// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "data-flow.h" #include "scopes.h" namespace v8 { namespace internal { #ifdef DEBUG void BitVector::Print() { bool first = true; PrintF("{"); for (int i = 0; i < length(); i++) { if (Contains(i)) { if (!first) PrintF(","); first = false; PrintF("%d", i); } } PrintF("}"); } #endif void BitVector::Iterator::Advance() { current_++; uint32_t val = current_value_; while (val == 0) { current_index_++; if (Done()) return; val = target_->data_[current_index_]; current_ = current_index_ << 5; } val = SkipZeroBytes(val); val = SkipZeroBits(val); current_value_ = val >> 1; } bool AssignedVariablesAnalyzer::Analyze(CompilationInfo* info) { Scope* scope = info->scope(); int size = scope->num_parameters() + scope->num_stack_slots(); if (size == 0) return true; AssignedVariablesAnalyzer analyzer(info, size); return analyzer.Analyze(); } AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(CompilationInfo* info, int size) : info_(info), av_(size) { } bool AssignedVariablesAnalyzer::Analyze() { ASSERT(av_.length() > 0); VisitStatements(info_->function()->body()); return !HasStackOverflow(); } Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) { // The loop must have all necessary parts. if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) { return NULL; } // The initialization statement has to be a simple assignment. Assignment* init = stmt->init()->StatementAsSimpleAssignment(); if (init == NULL) return NULL; // We only deal with local variables. Variable* loop_var = init->target()->AsVariableProxy()->AsVariable(); if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL; // Don't try to get clever with const or dynamic variables. if (loop_var->mode() != Variable::VAR) return NULL; // The initial value has to be a smi. Literal* init_lit = init->value()->AsLiteral(); if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL; int init_value = Smi::cast(*init_lit->handle())->value(); // The condition must be a compare of variable with <, <=, >, or >=. CompareOperation* cond = stmt->cond()->AsCompareOperation(); if (cond == NULL) return NULL; if (cond->op() != Token::LT && cond->op() != Token::LTE && cond->op() != Token::GT && cond->op() != Token::GTE) return NULL; // The lhs must be the same variable as in the init expression. if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL; // The rhs must be a smi. Literal* term_lit = cond->right()->AsLiteral(); if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL; int term_value = Smi::cast(*term_lit->handle())->value(); // The count operation updates the same variable as in the init expression. CountOperation* update = stmt->next()->StatementAsCountOperation(); if (update == NULL) return NULL; if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) { return NULL; } // The direction of the count operation must agree with the start and the end // value. We currently do not allow the initial value to be the same as the // terminal value. This _would_ be ok as long as the loop body never executes // or executes exactly one time. if (init_value == term_value) return NULL; if (init_value < term_value && update->op() != Token::INC) return NULL; if (init_value > term_value && update->op() != Token::DEC) return NULL; // Check that the update operation cannot overflow the smi range. This can // occur in the two cases where the loop bound is equal to the largest or // smallest smi. if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL; if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL; // Found a smi loop variable. return loop_var; } int AssignedVariablesAnalyzer::BitIndex(Variable* var) { ASSERT(var != NULL); ASSERT(var->IsStackAllocated()); Slot* slot = var->AsSlot(); if (slot->type() == Slot::PARAMETER) { return slot->index(); } else { return info_->scope()->num_parameters() + slot->index(); } } void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) { ASSERT(var != NULL); if (var->IsStackAllocated()) { av_.Add(BitIndex(var)); } } void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) { Variable* var = expr->AsVariableProxy()->AsVariable(); if (var != NULL && var->IsStackAllocated() && !var->is_arguments() && var->mode() != Variable::CONST && (var->is_this() || !av_.Contains(BitIndex(var)))) { expr->AsVariableProxy()->MarkAsTrivial(); } } void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) { BitVector saved_av(av_); av_.Clear(); Visit(expr); av_.Union(saved_av); } void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void AssignedVariablesAnalyzer::VisitExpressionStatement( ExpressionStatement* stmt) { ProcessExpression(stmt->expression()); } void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) { // Do nothing. } void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) { ProcessExpression(stmt->condition()); Visit(stmt->then_statement()); Visit(stmt->else_statement()); } void AssignedVariablesAnalyzer::VisitContinueStatement( ContinueStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) { ProcessExpression(stmt->expression()); } void AssignedVariablesAnalyzer::VisitWithEnterStatement( WithEnterStatement* stmt) { ProcessExpression(stmt->expression()); } void AssignedVariablesAnalyzer::VisitWithExitStatement( WithExitStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) { BitVector result(av_); av_.Clear(); Visit(stmt->tag()); result.Union(av_); for (int i = 0; i < stmt->cases()->length(); i++) { CaseClause* clause = stmt->cases()->at(i); if (!clause->is_default()) { av_.Clear(); Visit(clause->label()); result.Union(av_); } VisitStatements(clause->statements()); } av_.Union(result); } void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) { ProcessExpression(stmt->cond()); Visit(stmt->body()); } void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) { ProcessExpression(stmt->cond()); Visit(stmt->body()); } void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) { if (stmt->init() != NULL) Visit(stmt->init()); if (stmt->cond() != NULL) ProcessExpression(stmt->cond()); if (stmt->next() != NULL) Visit(stmt->next()); // Process loop body. After visiting the loop body av_ contains // the assigned variables of the loop body. BitVector saved_av(av_); av_.Clear(); Visit(stmt->body()); Variable* var = FindSmiLoopVariable(stmt); if (var != NULL && !av_.Contains(BitIndex(var))) { stmt->set_loop_variable(var); } av_.Union(saved_av); } void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) { ProcessExpression(stmt->each()); ProcessExpression(stmt->enumerable()); Visit(stmt->body()); } void AssignedVariablesAnalyzer::VisitTryCatchStatement( TryCatchStatement* stmt) { Visit(stmt->try_block()); Visit(stmt->catch_block()); } void AssignedVariablesAnalyzer::VisitTryFinallyStatement( TryFinallyStatement* stmt) { Visit(stmt->try_block()); Visit(stmt->finally_block()); } void AssignedVariablesAnalyzer::VisitDebuggerStatement( DebuggerStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) { ASSERT(av_.IsEmpty()); Visit(expr->condition()); BitVector result(av_); av_.Clear(); Visit(expr->then_expression()); result.Union(av_); av_.Clear(); Visit(expr->else_expression()); av_.Union(result); } void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) { ASSERT(av_.IsEmpty()); BitVector result(av_.length()); for (int i = 0; i < expr->properties()->length(); i++) { Visit(expr->properties()->at(i)->value()); result.Union(av_); av_.Clear(); } av_ = result; } void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) { ASSERT(av_.IsEmpty()); BitVector result(av_.length()); for (int i = 0; i < expr->values()->length(); i++) { Visit(expr->values()->at(i)); result.Union(av_); av_.Clear(); } av_ = result; } void AssignedVariablesAnalyzer::VisitCatchExtensionObject( CatchExtensionObject* expr) { ASSERT(av_.IsEmpty()); Visit(expr->key()); ProcessExpression(expr->value()); } void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) { ASSERT(av_.IsEmpty()); // There are three kinds of assignments: variable assignments, property // assignments, and reference errors (invalid left-hand sides). Variable* var = expr->target()->AsVariableProxy()->AsVariable(); Property* prop = expr->target()->AsProperty(); ASSERT(var == NULL || prop == NULL); if (var != NULL) { MarkIfTrivial(expr->value()); Visit(expr->value()); if (expr->is_compound()) { // Left-hand side occurs also as an rvalue. MarkIfTrivial(expr->target()); ProcessExpression(expr->target()); } RecordAssignedVar(var); } else if (prop != NULL) { MarkIfTrivial(expr->value()); Visit(expr->value()); if (!prop->key()->IsPropertyName()) { MarkIfTrivial(prop->key()); ProcessExpression(prop->key()); } MarkIfTrivial(prop->obj()); ProcessExpression(prop->obj()); } else { Visit(expr->target()); } } void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) { ASSERT(av_.IsEmpty()); Visit(expr->exception()); } void AssignedVariablesAnalyzer::VisitProperty(Property* expr) { ASSERT(av_.IsEmpty()); if (!expr->key()->IsPropertyName()) { MarkIfTrivial(expr->key()); Visit(expr->key()); } MarkIfTrivial(expr->obj()); ProcessExpression(expr->obj()); } void AssignedVariablesAnalyzer::VisitCall(Call* expr) { ASSERT(av_.IsEmpty()); Visit(expr->expression()); BitVector result(av_); for (int i = 0; i < expr->arguments()->length(); i++) { av_.Clear(); Visit(expr->arguments()->at(i)); result.Union(av_); } av_ = result; } void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) { ASSERT(av_.IsEmpty()); Visit(expr->expression()); BitVector result(av_); for (int i = 0; i < expr->arguments()->length(); i++) { av_.Clear(); Visit(expr->arguments()->at(i)); result.Union(av_); } av_ = result; } void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) { ASSERT(av_.IsEmpty()); BitVector result(av_); for (int i = 0; i < expr->arguments()->length(); i++) { av_.Clear(); Visit(expr->arguments()->at(i)); result.Union(av_); } av_ = result; } void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) { ASSERT(av_.IsEmpty()); MarkIfTrivial(expr->expression()); Visit(expr->expression()); } void AssignedVariablesAnalyzer::VisitIncrementOperation( IncrementOperation* expr) { UNREACHABLE(); } void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) { ASSERT(av_.IsEmpty()); if (expr->is_prefix()) MarkIfTrivial(expr->expression()); Visit(expr->expression()); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (var != NULL) RecordAssignedVar(var); } void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) { ASSERT(av_.IsEmpty()); MarkIfTrivial(expr->right()); Visit(expr->right()); MarkIfTrivial(expr->left()); ProcessExpression(expr->left()); } void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) { ASSERT(av_.IsEmpty()); MarkIfTrivial(expr->right()); Visit(expr->right()); MarkIfTrivial(expr->left()); ProcessExpression(expr->left()); } void AssignedVariablesAnalyzer::VisitCompareToNull(CompareToNull* expr) { ASSERT(av_.IsEmpty()); MarkIfTrivial(expr->expression()); Visit(expr->expression()); } void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } } } // namespace v8::internal