// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/feedback-vector.h" #include "src/code-stubs.h" #include "src/feedback-vector-inl.h" #include "src/ic/ic-inl.h" #include "src/ic/ic-state.h" #include "src/objects.h" namespace v8 { namespace internal { static bool IsPropertyNameFeedback(Object* feedback) { if (feedback->IsString()) return true; if (!feedback->IsSymbol()) return false; Symbol* symbol = Symbol::cast(feedback); Heap* heap = symbol->GetHeap(); return symbol != heap->uninitialized_symbol() && symbol != heap->premonomorphic_symbol() && symbol != heap->megamorphic_symbol(); } std::ostream& operator<<(std::ostream& os, FeedbackSlotKind kind) { return os << FeedbackMetadata::Kind2String(kind); } FeedbackSlotKind FeedbackMetadata::GetKind(FeedbackSlot slot) const { int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt()); int data = Smi::cast(get(index))->value(); return VectorICComputer::decode(data, slot.ToInt()); } void FeedbackMetadata::SetKind(FeedbackSlot slot, FeedbackSlotKind kind) { int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt()); int data = Smi::cast(get(index))->value(); int new_data = VectorICComputer::encode(data, slot.ToInt(), kind); set(index, Smi::FromInt(new_data)); } template Handle FeedbackMetadata::New( Isolate* isolate, const StaticFeedbackVectorSpec* spec); template Handle FeedbackMetadata::New( Isolate* isolate, const FeedbackVectorSpec* spec); // static template Handle FeedbackMetadata::New(Isolate* isolate, const Spec* spec) { Factory* factory = isolate->factory(); const int slot_count = spec->slots(); const int slot_kinds_length = VectorICComputer::word_count(slot_count); const int length = slot_kinds_length + kReservedIndexCount; if (length == kReservedIndexCount) { return Handle::cast(factory->empty_fixed_array()); } #ifdef DEBUG for (int i = 0; i < slot_count;) { FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i)); int entry_size = FeedbackMetadata::GetSlotSize(kind); for (int j = 1; j < entry_size; j++) { FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i + j)); DCHECK_EQ(FeedbackSlotKind::kInvalid, kind); } i += entry_size; } #endif Handle array = factory->NewFixedArray(length, TENURED); array->set(kSlotsCountIndex, Smi::FromInt(slot_count)); // Fill the bit-vector part with zeros. for (int i = 0; i < slot_kinds_length; i++) { array->set(kReservedIndexCount + i, Smi::kZero); } Handle metadata = Handle::cast(array); for (int i = 0; i < slot_count; i++) { FeedbackSlot slot(i); FeedbackSlotKind kind = spec->GetKind(slot); metadata->SetKind(slot, kind); } // It's important that the FeedbackMetadata have a COW map, since it's // pointed to by both a SharedFunctionInfo and indirectly by closures through // the FeedbackVector. The serializer uses the COW map type to decide // this object belongs in the startup snapshot and not the partial // snapshot(s). metadata->set_map(isolate->heap()->fixed_cow_array_map()); return metadata; } bool FeedbackMetadata::SpecDiffersFrom( const FeedbackVectorSpec* other_spec) const { if (other_spec->slots() != slot_count()) { return true; } int slots = slot_count(); for (int i = 0; i < slots;) { FeedbackSlot slot(i); FeedbackSlotKind kind = GetKind(slot); int entry_size = FeedbackMetadata::GetSlotSize(kind); if (kind != other_spec->GetKind(slot)) { return true; } i += entry_size; } return false; } const char* FeedbackMetadata::Kind2String(FeedbackSlotKind kind) { switch (kind) { case FeedbackSlotKind::kInvalid: return "INVALID"; case FeedbackSlotKind::kCall: return "CALL_IC"; case FeedbackSlotKind::kLoadProperty: return "LOAD_IC"; case FeedbackSlotKind::kLoadGlobalInsideTypeof: return "LOAD_GLOBAL_INSIDE_TYPEOF_IC"; case FeedbackSlotKind::kLoadGlobalNotInsideTypeof: return "LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC"; case FeedbackSlotKind::kLoadKeyed: return "KEYED_LOAD_IC"; case FeedbackSlotKind::kStoreNamedSloppy: return "STORE_SLOPPY_IC"; case FeedbackSlotKind::kStoreNamedStrict: return "STORE_STRICT_IC"; case FeedbackSlotKind::kStoreOwnNamed: return "STORE_OWN_IC"; case FeedbackSlotKind::kStoreKeyedSloppy: return "KEYED_STORE_SLOPPY_IC"; case FeedbackSlotKind::kStoreKeyedStrict: return "KEYED_STORE_STRICT_IC"; case FeedbackSlotKind::kBinaryOp: return "INTERPRETER_BINARYOP_IC"; case FeedbackSlotKind::kCompareOp: return "INTERPRETER_COMPARE_IC"; case FeedbackSlotKind::kToBoolean: return "TO_BOOLEAN_IC"; case FeedbackSlotKind::kStoreDataPropertyInLiteral: return "STORE_DATA_PROPERTY_IN_LITERAL_IC"; case FeedbackSlotKind::kCreateClosure: return "kCreateClosure"; case FeedbackSlotKind::kLiteral: return "LITERAL"; case FeedbackSlotKind::kGeneral: return "STUB"; case FeedbackSlotKind::kKindsNumber: break; } UNREACHABLE(); return "?"; } FeedbackSlotKind FeedbackVector::GetKind(FeedbackSlot slot) const { DCHECK(!is_empty()); return metadata()->GetKind(slot); } // static Handle FeedbackVector::New(Isolate* isolate, Handle shared) { Factory* factory = isolate->factory(); const int slot_count = shared->feedback_metadata()->slot_count(); const int length = slot_count + kReservedIndexCount; Handle array = factory->NewFixedArray(length, TENURED); array->set_map_no_write_barrier(isolate->heap()->feedback_vector_map()); array->set(kSharedFunctionInfoIndex, *shared); array->set(kInvocationCountIndex, Smi::kZero); // Ensure we can skip the write barrier Handle uninitialized_sentinel = UninitializedSentinel(isolate); DCHECK_EQ(isolate->heap()->uninitialized_symbol(), *uninitialized_sentinel); Handle undefined_value = factory->undefined_value(); for (int i = 0; i < slot_count;) { FeedbackSlot slot(i); FeedbackSlotKind kind = shared->feedback_metadata()->GetKind(slot); int index = FeedbackVector::GetIndex(slot); int entry_size = FeedbackMetadata::GetSlotSize(kind); Object* extra_value = *uninitialized_sentinel; switch (kind) { case FeedbackSlotKind::kLoadGlobalInsideTypeof: case FeedbackSlotKind::kLoadGlobalNotInsideTypeof: array->set(index, isolate->heap()->empty_weak_cell(), SKIP_WRITE_BARRIER); break; case FeedbackSlotKind::kCompareOp: case FeedbackSlotKind::kBinaryOp: case FeedbackSlotKind::kToBoolean: array->set(index, Smi::kZero, SKIP_WRITE_BARRIER); break; case FeedbackSlotKind::kCreateClosure: { Handle cell = factory->NewNoClosuresCell(undefined_value); array->set(index, *cell); break; } case FeedbackSlotKind::kLiteral: array->set(index, *undefined_value, SKIP_WRITE_BARRIER); break; case FeedbackSlotKind::kCall: array->set(index, *uninitialized_sentinel, SKIP_WRITE_BARRIER); extra_value = Smi::kZero; break; case FeedbackSlotKind::kLoadProperty: case FeedbackSlotKind::kLoadKeyed: case FeedbackSlotKind::kStoreNamedSloppy: case FeedbackSlotKind::kStoreNamedStrict: case FeedbackSlotKind::kStoreOwnNamed: case FeedbackSlotKind::kStoreKeyedSloppy: case FeedbackSlotKind::kStoreKeyedStrict: case FeedbackSlotKind::kStoreDataPropertyInLiteral: case FeedbackSlotKind::kGeneral: array->set(index, *uninitialized_sentinel, SKIP_WRITE_BARRIER); break; case FeedbackSlotKind::kInvalid: case FeedbackSlotKind::kKindsNumber: UNREACHABLE(); array->set(index, Smi::kZero, SKIP_WRITE_BARRIER); break; } for (int j = 1; j < entry_size; j++) { array->set(index + j, extra_value, SKIP_WRITE_BARRIER); } i += entry_size; } Handle result = Handle::cast(array); if (isolate->IsCodeCoverageEnabled()) AddToCodeCoverageList(isolate, result); return result; } // static Handle FeedbackVector::Copy(Isolate* isolate, Handle vector) { Handle result; result = Handle::cast( isolate->factory()->CopyFixedArray(Handle::cast(vector))); if (isolate->IsCodeCoverageEnabled()) AddToCodeCoverageList(isolate, result); return result; } // static void FeedbackVector::AddToCodeCoverageList(Isolate* isolate, Handle vector) { DCHECK(isolate->IsCodeCoverageEnabled()); if (!vector->shared_function_info()->IsSubjectToDebugging()) return; Handle list = Handle::cast(isolate->factory()->code_coverage_list()); list = ArrayList::Add(list, vector); isolate->SetCodeCoverageList(*list); } void FeedbackVector::ClearSlots(JSFunction* host_function) { Isolate* isolate = GetIsolate(); Object* uninitialized_sentinel = FeedbackVector::RawUninitializedSentinel(isolate); Oddball* undefined_value = isolate->heap()->undefined_value(); bool feedback_updated = false; FeedbackMetadataIterator iter(metadata()); while (iter.HasNext()) { FeedbackSlot slot = iter.Next(); FeedbackSlotKind kind = iter.kind(); Object* obj = Get(slot); if (obj != uninitialized_sentinel) { switch (kind) { case FeedbackSlotKind::kCall: { CallICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kLoadProperty: { LoadICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kLoadGlobalInsideTypeof: case FeedbackSlotKind::kLoadGlobalNotInsideTypeof: { LoadGlobalICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kLoadKeyed: { KeyedLoadICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kStoreNamedSloppy: case FeedbackSlotKind::kStoreNamedStrict: case FeedbackSlotKind::kStoreOwnNamed: { StoreICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kStoreKeyedSloppy: case FeedbackSlotKind::kStoreKeyedStrict: { KeyedStoreICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kBinaryOp: case FeedbackSlotKind::kCompareOp: { DCHECK(Get(slot)->IsSmi()); // don't clear these smi slots. // Set(slot, Smi::kZero); break; } case FeedbackSlotKind::kCreateClosure: { break; } case FeedbackSlotKind::kGeneral: { if (obj->IsHeapObject()) { InstanceType instance_type = HeapObject::cast(obj)->map()->instance_type(); // AllocationSites are exempt from clearing. They don't store Maps // or Code pointers which can cause memory leaks if not cleared // regularly. if (instance_type != ALLOCATION_SITE_TYPE) { Set(slot, uninitialized_sentinel, SKIP_WRITE_BARRIER); feedback_updated = true; } } break; } case FeedbackSlotKind::kLiteral: { Set(slot, undefined_value, SKIP_WRITE_BARRIER); feedback_updated = true; break; } case FeedbackSlotKind::kStoreDataPropertyInLiteral: { StoreDataPropertyInLiteralICNexus nexus(this, slot); if (!nexus.IsCleared()) { nexus.Clear(); feedback_updated = true; } break; } case FeedbackSlotKind::kToBoolean: case FeedbackSlotKind::kInvalid: case FeedbackSlotKind::kKindsNumber: UNREACHABLE(); break; } } } if (feedback_updated) { IC::OnFeedbackChanged(isolate, host_function); } } Handle FeedbackNexus::EnsureArrayOfSize(int length) { Isolate* isolate = GetIsolate(); Handle feedback = handle(GetFeedback(), isolate); if (!feedback->IsFixedArray() || FixedArray::cast(*feedback)->length() != length) { Handle array = isolate->factory()->NewFixedArray(length); SetFeedback(*array); return array; } return Handle::cast(feedback); } Handle FeedbackNexus::EnsureExtraArrayOfSize(int length) { Isolate* isolate = GetIsolate(); Handle feedback_extra = handle(GetFeedbackExtra(), isolate); if (!feedback_extra->IsFixedArray() || FixedArray::cast(*feedback_extra)->length() != length) { Handle array = isolate->factory()->NewFixedArray(length); SetFeedbackExtra(*array); return array; } return Handle::cast(feedback_extra); } void FeedbackNexus::InstallHandlers(Handle array, MapHandleList* maps, List>* handlers) { int receiver_count = maps->length(); for (int current = 0; current < receiver_count; ++current) { Handle map = maps->at(current); Handle cell = Map::WeakCellForMap(map); array->set(current * 2, *cell); array->set(current * 2 + 1, *handlers->at(current)); } } void FeedbackNexus::ConfigureUninitialized() { SetFeedback(*FeedbackVector::UninitializedSentinel(GetIsolate()), SKIP_WRITE_BARRIER); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()), SKIP_WRITE_BARRIER); } void FeedbackNexus::ConfigurePremonomorphic() { SetFeedback(*FeedbackVector::PremonomorphicSentinel(GetIsolate()), SKIP_WRITE_BARRIER); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()), SKIP_WRITE_BARRIER); } void FeedbackNexus::ConfigureMegamorphic() { // Keyed ICs must use ConfigureMegamorphicKeyed. DCHECK(!vector()->IsKeyedLoadIC(slot())); DCHECK(!vector()->IsKeyedStoreIC(slot())); Isolate* isolate = GetIsolate(); SetFeedback(*FeedbackVector::MegamorphicSentinel(isolate), SKIP_WRITE_BARRIER); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate), SKIP_WRITE_BARRIER); } void KeyedLoadICNexus::ConfigureMegamorphicKeyed(IcCheckType property_type) { Isolate* isolate = GetIsolate(); SetFeedback(*FeedbackVector::MegamorphicSentinel(isolate), SKIP_WRITE_BARRIER); SetFeedbackExtra(Smi::FromInt(static_cast(property_type)), SKIP_WRITE_BARRIER); } void KeyedStoreICNexus::ConfigureMegamorphicKeyed(IcCheckType property_type) { Isolate* isolate = GetIsolate(); SetFeedback(*FeedbackVector::MegamorphicSentinel(isolate), SKIP_WRITE_BARRIER); SetFeedbackExtra(Smi::FromInt(static_cast(property_type)), SKIP_WRITE_BARRIER); } InlineCacheState LoadICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) { return UNINITIALIZED; } else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) { return MEGAMORPHIC; } else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) { return PREMONOMORPHIC; } else if (feedback->IsFixedArray()) { // Determine state purely by our structure, don't check if the maps are // cleared. return POLYMORPHIC; } else if (feedback->IsWeakCell()) { // Don't check if the map is cleared. return MONOMORPHIC; } return UNINITIALIZED; } InlineCacheState LoadGlobalICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); Object* extra = GetFeedbackExtra(); if (!WeakCell::cast(feedback)->cleared() || extra != *FeedbackVector::UninitializedSentinel(isolate)) { return MONOMORPHIC; } return UNINITIALIZED; } InlineCacheState KeyedLoadICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) { return UNINITIALIZED; } else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) { return PREMONOMORPHIC; } else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) { return MEGAMORPHIC; } else if (feedback->IsFixedArray()) { // Determine state purely by our structure, don't check if the maps are // cleared. return POLYMORPHIC; } else if (feedback->IsWeakCell()) { // Don't check if the map is cleared. return MONOMORPHIC; } else if (feedback->IsName()) { Object* extra = GetFeedbackExtra(); FixedArray* extra_array = FixedArray::cast(extra); return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC; } return UNINITIALIZED; } InlineCacheState StoreICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) { return UNINITIALIZED; } else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) { return MEGAMORPHIC; } else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) { return PREMONOMORPHIC; } else if (feedback->IsFixedArray()) { // Determine state purely by our structure, don't check if the maps are // cleared. return POLYMORPHIC; } else if (feedback->IsWeakCell()) { // Don't check if the map is cleared. return MONOMORPHIC; } return UNINITIALIZED; } InlineCacheState KeyedStoreICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) { return UNINITIALIZED; } else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) { return PREMONOMORPHIC; } else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) { return MEGAMORPHIC; } else if (feedback->IsFixedArray()) { // Determine state purely by our structure, don't check if the maps are // cleared. return POLYMORPHIC; } else if (feedback->IsWeakCell()) { // Don't check if the map is cleared. return MONOMORPHIC; } else if (feedback->IsName()) { Object* extra = GetFeedbackExtra(); FixedArray* extra_array = FixedArray::cast(extra); return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC; } return UNINITIALIZED; } InlineCacheState CallICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); DCHECK(GetFeedbackExtra() == *FeedbackVector::UninitializedSentinel(isolate) || GetFeedbackExtra()->IsSmi()); if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) { return GENERIC; } else if (feedback->IsAllocationSite() || feedback->IsWeakCell()) { return MONOMORPHIC; } CHECK(feedback == *FeedbackVector::UninitializedSentinel(isolate)); return UNINITIALIZED; } int CallICNexus::ExtractCallCount() { Object* call_count = GetFeedbackExtra(); CHECK(call_count->IsSmi()); int value = Smi::cast(call_count)->value(); return value; } float CallICNexus::ComputeCallFrequency() { double const invocation_count = vector()->invocation_count(); double const call_count = ExtractCallCount(); return static_cast(call_count / invocation_count); } void CallICNexus::ConfigureUninitialized() { Isolate* isolate = GetIsolate(); SetFeedback(*FeedbackVector::UninitializedSentinel(isolate), SKIP_WRITE_BARRIER); SetFeedbackExtra(Smi::kZero, SKIP_WRITE_BARRIER); } void CallICNexus::ConfigureMonomorphicArray() { Object* feedback = GetFeedback(); if (!feedback->IsAllocationSite()) { Handle new_site = GetIsolate()->factory()->NewAllocationSite(); SetFeedback(*new_site); } SetFeedbackExtra(Smi::FromInt(1), SKIP_WRITE_BARRIER); } void CallICNexus::ConfigureMonomorphic(Handle function) { Handle new_cell = GetIsolate()->factory()->NewWeakCell(function); SetFeedback(*new_cell); SetFeedbackExtra(Smi::FromInt(1), SKIP_WRITE_BARRIER); } void CallICNexus::ConfigureMegamorphic() { SetFeedback(*FeedbackVector::MegamorphicSentinel(GetIsolate()), SKIP_WRITE_BARRIER); Smi* count = Smi::cast(GetFeedbackExtra()); int new_count = count->value() + 1; SetFeedbackExtra(Smi::FromInt(new_count), SKIP_WRITE_BARRIER); } void CallICNexus::ConfigureMegamorphic(int call_count) { SetFeedback(*FeedbackVector::MegamorphicSentinel(GetIsolate()), SKIP_WRITE_BARRIER); SetFeedbackExtra(Smi::FromInt(call_count), SKIP_WRITE_BARRIER); } void LoadICNexus::ConfigureMonomorphic(Handle receiver_map, Handle handler) { Handle cell = Map::WeakCellForMap(receiver_map); SetFeedback(*cell); SetFeedbackExtra(*handler); } void LoadGlobalICNexus::ConfigureUninitialized() { Isolate* isolate = GetIsolate(); SetFeedback(isolate->heap()->empty_weak_cell(), SKIP_WRITE_BARRIER); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate), SKIP_WRITE_BARRIER); } void LoadGlobalICNexus::ConfigurePropertyCellMode(Handle cell) { Isolate* isolate = GetIsolate(); SetFeedback(*isolate->factory()->NewWeakCell(cell)); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate), SKIP_WRITE_BARRIER); } void LoadGlobalICNexus::ConfigureHandlerMode(Handle handler) { SetFeedback(GetIsolate()->heap()->empty_weak_cell()); SetFeedbackExtra(*handler); } void KeyedLoadICNexus::ConfigureMonomorphic(Handle name, Handle receiver_map, Handle handler) { Handle cell = Map::WeakCellForMap(receiver_map); if (name.is_null()) { SetFeedback(*cell); SetFeedbackExtra(*handler); } else { Handle array = EnsureExtraArrayOfSize(2); SetFeedback(*name); array->set(0, *cell); array->set(1, *handler); } } void StoreICNexus::ConfigureMonomorphic(Handle receiver_map, Handle handler) { Handle cell = Map::WeakCellForMap(receiver_map); SetFeedback(*cell); SetFeedbackExtra(*handler); } void KeyedStoreICNexus::ConfigureMonomorphic(Handle name, Handle receiver_map, Handle handler) { Handle cell = Map::WeakCellForMap(receiver_map); if (name.is_null()) { SetFeedback(*cell); SetFeedbackExtra(*handler); } else { Handle array = EnsureExtraArrayOfSize(2); SetFeedback(*name); array->set(0, *cell); array->set(1, *handler); } } void LoadICNexus::ConfigurePolymorphic(MapHandleList* maps, List>* handlers) { Isolate* isolate = GetIsolate(); int receiver_count = maps->length(); Handle array = EnsureArrayOfSize(receiver_count * 2); InstallHandlers(array, maps, handlers); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate), SKIP_WRITE_BARRIER); } void KeyedLoadICNexus::ConfigurePolymorphic(Handle name, MapHandleList* maps, List>* handlers) { int receiver_count = maps->length(); DCHECK(receiver_count > 1); Handle array; if (name.is_null()) { array = EnsureArrayOfSize(receiver_count * 2); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()), SKIP_WRITE_BARRIER); } else { array = EnsureExtraArrayOfSize(receiver_count * 2); SetFeedback(*name); } InstallHandlers(array, maps, handlers); } void StoreICNexus::ConfigurePolymorphic(MapHandleList* maps, List>* handlers) { Isolate* isolate = GetIsolate(); int receiver_count = maps->length(); Handle array = EnsureArrayOfSize(receiver_count * 2); InstallHandlers(array, maps, handlers); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate), SKIP_WRITE_BARRIER); } void KeyedStoreICNexus::ConfigurePolymorphic(Handle name, MapHandleList* maps, List>* handlers) { int receiver_count = maps->length(); DCHECK(receiver_count > 1); Handle array; if (name.is_null()) { array = EnsureArrayOfSize(receiver_count * 2); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()), SKIP_WRITE_BARRIER); } else { array = EnsureExtraArrayOfSize(receiver_count * 2); SetFeedback(*name); } InstallHandlers(array, maps, handlers); } void KeyedStoreICNexus::ConfigurePolymorphic(MapHandleList* maps, MapHandleList* transitioned_maps, List>* handlers) { int receiver_count = maps->length(); DCHECK(receiver_count > 1); Handle array = EnsureArrayOfSize(receiver_count * 3); SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()), SKIP_WRITE_BARRIER); Handle undefined_value = GetIsolate()->factory()->undefined_value(); for (int i = 0; i < receiver_count; ++i) { Handle map = maps->at(i); Handle cell = Map::WeakCellForMap(map); array->set(i * 3, *cell); if (!transitioned_maps->at(i).is_null()) { Handle transitioned_map = transitioned_maps->at(i); cell = Map::WeakCellForMap(transitioned_map); array->set((i * 3) + 1, *cell); } else { array->set((i * 3) + 1, *undefined_value); } array->set((i * 3) + 2, *handlers->at(i)); } } namespace { int GetStepSize(FixedArray* array, Isolate* isolate) { // The array should be of the form // [map, handler, map, handler, ...] // or // [map, map, handler, map, map, handler, ...] // where "map" is either a WeakCell or |undefined|, // and "handler" is either a Code object or a Smi. DCHECK(array->length() >= 2); Object* second = array->get(1); if (second->IsWeakCell() || second->IsUndefined(isolate)) return 3; DCHECK(IC::IsHandler(second)); return 2; } } // namespace int FeedbackNexus::ExtractMaps(MapHandleList* maps) const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); bool is_named_feedback = IsPropertyNameFeedback(feedback); if (feedback->IsFixedArray() || is_named_feedback) { int found = 0; if (is_named_feedback) { feedback = GetFeedbackExtra(); } FixedArray* array = FixedArray::cast(feedback); int increment = GetStepSize(array, isolate); for (int i = 0; i < array->length(); i += increment) { DCHECK(array->get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(array->get(i)); if (!cell->cleared()) { Map* map = Map::cast(cell->value()); maps->Add(handle(map, isolate)); found++; } } return found; } else if (feedback->IsWeakCell()) { WeakCell* cell = WeakCell::cast(feedback); if (!cell->cleared()) { Map* map = Map::cast(cell->value()); maps->Add(handle(map, isolate)); return 1; } } return 0; } MaybeHandle FeedbackNexus::FindHandlerForMap(Handle map) const { Object* feedback = GetFeedback(); Isolate* isolate = GetIsolate(); bool is_named_feedback = IsPropertyNameFeedback(feedback); if (feedback->IsFixedArray() || is_named_feedback) { if (is_named_feedback) { feedback = GetFeedbackExtra(); } FixedArray* array = FixedArray::cast(feedback); int increment = GetStepSize(array, isolate); for (int i = 0; i < array->length(); i += increment) { DCHECK(array->get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(array->get(i)); if (!cell->cleared()) { Map* array_map = Map::cast(cell->value()); if (array_map == *map) { Object* code = array->get(i + increment - 1); DCHECK(IC::IsHandler(code)); return handle(code, isolate); } } } } else if (feedback->IsWeakCell()) { WeakCell* cell = WeakCell::cast(feedback); if (!cell->cleared()) { Map* cell_map = Map::cast(cell->value()); if (cell_map == *map) { Object* code = GetFeedbackExtra(); DCHECK(IC::IsHandler(code)); return handle(code, isolate); } } } return MaybeHandle(); } bool FeedbackNexus::FindHandlers(List>* code_list, int length) const { Object* feedback = GetFeedback(); Isolate* isolate = GetIsolate(); int count = 0; bool is_named_feedback = IsPropertyNameFeedback(feedback); if (feedback->IsFixedArray() || is_named_feedback) { if (is_named_feedback) { feedback = GetFeedbackExtra(); } FixedArray* array = FixedArray::cast(feedback); int increment = GetStepSize(array, isolate); for (int i = 0; i < array->length(); i += increment) { DCHECK(array->get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(array->get(i)); // Be sure to skip handlers whose maps have been cleared. if (!cell->cleared()) { Object* code = array->get(i + increment - 1); DCHECK(IC::IsHandler(code)); code_list->Add(handle(code, isolate)); count++; } } } else if (feedback->IsWeakCell()) { WeakCell* cell = WeakCell::cast(feedback); if (!cell->cleared()) { Object* code = GetFeedbackExtra(); DCHECK(IC::IsHandler(code)); code_list->Add(handle(code, isolate)); count++; } } return count == length; } Name* KeyedLoadICNexus::FindFirstName() const { Object* feedback = GetFeedback(); if (IsPropertyNameFeedback(feedback)) { return Name::cast(feedback); } return NULL; } Name* KeyedStoreICNexus::FindFirstName() const { Object* feedback = GetFeedback(); if (IsPropertyNameFeedback(feedback)) { return Name::cast(feedback); } return NULL; } KeyedAccessStoreMode KeyedStoreICNexus::GetKeyedAccessStoreMode() const { KeyedAccessStoreMode mode = STANDARD_STORE; MapHandleList maps; List> handlers; if (GetKeyType() == PROPERTY) return mode; ExtractMaps(&maps); FindHandlers(&handlers, maps.length()); for (int i = 0; i < handlers.length(); i++) { // The first handler that isn't the slow handler will have the bits we need. Handle maybe_code_handler = handlers.at(i); Handle handler; if (maybe_code_handler->IsTuple2()) { Handle data_handler = Handle::cast(maybe_code_handler); handler = handle(Code::cast(data_handler->value2())); } else { handler = Handle::cast(maybe_code_handler); } CodeStub::Major major_key = CodeStub::MajorKeyFromKey(handler->stub_key()); uint32_t minor_key = CodeStub::MinorKeyFromKey(handler->stub_key()); CHECK(major_key == CodeStub::KeyedStoreSloppyArguments || major_key == CodeStub::StoreFastElement || major_key == CodeStub::StoreSlowElement || major_key == CodeStub::ElementsTransitionAndStore || major_key == CodeStub::NoCache); if (major_key != CodeStub::NoCache) { mode = CommonStoreModeBits::decode(minor_key); break; } } return mode; } IcCheckType KeyedLoadICNexus::GetKeyType() const { Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::MegamorphicSentinel(GetIsolate())) { return static_cast(Smi::cast(GetFeedbackExtra())->value()); } return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT; } IcCheckType KeyedStoreICNexus::GetKeyType() const { Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::MegamorphicSentinel(GetIsolate())) { return static_cast(Smi::cast(GetFeedbackExtra())->value()); } return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT; } InlineCacheState BinaryOpICNexus::StateFromFeedback() const { BinaryOperationHint hint = GetBinaryOperationFeedback(); if (hint == BinaryOperationHint::kNone) { return UNINITIALIZED; } else if (hint == BinaryOperationHint::kAny) { return GENERIC; } return MONOMORPHIC; } InlineCacheState CompareICNexus::StateFromFeedback() const { CompareOperationHint hint = GetCompareOperationFeedback(); if (hint == CompareOperationHint::kNone) { return UNINITIALIZED; } else if (hint == CompareOperationHint::kAny) { return GENERIC; } return MONOMORPHIC; } BinaryOperationHint BinaryOpICNexus::GetBinaryOperationFeedback() const { int feedback = Smi::cast(GetFeedback())->value(); return BinaryOperationHintFromFeedback(feedback); } CompareOperationHint CompareICNexus::GetCompareOperationFeedback() const { int feedback = Smi::cast(GetFeedback())->value(); return CompareOperationHintFromFeedback(feedback); } InlineCacheState StoreDataPropertyInLiteralICNexus::StateFromFeedback() const { Isolate* isolate = GetIsolate(); Object* feedback = GetFeedback(); if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) { return UNINITIALIZED; } else if (feedback->IsWeakCell()) { // Don't check if the map is cleared. return MONOMORPHIC; } return MEGAMORPHIC; } void StoreDataPropertyInLiteralICNexus::ConfigureMonomorphic( Handle name, Handle receiver_map) { Handle cell = Map::WeakCellForMap(receiver_map); SetFeedback(*cell); SetFeedbackExtra(*name); } } // namespace internal } // namespace v8