isolate)); } void JSMapIterator::JSMapIteratorVerify() { CHECK(IsJSMapIterator()); JSObjectVerify(); VerifyHeapPointer(table()); Isolate* isolate = GetIsolate(); CHECK(table()->IsOrderedHashTable() || table()->IsUndefined(isolate)); CHECK(index()->IsSmi() || index()->IsUndefined(isolate)); CHECK(kind()->IsSmi() || kind()->IsUndefined(isolate)); } void JSWeakMap::JSWeakMapVerify() { CHECK(IsJSWeakMap()); JSObjectVerify(); VerifyHeapPointer(table()); CHECK(table()->IsHashTable() || table()->IsUndefined(GetIsolate())); } void JSArrayIterator::JSArrayIteratorVerify() { CHECK(IsJSArrayIterator()); JSObjectVerify(); CHECK(object()->IsJSReceiver() || object()->IsUndefined(GetIsolate())); CHECK_GE(index()->Number(), 0); CHECK_LE(index()->Number(), kMaxSafeInteger); CHECK(object_map()->IsMap() || object_map()->IsUndefined(GetIsolate())); } void JSStringIterator::JSStringIteratorVerify() { CHECK(IsJSStringIterator()); JSObjectVerify(); CHECK(string()->IsString()); CHECK_GE(index(), 0); CHECK_LE(index(), String::kMaxLength); } void JSAsyncFromSyncIterator::JSAsyncFromSyncIteratorVerify() { CHECK(IsJSAsyncFromSyncIterator()); JSObjectVerify(); VerifyHeapPointer(sync_iterator()); } void JSWeakSet::JSWeakSetVerify() { CHECK(IsJSWeakSet()); JSObjectVerify(); VerifyHeapPointer(table()); CHECK(table()->IsHashTable() || table()->IsUndefined(GetIsolate())); } void JSPromiseCapability::JSPromiseCapabilityVerify() { CHECK(IsJSPromiseCapability()); JSObjectVerify(); VerifyPointer(promise()); VerifyPointer(resolve()); VerifyPointer(reject()); } void JSPromise::JSPromiseVerify() { CHECK(IsJSPromise()); JSObjectVerify(); Isolate* isolate = GetIsolate(); VerifySmiField(kStatusOffset); CHECK(result()->IsUndefined(isolate) || result()->IsObject()); CHECK(deferred_promise()->IsUndefined(isolate) || deferred_promise()->IsJSReceiver() || deferred_promise()->IsFixedArray()); CHECK(deferred_on_resolve()->IsUndefined(isolate) || deferred_on_resolve()->IsCallable() || deferred_on_resolve()->IsFixedArray()); CHECK(deferred_on_reject()->IsUndefined(isolate) || deferred_on_reject()->IsCallable() || deferred_on_reject()->IsFixedArray()); CHECK(fulfill_reactions()->IsUndefined(isolate) || fulfill_reactions()->IsCallable() || fulfill_reactions()->IsSymbol() || fulfill_reactions()->IsFixedArray()); CHECK(reject_reactions()->IsUndefined(isolate) || reject_reactions()->IsSymbol() || reject_reactions()->IsCallable() || reject_reactions()->IsFixedArray()); } void JSRegExp::JSRegExpVerify() { JSObjectVerify(); Isolate* isolate = GetIsolate(); CHECK(data()->IsUndefined(isolate) || data()->IsFixedArray()); switch (TypeTag()) { case JSRegExp::ATOM: { FixedArray* arr = FixedArray::cast(data()); CHECK(arr->get(JSRegExp::kAtomPatternIndex)->IsString()); break; } case JSRegExp::IRREGEXP: { bool is_native = RegExpImpl::UsesNativeRegExp(); FixedArray* arr = FixedArray::cast(data()); Object* one_byte_data = arr->get(JSRegExp::kIrregexpLatin1CodeIndex); // Smi : Not compiled yet (-1) or code prepared for flushing. // JSObject: Compilation error. // Code/ByteArray: Compiled code. CHECK( one_byte_data->IsSmi() || (is_native ? one_byte_data->IsCode() : one_byte_data->IsByteArray())); Object* uc16_data = arr->get(JSRegExp::kIrregexpUC16CodeIndex); CHECK(uc16_data->IsSmi() || (is_native ? uc16_data->IsCode() : uc16_data->IsByteArray())); Object* one_byte_saved = arr->get(JSRegExp::kIrregexpLatin1CodeSavedIndex); CHECK(one_byte_saved->IsSmi() || one_byte_saved->IsString() || one_byte_saved->IsCode()); Object* uc16_saved = arr->get(JSRegExp::kIrregexpUC16CodeSavedIndex); CHECK(uc16_saved->IsSmi() || uc16_saved->IsString() || uc16_saved->IsCode()); CHECK(arr->get(JSRegExp::kIrregexpCaptureCountIndex)->IsSmi()); CHECK(arr->get(JSRegExp::kIrregexpMaxRegisterCountIndex)->IsSmi()); break; } default: CHECK_EQ(JSRegExp::NOT_COMPILED, TypeTag()); CHECK(data()->IsUndefined(isolate)); break; } } void JSProxy::JSProxyVerify() { CHECK(IsJSProxy()); VerifyPointer(target()); VerifyPointer(handler()); Isolate* isolate = GetIsolate(); CHECK_EQ(target()->IsCallable(), map()->is_callable()); CHECK_EQ(target()->IsConstructor(), map()->is_constructor()); CHECK(hash()->IsSmi() || hash()->IsUndefined(isolate)); CHECK(map()->prototype()->IsNull(isolate)); // There should be no properties on a Proxy. CHECK_EQ(0, map()->NumberOfOwnDescriptors()); } void JSArrayBuffer::JSArrayBufferVerify() { CHECK(IsJSArrayBuffer()); JSObjectVerify(); VerifyPointer(byte_length()); CHECK(byte_length()->IsSmi() || byte_length()->IsHeapNumber() || byte_length()->IsUndefined(GetIsolate())); } void JSArrayBufferView::JSArrayBufferViewVerify() { CHECK(IsJSArrayBufferView()); JSObjectVerify(); VerifyPointer(buffer()); Isolate* isolate = GetIsolate(); CHECK(buffer()->IsJSArrayBuffer() || buffer()->IsUndefined(isolate) || buffer() == Smi::kZero); VerifyPointer(raw_byte_offset()); CHECK(raw_byte_offset()->IsSmi() || raw_byte_offset()->IsHeapNumber() || raw_byte_offset()->IsUndefined(isolate)); VerifyPointer(raw_byte_length()); CHECK(raw_byte_length()->IsSmi() || raw_byte_length()->IsHeapNumber() || raw_byte_length()->IsUndefined(isolate)); } void JSTypedArray::JSTypedArrayVerify() { CHECK(IsJSTypedArray()); JSArrayBufferViewVerify(); VerifyPointer(raw_length()); CHECK(raw_length()->IsSmi() || raw_length()->IsUndefined(GetIsolate())); VerifyPointer(elements()); } void JSDataView::JSDataViewVerify() { CHECK(IsJSDataView()); JSArrayBufferViewVerify(); } void Foreign::ForeignVerify() { CHECK(IsForeign()); } void PromiseResolveThenableJobInfo::PromiseResolveThenableJobInfoVerify() { CHECK(IsPromiseResolveThenableJobInfo()); CHECK(thenable()->IsJSReceiver()); CHECK(then()->IsJSReceiver()); CHECK(resolve()->IsJSFunction()); CHECK(reject()->IsJSFunction()); CHECK(context()->IsContext()); } void PromiseReactionJobInfo::PromiseReactionJobInfoVerify() { Isolate* isolate = GetIsolate(); CHECK(IsPromiseReactionJobInfo()); CHECK(value()->IsObject()); CHECK(tasks()->IsFixedArray() || tasks()->IsCallable() || tasks()->IsSymbol()); CHECK(deferred_promise()->IsUndefined(isolate) || deferred_promise()->IsJSReceiver() || deferred_promise()->IsFixedArray()); CHECK(deferred_on_resolve()->IsUndefined(isolate) || deferred_on_resolve()->IsCallable() || deferred_on_resolve()->IsFixedArray()); CHECK(deferred_on_reject()->IsUndefined(isolate) || deferred_on_reject()->IsCallable() || deferred_on_reject()->IsFixedArray()); CHECK(context()->IsContext()); } void JSModuleNamespace::JSModuleNamespaceVerify() { CHECK(IsJSModuleNamespace()); VerifyPointer(module()); } void ModuleInfoEntry::ModuleInfoEntryVerify() { Isolate* isolate = GetIsolate(); CHECK(IsModuleInfoEntry()); CHECK(export_name()->IsUndefined(isolate) || export_name()->IsString()); CHECK(local_name()->IsUndefined(isolate) || local_name()->IsString()); CHECK(import_name()->IsUndefined(isolate) || import_name()->IsString()); VerifySmiField(kModuleRequestOffset); VerifySmiField(kCellIndexOffset); VerifySmiField(kBegPosOffset); VerifySmiField(kEndPosOffset); CHECK_IMPLIES(import_name()->IsString(), module_request() >= 0); CHECK_IMPLIES(export_name()->IsString() && import_name()->IsString(), local_name()->IsUndefined(isolate)); } void Module::ModuleVerify() { CHECK(IsModule()); VerifyPointer(code()); VerifyPointer(exports()); VerifyPointer(module_namespace()); VerifyPointer(requested_modules()); VerifySmiField(kHashOffset); CHECK((!instantiated() && code()->IsSharedFunctionInfo()) || (instantiated() && !evaluated() && code()->IsJSFunction()) || (instantiated() && evaluated() && code()->IsModuleInfo())); CHECK(module_namespace()->IsUndefined(GetIsolate()) || module_namespace()->IsJSModuleNamespace()); if (module_namespace()->IsJSModuleNamespace()) { CHECK_EQ(JSModuleNamespace::cast(module_namespace())->module(), this); } CHECK_EQ(requested_modules()->length(), info()->module_requests()->length()); CHECK_NE(hash(), 0); } void PrototypeInfo::PrototypeInfoVerify() { CHECK(IsPrototypeInfo()); CHECK(weak_cell()->IsWeakCell() || weak_cell()->IsUndefined(GetIsolate())); if (prototype_users()->IsWeakFixedArray()) { WeakFixedArray::cast(prototype_users())->FixedArrayVerify(); } else { CHECK(prototype_users()->IsSmi()); } CHECK(validity_cell()->IsCell() || validity_cell()->IsSmi()); } void Tuple2::Tuple2Verify() { CHECK(IsTuple2()); VerifyObjectField(kValue1Offset); VerifyObjectField(kValue2Offset); } void Tuple3::Tuple3Verify() { CHECK(IsTuple3()); VerifyObjectField(kValue1Offset); VerifyObjectField(kValue2Offset); VerifyObjectField(kValue3Offset); } void ContextExtension::ContextExtensionVerify() { CHECK(IsContextExtension()); VerifyObjectField(kScopeInfoOffset); VerifyObjectField(kExtensionOffset); } void ConstantElementsPair::ConstantElementsPairVerify() { CHECK(IsConstantElementsPair()); VerifySmiField(kElementsKindOffset); VerifyObjectField(kConstantValuesOffset); } void AccessorInfo::AccessorInfoVerify() { CHECK(IsAccessorInfo()); VerifyPointer(name()); VerifyPointer(expected_receiver_type()); VerifyPointer(getter()); VerifyPointer(setter()); VerifyPointer(js_getter()); VerifyPointer(data()); } void AccessorPair::AccessorPairVerify() { CHECK(IsAccessorPair()); VerifyPointer(getter()); VerifyPointer(setter()); } void AccessCheckInfo::AccessCheckInfoVerify() { CHECK(IsAccessCheckInfo()); VerifyPointer(callback()); VerifyPointer(named_interceptor()); VerifyPointer(indexed_interceptor()); VerifyPointer(data()); } void InterceptorInfo::InterceptorInfoVerify() { CHECK(IsInterceptorInfo()); VerifyPointer(getter()); VerifyPointer(setter()); VerifyPointer(query()); VerifyPointer(deleter()); VerifyPointer(enumerator()); VerifyPointer(data()); VerifySmiField(kFlagsOffset); } void CallHandlerInfo::CallHandlerInfoVerify() { CHECK(IsCallHandlerInfo()); VerifyPointer(callback()); VerifyPointer(data()); } void TemplateInfo::TemplateInfoVerify() { VerifyPointer(tag()); VerifyPointer(property_list()); VerifyPointer(property_accessors()); } void FunctionTemplateInfo::FunctionTemplateInfoVerify() { CHECK(IsFunctionTemplateInfo()); TemplateInfoVerify(); VerifyPointer(serial_number()); VerifyPointer(call_code()); VerifyPointer(prototype_template()); VerifyPointer(parent_template()); VerifyPointer(named_property_handler()); VerifyPointer(indexed_property_handler()); VerifyPointer(instance_template()); VerifyPointer(signature()); VerifyPointer(access_check_info()); VerifyPointer(cached_property_name()); } void ObjectTemplateInfo::ObjectTemplateInfoVerify() { CHECK(IsObjectTemplateInfo()); TemplateInfoVerify(); VerifyPointer(constructor()); VerifyPointer(data()); } void AllocationSite::AllocationSiteVerify() { CHECK(IsAllocationSite()); } void AllocationMemento::AllocationMementoVerify() { CHECK(IsAllocationMemento()); VerifyHeapPointer(allocation_site()); CHECK(!IsValid() || GetAllocationSite()->IsAllocationSite()); } void Script::ScriptVerify() { CHECK(IsScript()); VerifyPointer(source()); VerifyPointer(name()); VerifyPointer(wrapper()); VerifyPointer(line_ends()); } void NormalizedMapCache::NormalizedMapCacheVerify() { FixedArray::cast(this)->FixedArrayVerify(); if (FLAG_enable_slow_asserts) { Isolate* isolate = GetIsolate(); for (int i = 0; i < length(); i++) { Object* e = FixedArray::get(i); if (e->IsMap()) { Map::cast(e)->DictionaryMapVerify(); } else { CHECK(e->IsUndefined(isolate)); } } } } void DebugInfo::DebugInfoVerify() { CHECK(IsDebugInfo()); VerifyPointer(shared()); VerifyPointer(debug_bytecode_array()); VerifyPointer(break_points()); } void BreakPointInfo::BreakPointInfoVerify() { CHECK(IsBreakPointInfo()); VerifyPointer(break_point_objects()); } #endif // VERIFY_HEAP #ifdef DEBUG void JSObject::IncrementSpillStatistics(SpillInformation* info) { info->number_of_objects_++; // Named properties if (HasFastProperties()) { info->number_of_objects_with_fast_properties_++; info->number_of_fast_used_fields_ += map()->NextFreePropertyIndex(); info->number_of_fast_unused_fields_ += map()->unused_property_fields(); } else if (IsJSGlobalObject()) { GlobalDictionary* dict = global_dictionary(); info->number_of_slow_used_properties_ += dict->NumberOfElements(); info->number_of_slow_unused_properties_ += dict->Capacity() - dict->NumberOfElements(); } else { NameDictionary* dict = property_dictionary(); info->number_of_slow_used_properties_ += dict->NumberOfElements(); info->number_of_slow_unused_properties_ += dict->Capacity() - dict->NumberOfElements(); } // Indexed properties switch (GetElementsKind()) { case FAST_HOLEY_SMI_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: { info->number_of_objects_with_fast_elements_++; int holes = 0; FixedArray* e = FixedArray::cast(elements()); int len = e->length(); Isolate* isolate = GetIsolate(); for (int i = 0; i < len; i++) { if (e->get(i)->IsTheHole(isolate)) holes++; } info->number_of_fast_used_elements_ += len - holes; info->number_of_fast_unused_elements_ += holes; break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { info->number_of_objects_with_fast_elements_++; FixedArrayBase* e = FixedArrayBase::cast(elements()); info->number_of_fast_used_elements_ += e->length(); break; } case DICTIONARY_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: { SeededNumberDictionary* dict = element_dictionary(); info->number_of_slow_used_elements_ += dict->NumberOfElements(); info->number_of_slow_unused_elements_ += dict->Capacity() - dict->NumberOfElements(); break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case NO_ELEMENTS: break; } } void JSObject::SpillInformation::Clear() { number_of_objects_ = 0; number_of_objects_with_fast_properties_ = 0; number_of_objects_with_fast_elements_ = 0; number_of_fast_used_fields_ = 0; number_of_fast_unused_fields_ = 0; number_of_slow_used_properties_ = 0; number_of_slow_unused_properties_ = 0; number_of_fast_used_elements_ = 0; number_of_fast_unused_elements_ = 0; number_of_slow_used_elements_ = 0; number_of_slow_unused_elements_ = 0; } void JSObject::SpillInformation::Print() { PrintF("\n JSObject Spill Statistics (#%d):\n", number_of_objects_); PrintF(" - fast properties (#%d): %d (used) %d (unused)\n", number_of_objects_with_fast_properties_, number_of_fast_used_fields_, number_of_fast_unused_fields_); PrintF(" - slow properties (#%d): %d (used) %d (unused)\n", number_of_objects_ - number_of_objects_with_fast_properties_, number_of_slow_used_properties_, number_of_slow_unused_properties_); PrintF(" - fast elements (#%d): %d (used) %d (unused)\n", number_of_objects_with_fast_elements_, number_of_fast_used_elements_, number_of_fast_unused_elements_); PrintF(" - slow elements (#%d): %d (used) %d (unused)\n", number_of_objects_ - number_of_objects_with_fast_elements_, number_of_slow_used_elements_, number_of_slow_unused_elements_); PrintF("\n"); } bool DescriptorArray::IsSortedNoDuplicates(int valid_entries) { if (valid_entries == -1) valid_entries = number_of_descriptors(); Name* current_key = NULL; uint32_t current = 0; for (int i = 0; i < number_of_descriptors(); i++) { Name* key = GetSortedKey(i); if (key == current_key) { Print(); return false; } current_key = key; uint32_t hash = GetSortedKey(i)->Hash(); if (hash < current) { Print(); return false; } current = hash; } return true; } bool TransitionArray::IsSortedNoDuplicates(int valid_entries) { DCHECK(valid_entries == -1); Name* prev_key = NULL; PropertyKind prev_kind = kData; PropertyAttributes prev_attributes = NONE; uint32_t prev_hash = 0; for (int i = 0; i < number_of_transitions(); i++) { Name* key = GetSortedKey(i); uint32_t hash = key->Hash(); PropertyKind kind = kData; PropertyAttributes attributes = NONE; if (!IsSpecialTransition(key)) { Map* target = GetTarget(i); PropertyDetails details = GetTargetDetails(key, target); kind = details.kind(); attributes = details.attributes(); } else { // Duplicate entries are not allowed for non-property transitions. CHECK_NE(prev_key, key); } int cmp = CompareKeys(prev_key, prev_hash, prev_kind, prev_attributes, key, hash, kind, attributes); if (cmp >= 0) { Print(); return false; } prev_key = key; prev_hash = hash; prev_attributes = attributes; prev_kind = kind; } return true; } // static bool TransitionArray::IsSortedNoDuplicates(Map* map) { Object* raw_transitions = map->raw_transitions(); if (IsFullTransitionArray(raw_transitions)) { return TransitionArray::cast(raw_transitions)->IsSortedNoDuplicates(); } // Simple and non-existent transitions are always sorted. return true; } static bool CheckOneBackPointer(Map* current_map, Object* target) { return !target->IsMap() || Map::cast(target)->GetBackPointer() == current_map; } // static bool TransitionArray::IsConsistentWithBackPointers(Map* map) { Object* transitions = map->raw_transitions(); for (int i = 0; i < TransitionArray::NumberOfTransitions(transitions); ++i) { Map* target = TransitionArray::GetTarget(transitions, i); if (!CheckOneBackPointer(map, target)) return false; } return true; } // Estimates if there is a path from the object to a context. // This function is not precise, and can return false even if // there is a path to a context. bool CanLeak(Object* obj, Heap* heap, bool skip_weak_cell) { if (!obj->IsHeapObject()) return false; if (obj->IsWeakCell()) { if (skip_weak_cell) return false; return CanLeak(WeakCell::cast(obj)->value(), heap, skip_weak_cell); } if (obj->IsCell()) { return CanLeak(Cell::cast(obj)->value(), heap, skip_weak_cell); } if (obj->IsPropertyCell()) { return CanLeak(PropertyCell::cast(obj)->value(), heap, skip_weak_cell); } if (obj->IsContext()) return true; if (obj->IsMap()) { Map* map = Map::cast(obj); for (int i = 0; i < Heap::kStrongRootListLength; i++) { Heap::RootListIndex root_index = static_cast(i); if (map == heap->root(root_index)) return false; } return true; } return CanLeak(HeapObject::cast(obj)->map(), heap, skip_weak_cell); } void Code::VerifyEmbeddedObjects(VerifyMode mode) { if (kind() == OPTIMIZED_FUNCTION) return; Heap* heap = GetIsolate()->heap(); int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL); bool skip_weak_cell = (mode == kNoContextSpecificPointers) ? false : true; for (RelocIterator it(this, mask); !it.done(); it.next()) { Object* target = it.rinfo()->rmode() == RelocInfo::CELL ? it.rinfo()->target_cell() : it.rinfo()->target_object(); CHECK(!CanLeak(target, heap, skip_weak_cell)); } } // Verify that the debugger can redirect old code to the new code. void Code::VerifyRecompiledCode(Code* old_code, Code* new_code) { if (old_code->kind() != FUNCTION) return; if (new_code->kind() != FUNCTION) return; Isolate* isolate = old_code->GetIsolate(); // Do not verify during bootstrapping. We may replace code using %SetCode. if (isolate->bootstrapper()->IsActive()) return; static const int mask = RelocInfo::kCodeTargetMask; RelocIterator old_it(old_code, mask); RelocIterator new_it(new_code, mask); Code* stack_check = isolate->builtins()->builtin(Builtins::kStackCheck); while (!old_it.done()) { RelocInfo* rinfo = old_it.rinfo(); Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); CHECK(!target->is_handler() && !target->is_inline_cache_stub()); if (target == stack_check) break; old_it.next(); } while (!new_it.done()) { RelocInfo* rinfo = new_it.rinfo(); Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); CHECK(!target->is_handler() && !target->is_inline_cache_stub()); if (target == stack_check) break; new_it.next(); } // Either both are done because there is no stack check. // Or we are past the prologue for both. CHECK_EQ(new_it.done(), old_it.done()); // After the prologue, each call in the old code has a corresponding call // in the new code. while (!old_it.done() && !new_it.done()) { Code* old_target = Code::GetCodeFromTargetAddress(old_it.rinfo()->target_address()); Code* new_target = Code::GetCodeFromTargetAddress(new_it.rinfo()->target_address()); CHECK_EQ(old_target->kind(), new_target->kind()); // Check call target for equality unless it's an IC or an interrupt check. // In both cases they may be patched to be something else. if (!old_target->is_handler() && !old_target->is_inline_cache_stub() && new_target != isolate->builtins()->builtin(Builtins::kInterruptCheck)) { CHECK_EQ(old_target, new_target); } old_it.next(); new_it.next(); } // Both are done at the same time. CHECK_EQ(new_it.done(), old_it.done()); } #endif // DEBUG } // namespace internal } // namespace v8