summaryrefslogtreecommitdiffstats
path: root/src/jsregexp.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/jsregexp.h')
-rw-r--r--src/jsregexp.h1283
1 files changed, 1283 insertions, 0 deletions
diff --git a/src/jsregexp.h b/src/jsregexp.h
new file mode 100644
index 00000000..3bc30b6a
--- /dev/null
+++ b/src/jsregexp.h
@@ -0,0 +1,1283 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_JSREGEXP_H_
+#define V8_JSREGEXP_H_
+
+namespace v8 {
+namespace internal {
+
+
+class RegExpMacroAssembler;
+
+
+class RegExpImpl {
+ public:
+ // Whether V8 is compiled with native regexp support or not.
+ static bool UsesNativeRegExp() {
+#ifdef V8_NATIVE_REGEXP
+ return true;
+#else
+ return false;
+#endif
+ }
+
+ // Creates a regular expression literal in the old space.
+ // This function calls the garbage collector if necessary.
+ static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
+ Handle<String> pattern,
+ Handle<String> flags,
+ bool* has_pending_exception);
+
+ // Returns a string representation of a regular expression.
+ // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
+ // This function calls the garbage collector if necessary.
+ static Handle<String> ToString(Handle<Object> value);
+
+ // Parses the RegExp pattern and prepares the JSRegExp object with
+ // generic data and choice of implementation - as well as what
+ // the implementation wants to store in the data field.
+ // Returns false if compilation fails.
+ static Handle<Object> Compile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ Handle<String> flags);
+
+ // See ECMA-262 section 15.10.6.2.
+ // This function calls the garbage collector if necessary.
+ static Handle<Object> Exec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> lastMatchInfo);
+
+ // Call RegExp.prototyp.exec(string) in a loop.
+ // Used by String.prototype.match and String.prototype.replace.
+ // This function calls the garbage collector if necessary.
+ static Handle<Object> ExecGlobal(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ Handle<JSArray> lastMatchInfo);
+
+ // Prepares a JSRegExp object with Irregexp-specific data.
+ static void IrregexpPrepare(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ int capture_register_count);
+
+
+ static void AtomCompile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ Handle<String> match_pattern);
+
+ static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> lastMatchInfo);
+
+ // Execute an Irregexp bytecode pattern.
+ // On a successful match, the result is a JSArray containing
+ // captured positions. On a failure, the result is the null value.
+ // Returns an empty handle in case of an exception.
+ static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> lastMatchInfo);
+
+ // Offsets in the lastMatchInfo array.
+ static const int kLastCaptureCount = 0;
+ static const int kLastSubject = 1;
+ static const int kLastInput = 2;
+ static const int kFirstCapture = 3;
+ static const int kLastMatchOverhead = 3;
+
+ // Used to access the lastMatchInfo array.
+ static int GetCapture(FixedArray* array, int index) {
+ return Smi::cast(array->get(index + kFirstCapture))->value();
+ }
+
+ static void SetLastCaptureCount(FixedArray* array, int to) {
+ array->set(kLastCaptureCount, Smi::FromInt(to));
+ }
+
+ static void SetLastSubject(FixedArray* array, String* to) {
+ array->set(kLastSubject, to);
+ }
+
+ static void SetLastInput(FixedArray* array, String* to) {
+ array->set(kLastInput, to);
+ }
+
+ static void SetCapture(FixedArray* array, int index, int to) {
+ array->set(index + kFirstCapture, Smi::FromInt(to));
+ }
+
+ static int GetLastCaptureCount(FixedArray* array) {
+ return Smi::cast(array->get(kLastCaptureCount))->value();
+ }
+
+ // For acting on the JSRegExp data FixedArray.
+ static int IrregexpMaxRegisterCount(FixedArray* re);
+ static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
+ static int IrregexpNumberOfCaptures(FixedArray* re);
+ static int IrregexpNumberOfRegisters(FixedArray* re);
+ static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
+ static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
+
+ private:
+ static String* last_ascii_string_;
+ static String* two_byte_cached_string_;
+
+ static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
+ static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
+
+
+ // Set the subject cache. The previous string buffer is not deleted, so the
+ // caller should ensure that it doesn't leak.
+ static void SetSubjectCache(String* subject,
+ char* utf8_subject,
+ int uft8_length,
+ int character_position,
+ int utf8_position);
+
+ // A one element cache of the last utf8_subject string and its length. The
+ // subject JS String object is cached in the heap. We also cache a
+ // translation between position and utf8 position.
+ static char* utf8_subject_cache_;
+ static int utf8_length_cache_;
+ static int utf8_position_;
+ static int character_position_;
+};
+
+
+class CharacterRange {
+ public:
+ CharacterRange() : from_(0), to_(0) { }
+ // For compatibility with the CHECK_OK macro
+ CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
+ CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
+ static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
+ static Vector<const uc16> GetWordBounds();
+ static inline CharacterRange Singleton(uc16 value) {
+ return CharacterRange(value, value);
+ }
+ static inline CharacterRange Range(uc16 from, uc16 to) {
+ ASSERT(from <= to);
+ return CharacterRange(from, to);
+ }
+ static inline CharacterRange Everything() {
+ return CharacterRange(0, 0xFFFF);
+ }
+ bool Contains(uc16 i) { return from_ <= i && i <= to_; }
+ uc16 from() const { return from_; }
+ void set_from(uc16 value) { from_ = value; }
+ uc16 to() const { return to_; }
+ void set_to(uc16 value) { to_ = value; }
+ bool is_valid() { return from_ <= to_; }
+ bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
+ bool IsSingleton() { return (from_ == to_); }
+ void AddCaseEquivalents(ZoneList<CharacterRange>* ranges);
+ static void Split(ZoneList<CharacterRange>* base,
+ Vector<const uc16> overlay,
+ ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded);
+
+ static const int kRangeCanonicalizeMax = 0x346;
+ static const int kStartMarker = (1 << 24);
+ static const int kPayloadMask = (1 << 24) - 1;
+
+ private:
+ uc16 from_;
+ uc16 to_;
+};
+
+
+// A set of unsigned integers that behaves especially well on small
+// integers (< 32). May do zone-allocation.
+class OutSet: public ZoneObject {
+ public:
+ OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
+ OutSet* Extend(unsigned value);
+ bool Get(unsigned value);
+ static const unsigned kFirstLimit = 32;
+
+ private:
+ // Destructively set a value in this set. In most cases you want
+ // to use Extend instead to ensure that only one instance exists
+ // that contains the same values.
+ void Set(unsigned value);
+
+ // The successors are a list of sets that contain the same values
+ // as this set and the one more value that is not present in this
+ // set.
+ ZoneList<OutSet*>* successors() { return successors_; }
+
+ OutSet(uint32_t first, ZoneList<unsigned>* remaining)
+ : first_(first), remaining_(remaining), successors_(NULL) { }
+ uint32_t first_;
+ ZoneList<unsigned>* remaining_;
+ ZoneList<OutSet*>* successors_;
+ friend class Trace;
+};
+
+
+// A mapping from integers, specified as ranges, to a set of integers.
+// Used for mapping character ranges to choices.
+class DispatchTable : public ZoneObject {
+ public:
+ class Entry {
+ public:
+ Entry() : from_(0), to_(0), out_set_(NULL) { }
+ Entry(uc16 from, uc16 to, OutSet* out_set)
+ : from_(from), to_(to), out_set_(out_set) { }
+ uc16 from() { return from_; }
+ uc16 to() { return to_; }
+ void set_to(uc16 value) { to_ = value; }
+ void AddValue(int value) { out_set_ = out_set_->Extend(value); }
+ OutSet* out_set() { return out_set_; }
+ private:
+ uc16 from_;
+ uc16 to_;
+ OutSet* out_set_;
+ };
+
+ class Config {
+ public:
+ typedef uc16 Key;
+ typedef Entry Value;
+ static const uc16 kNoKey;
+ static const Entry kNoValue;
+ static inline int Compare(uc16 a, uc16 b) {
+ if (a == b)
+ return 0;
+ else if (a < b)
+ return -1;
+ else
+ return 1;
+ }
+ };
+
+ void AddRange(CharacterRange range, int value);
+ OutSet* Get(uc16 value);
+ void Dump();
+
+ template <typename Callback>
+ void ForEach(Callback* callback) { return tree()->ForEach(callback); }
+ private:
+ // There can't be a static empty set since it allocates its
+ // successors in a zone and caches them.
+ OutSet* empty() { return &empty_; }
+ OutSet empty_;
+ ZoneSplayTree<Config>* tree() { return &tree_; }
+ ZoneSplayTree<Config> tree_;
+};
+
+
+#define FOR_EACH_NODE_TYPE(VISIT) \
+ VISIT(End) \
+ VISIT(Action) \
+ VISIT(Choice) \
+ VISIT(BackReference) \
+ VISIT(Assertion) \
+ VISIT(Text)
+
+
+#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
+ VISIT(Disjunction) \
+ VISIT(Alternative) \
+ VISIT(Assertion) \
+ VISIT(CharacterClass) \
+ VISIT(Atom) \
+ VISIT(Quantifier) \
+ VISIT(Capture) \
+ VISIT(Lookahead) \
+ VISIT(BackReference) \
+ VISIT(Empty) \
+ VISIT(Text)
+
+
+#define FORWARD_DECLARE(Name) class RegExp##Name;
+FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
+#undef FORWARD_DECLARE
+
+
+class TextElement {
+ public:
+ enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
+ TextElement() : type(UNINITIALIZED) { }
+ explicit TextElement(Type t) : type(t), cp_offset(-1) { }
+ static TextElement Atom(RegExpAtom* atom);
+ static TextElement CharClass(RegExpCharacterClass* char_class);
+ int length();
+ Type type;
+ union {
+ RegExpAtom* u_atom;
+ RegExpCharacterClass* u_char_class;
+ } data;
+ int cp_offset;
+};
+
+
+class Trace;
+
+
+struct NodeInfo {
+ NodeInfo()
+ : being_analyzed(false),
+ been_analyzed(false),
+ follows_word_interest(false),
+ follows_newline_interest(false),
+ follows_start_interest(false),
+ at_end(false),
+ visited(false) { }
+
+ // Returns true if the interests and assumptions of this node
+ // matches the given one.
+ bool Matches(NodeInfo* that) {
+ return (at_end == that->at_end) &&
+ (follows_word_interest == that->follows_word_interest) &&
+ (follows_newline_interest == that->follows_newline_interest) &&
+ (follows_start_interest == that->follows_start_interest);
+ }
+
+ // Updates the interests of this node given the interests of the
+ // node preceding it.
+ void AddFromPreceding(NodeInfo* that) {
+ at_end |= that->at_end;
+ follows_word_interest |= that->follows_word_interest;
+ follows_newline_interest |= that->follows_newline_interest;
+ follows_start_interest |= that->follows_start_interest;
+ }
+
+ bool HasLookbehind() {
+ return follows_word_interest ||
+ follows_newline_interest ||
+ follows_start_interest;
+ }
+
+ // Sets the interests of this node to include the interests of the
+ // following node.
+ void AddFromFollowing(NodeInfo* that) {
+ follows_word_interest |= that->follows_word_interest;
+ follows_newline_interest |= that->follows_newline_interest;
+ follows_start_interest |= that->follows_start_interest;
+ }
+
+ void ResetCompilationState() {
+ being_analyzed = false;
+ been_analyzed = false;
+ }
+
+ bool being_analyzed: 1;
+ bool been_analyzed: 1;
+
+ // These bits are set of this node has to know what the preceding
+ // character was.
+ bool follows_word_interest: 1;
+ bool follows_newline_interest: 1;
+ bool follows_start_interest: 1;
+
+ bool at_end: 1;
+ bool visited: 1;
+};
+
+
+class SiblingList {
+ public:
+ SiblingList() : list_(NULL) { }
+ int length() {
+ return list_ == NULL ? 0 : list_->length();
+ }
+ void Ensure(RegExpNode* parent) {
+ if (list_ == NULL) {
+ list_ = new ZoneList<RegExpNode*>(2);
+ list_->Add(parent);
+ }
+ }
+ void Add(RegExpNode* node) { list_->Add(node); }
+ RegExpNode* Get(int index) { return list_->at(index); }
+ private:
+ ZoneList<RegExpNode*>* list_;
+};
+
+
+// Details of a quick mask-compare check that can look ahead in the
+// input stream.
+class QuickCheckDetails {
+ public:
+ QuickCheckDetails()
+ : characters_(0),
+ mask_(0),
+ value_(0),
+ cannot_match_(false) { }
+ explicit QuickCheckDetails(int characters)
+ : characters_(characters),
+ mask_(0),
+ value_(0),
+ cannot_match_(false) { }
+ bool Rationalize(bool ascii);
+ // Merge in the information from another branch of an alternation.
+ void Merge(QuickCheckDetails* other, int from_index);
+ // Advance the current position by some amount.
+ void Advance(int by, bool ascii);
+ void Clear();
+ bool cannot_match() { return cannot_match_; }
+ void set_cannot_match() { cannot_match_ = true; }
+ struct Position {
+ Position() : mask(0), value(0), determines_perfectly(false) { }
+ uc16 mask;
+ uc16 value;
+ bool determines_perfectly;
+ };
+ int characters() { return characters_; }
+ void set_characters(int characters) { characters_ = characters; }
+ Position* positions(int index) {
+ ASSERT(index >= 0);
+ ASSERT(index < characters_);
+ return positions_ + index;
+ }
+ uint32_t mask() { return mask_; }
+ uint32_t value() { return value_; }
+
+ private:
+ // How many characters do we have quick check information from. This is
+ // the same for all branches of a choice node.
+ int characters_;
+ Position positions_[4];
+ // These values are the condensate of the above array after Rationalize().
+ uint32_t mask_;
+ uint32_t value_;
+ // If set to true, there is no way this quick check can match at all.
+ // E.g., if it requires to be at the start of the input, and isn't.
+ bool cannot_match_;
+};
+
+
+class RegExpNode: public ZoneObject {
+ public:
+ RegExpNode() : trace_count_(0) { }
+ virtual ~RegExpNode();
+ virtual void Accept(NodeVisitor* visitor) = 0;
+ // Generates a goto to this node or actually generates the code at this point.
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
+ // How many characters must this node consume at a minimum in order to
+ // succeed. If we have found at least 'still_to_find' characters that
+ // must be consumed there is no need to ask any following nodes whether
+ // they are sure to eat any more characters.
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth) = 0;
+ // Emits some quick code that checks whether the preloaded characters match.
+ // Falls through on certain failure, jumps to the label on possible success.
+ // If the node cannot make a quick check it does nothing and returns false.
+ bool EmitQuickCheck(RegExpCompiler* compiler,
+ Trace* trace,
+ bool preload_has_checked_bounds,
+ Label* on_possible_success,
+ QuickCheckDetails* details_return,
+ bool fall_through_on_failure);
+ // For a given number of characters this returns a mask and a value. The
+ // next n characters are anded with the mask and compared with the value.
+ // A comparison failure indicates the node cannot match the next n characters.
+ // A comparison success indicates the node may match.
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) = 0;
+ static const int kNodeIsTooComplexForGreedyLoops = -1;
+ virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
+ Label* label() { return &label_; }
+ // If non-generic code is generated for a node (ie the node is not at the
+ // start of the trace) then it cannot be reused. This variable sets a limit
+ // on how often we allow that to happen before we insist on starting a new
+ // trace and generating generic code for a node that can be reused by flushing
+ // the deferred actions in the current trace and generating a goto.
+ static const int kMaxCopiesCodeGenerated = 10;
+
+ NodeInfo* info() { return &info_; }
+
+ void AddSibling(RegExpNode* node) { siblings_.Add(node); }
+
+ // Static version of EnsureSibling that expresses the fact that the
+ // result has the same type as the input.
+ template <class C>
+ static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
+ return static_cast<C*>(node->EnsureSibling(info, cloned));
+ }
+
+ SiblingList* siblings() { return &siblings_; }
+ void set_siblings(SiblingList* other) { siblings_ = *other; }
+
+ protected:
+ enum LimitResult { DONE, CONTINUE };
+ LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
+
+ // Returns a sibling of this node whose interests and assumptions
+ // match the ones in the given node info. If no sibling exists NULL
+ // is returned.
+ RegExpNode* TryGetSibling(NodeInfo* info);
+
+ // Returns a sibling of this node whose interests match the ones in
+ // the given node info. The info must not contain any assertions.
+ // If no node exists a new one will be created by cloning the current
+ // node. The result will always be an instance of the same concrete
+ // class as this node.
+ RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
+
+ // Returns a clone of this node initialized using the copy constructor
+ // of its concrete class. Note that the node may have to be pre-
+ // processed before it is on a usable state.
+ virtual RegExpNode* Clone() = 0;
+
+ private:
+ Label label_;
+ NodeInfo info_;
+ SiblingList siblings_;
+ // This variable keeps track of how many times code has been generated for
+ // this node (in different traces). We don't keep track of where the
+ // generated code is located unless the code is generated at the start of
+ // a trace, in which case it is generic and can be reused by flushing the
+ // deferred operations in the current trace and generating a goto.
+ int trace_count_;
+};
+
+
+// A simple closed interval.
+class Interval {
+ public:
+ Interval() : from_(kNone), to_(kNone) { }
+ Interval(int from, int to) : from_(from), to_(to) { }
+ Interval Union(Interval that) {
+ if (that.from_ == kNone)
+ return *this;
+ else if (from_ == kNone)
+ return that;
+ else
+ return Interval(Min(from_, that.from_), Max(to_, that.to_));
+ }
+ bool Contains(int value) {
+ return (from_ <= value) && (value <= to_);
+ }
+ bool is_empty() { return from_ == kNone; }
+ int from() { return from_; }
+ int to() { return to_; }
+ static Interval Empty() { return Interval(); }
+ static const int kNone = -1;
+ private:
+ int from_;
+ int to_;
+};
+
+
+class SeqRegExpNode: public RegExpNode {
+ public:
+ explicit SeqRegExpNode(RegExpNode* on_success)
+ : on_success_(on_success) { }
+ RegExpNode* on_success() { return on_success_; }
+ void set_on_success(RegExpNode* node) { on_success_ = node; }
+ private:
+ RegExpNode* on_success_;
+};
+
+
+class ActionNode: public SeqRegExpNode {
+ public:
+ enum Type {
+ SET_REGISTER,
+ INCREMENT_REGISTER,
+ STORE_POSITION,
+ BEGIN_SUBMATCH,
+ POSITIVE_SUBMATCH_SUCCESS,
+ EMPTY_MATCH_CHECK,
+ CLEAR_CAPTURES
+ };
+ static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
+ static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
+ static ActionNode* StorePosition(int reg,
+ bool is_capture,
+ RegExpNode* on_success);
+ static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
+ static ActionNode* BeginSubmatch(int stack_pointer_reg,
+ int position_reg,
+ RegExpNode* on_success);
+ static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
+ int restore_reg,
+ int clear_capture_count,
+ int clear_capture_from,
+ RegExpNode* on_success);
+ static ActionNode* EmptyMatchCheck(int start_register,
+ int repetition_register,
+ int repetition_limit,
+ RegExpNode* on_success);
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ return on_success()->GetQuickCheckDetails(
+ details, compiler, filled_in, not_at_start);
+ }
+ Type type() { return type_; }
+ // TODO(erikcorry): We should allow some action nodes in greedy loops.
+ virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
+ virtual ActionNode* Clone() { return new ActionNode(*this); }
+
+ private:
+ union {
+ struct {
+ int reg;
+ int value;
+ } u_store_register;
+ struct {
+ int reg;
+ } u_increment_register;
+ struct {
+ int reg;
+ bool is_capture;
+ } u_position_register;
+ struct {
+ int stack_pointer_register;
+ int current_position_register;
+ int clear_register_count;
+ int clear_register_from;
+ } u_submatch;
+ struct {
+ int start_register;
+ int repetition_register;
+ int repetition_limit;
+ } u_empty_match_check;
+ struct {
+ int range_from;
+ int range_to;
+ } u_clear_captures;
+ } data_;
+ ActionNode(Type type, RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ type_(type) { }
+ Type type_;
+ friend class DotPrinter;
+};
+
+
+class TextNode: public SeqRegExpNode {
+ public:
+ TextNode(ZoneList<TextElement>* elms,
+ RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ elms_(elms) { }
+ TextNode(RegExpCharacterClass* that,
+ RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ elms_(new ZoneList<TextElement>(1)) {
+ elms_->Add(TextElement::CharClass(that));
+ }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ ZoneList<TextElement>* elements() { return elms_; }
+ void MakeCaseIndependent();
+ virtual int GreedyLoopTextLength();
+ virtual TextNode* Clone() {
+ TextNode* result = new TextNode(*this);
+ result->CalculateOffsets();
+ return result;
+ }
+ void CalculateOffsets();
+
+ private:
+ enum TextEmitPassType {
+ NON_ASCII_MATCH, // Check for characters that can't match.
+ SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
+ NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
+ CASE_CHARACTER_MATCH, // Case-independent single character check.
+ CHARACTER_CLASS_MATCH // Character class.
+ };
+ static bool SkipPass(int pass, bool ignore_case);
+ static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
+ static const int kLastPass = CHARACTER_CLASS_MATCH;
+ void TextEmitPass(RegExpCompiler* compiler,
+ TextEmitPassType pass,
+ bool preloaded,
+ Trace* trace,
+ bool first_element_checked,
+ int* checked_up_to);
+ int Length();
+ ZoneList<TextElement>* elms_;
+};
+
+
+class AssertionNode: public SeqRegExpNode {
+ public:
+ enum AssertionNodeType {
+ AT_END,
+ AT_START,
+ AT_BOUNDARY,
+ AT_NON_BOUNDARY,
+ AFTER_NEWLINE
+ };
+ static AssertionNode* AtEnd(RegExpNode* on_success) {
+ return new AssertionNode(AT_END, on_success);
+ }
+ static AssertionNode* AtStart(RegExpNode* on_success) {
+ return new AssertionNode(AT_START, on_success);
+ }
+ static AssertionNode* AtBoundary(RegExpNode* on_success) {
+ return new AssertionNode(AT_BOUNDARY, on_success);
+ }
+ static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
+ return new AssertionNode(AT_NON_BOUNDARY, on_success);
+ }
+ static AssertionNode* AfterNewline(RegExpNode* on_success) {
+ return new AssertionNode(AFTER_NEWLINE, on_success);
+ }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start);
+ virtual AssertionNode* Clone() { return new AssertionNode(*this); }
+ AssertionNodeType type() { return type_; }
+ private:
+ AssertionNode(AssertionNodeType t, RegExpNode* on_success)
+ : SeqRegExpNode(on_success), type_(t) { }
+ AssertionNodeType type_;
+};
+
+
+class BackReferenceNode: public SeqRegExpNode {
+ public:
+ BackReferenceNode(int start_reg,
+ int end_reg,
+ RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ start_reg_(start_reg),
+ end_reg_(end_reg) { }
+ virtual void Accept(NodeVisitor* visitor);
+ int start_register() { return start_reg_; }
+ int end_register() { return end_reg_; }
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ return;
+ }
+ virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
+
+ private:
+ int start_reg_;
+ int end_reg_;
+};
+
+
+class EndNode: public RegExpNode {
+ public:
+ enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
+ explicit EndNode(Action action) : action_(action) { }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth) { return 0; }
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ // Returning 0 from EatsAtLeast should ensure we never get here.
+ UNREACHABLE();
+ }
+ virtual EndNode* Clone() { return new EndNode(*this); }
+
+ private:
+ Action action_;
+};
+
+
+class NegativeSubmatchSuccess: public EndNode {
+ public:
+ NegativeSubmatchSuccess(int stack_pointer_reg,
+ int position_reg,
+ int clear_capture_count,
+ int clear_capture_start)
+ : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
+ stack_pointer_register_(stack_pointer_reg),
+ current_position_register_(position_reg),
+ clear_capture_count_(clear_capture_count),
+ clear_capture_start_(clear_capture_start) { }
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+
+ private:
+ int stack_pointer_register_;
+ int current_position_register_;
+ int clear_capture_count_;
+ int clear_capture_start_;
+};
+
+
+class Guard: public ZoneObject {
+ public:
+ enum Relation { LT, GEQ };
+ Guard(int reg, Relation op, int value)
+ : reg_(reg),
+ op_(op),
+ value_(value) { }
+ int reg() { return reg_; }
+ Relation op() { return op_; }
+ int value() { return value_; }
+
+ private:
+ int reg_;
+ Relation op_;
+ int value_;
+};
+
+
+class GuardedAlternative {
+ public:
+ explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
+ void AddGuard(Guard* guard);
+ RegExpNode* node() { return node_; }
+ void set_node(RegExpNode* node) { node_ = node; }
+ ZoneList<Guard*>* guards() { return guards_; }
+
+ private:
+ RegExpNode* node_;
+ ZoneList<Guard*>* guards_;
+};
+
+
+class AlternativeGeneration;
+
+
+class ChoiceNode: public RegExpNode {
+ public:
+ explicit ChoiceNode(int expected_size)
+ : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
+ table_(NULL),
+ not_at_start_(false),
+ being_calculated_(false) { }
+ virtual void Accept(NodeVisitor* visitor);
+ void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
+ ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
+ DispatchTable* GetTable(bool ignore_case);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ int EatsAtLeastHelper(int still_to_find,
+ int recursion_depth,
+ RegExpNode* ignore_this_node);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
+
+ bool being_calculated() { return being_calculated_; }
+ bool not_at_start() { return not_at_start_; }
+ void set_not_at_start() { not_at_start_ = true; }
+ void set_being_calculated(bool b) { being_calculated_ = b; }
+ virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
+
+ protected:
+ int GreedyLoopTextLength(GuardedAlternative* alternative);
+ ZoneList<GuardedAlternative>* alternatives_;
+
+ private:
+ friend class DispatchTableConstructor;
+ friend class Analysis;
+ void GenerateGuard(RegExpMacroAssembler* macro_assembler,
+ Guard* guard,
+ Trace* trace);
+ int CalculatePreloadCharacters(RegExpCompiler* compiler);
+ void EmitOutOfLineContinuation(RegExpCompiler* compiler,
+ Trace* trace,
+ GuardedAlternative alternative,
+ AlternativeGeneration* alt_gen,
+ int preload_characters,
+ bool next_expects_preload);
+ DispatchTable* table_;
+ // If true, this node is never checked at the start of the input.
+ // Allows a new trace to start with at_start() set to false.
+ bool not_at_start_;
+ bool being_calculated_;
+};
+
+
+class NegativeLookaheadChoiceNode: public ChoiceNode {
+ public:
+ explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
+ GuardedAlternative then_do_this)
+ : ChoiceNode(2) {
+ AddAlternative(this_must_fail);
+ AddAlternative(then_do_this);
+ }
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ // For a negative lookahead we don't emit the quick check for the
+ // alternative that is expected to fail. This is because quick check code
+ // starts by loading enough characters for the alternative that takes fewest
+ // characters, but on a negative lookahead the negative branch did not take
+ // part in that calculation (EatsAtLeast) so the assumptions don't hold.
+ virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
+};
+
+
+class LoopChoiceNode: public ChoiceNode {
+ public:
+ explicit LoopChoiceNode(bool body_can_be_zero_length)
+ : ChoiceNode(2),
+ loop_node_(NULL),
+ continue_node_(NULL),
+ body_can_be_zero_length_(body_can_be_zero_length) { }
+ void AddLoopAlternative(GuardedAlternative alt);
+ void AddContinueAlternative(GuardedAlternative alt);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int recursion_depth);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
+ RegExpNode* loop_node() { return loop_node_; }
+ RegExpNode* continue_node() { return continue_node_; }
+ bool body_can_be_zero_length() { return body_can_be_zero_length_; }
+ virtual void Accept(NodeVisitor* visitor);
+
+ private:
+ // AddAlternative is made private for loop nodes because alternatives
+ // should not be added freely, we need to keep track of which node
+ // goes back to the node itself.
+ void AddAlternative(GuardedAlternative node) {
+ ChoiceNode::AddAlternative(node);
+ }
+
+ RegExpNode* loop_node_;
+ RegExpNode* continue_node_;
+ bool body_can_be_zero_length_;
+};
+
+
+// There are many ways to generate code for a node. This class encapsulates
+// the current way we should be generating. In other words it encapsulates
+// the current state of the code generator. The effect of this is that we
+// generate code for paths that the matcher can take through the regular
+// expression. A given node in the regexp can be code-generated several times
+// as it can be part of several traces. For example for the regexp:
+// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
+// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
+// to match foo is generated only once (the traces have a common prefix). The
+// code to store the capture is deferred and generated (twice) after the places
+// where baz has been matched.
+class Trace {
+ public:
+ // A value for a property that is either known to be true, know to be false,
+ // or not known.
+ enum TriBool {
+ UNKNOWN = -1, FALSE = 0, TRUE = 1
+ };
+
+ class DeferredAction {
+ public:
+ DeferredAction(ActionNode::Type type, int reg)
+ : type_(type), reg_(reg), next_(NULL) { }
+ DeferredAction* next() { return next_; }
+ bool Mentions(int reg);
+ int reg() { return reg_; }
+ ActionNode::Type type() { return type_; }
+ private:
+ ActionNode::Type type_;
+ int reg_;
+ DeferredAction* next_;
+ friend class Trace;
+ };
+
+ class DeferredCapture : public DeferredAction {
+ public:
+ DeferredCapture(int reg, bool is_capture, Trace* trace)
+ : DeferredAction(ActionNode::STORE_POSITION, reg),
+ cp_offset_(trace->cp_offset()),
+ is_capture_(is_capture) { }
+ int cp_offset() { return cp_offset_; }
+ bool is_capture() { return is_capture_; }
+ private:
+ int cp_offset_;
+ bool is_capture_;
+ void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
+ };
+
+ class DeferredSetRegister : public DeferredAction {
+ public:
+ DeferredSetRegister(int reg, int value)
+ : DeferredAction(ActionNode::SET_REGISTER, reg),
+ value_(value) { }
+ int value() { return value_; }
+ private:
+ int value_;
+ };
+
+ class DeferredClearCaptures : public DeferredAction {
+ public:
+ explicit DeferredClearCaptures(Interval range)
+ : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
+ range_(range) { }
+ Interval range() { return range_; }
+ private:
+ Interval range_;
+ };
+
+ class DeferredIncrementRegister : public DeferredAction {
+ public:
+ explicit DeferredIncrementRegister(int reg)
+ : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
+ };
+
+ Trace()
+ : cp_offset_(0),
+ actions_(NULL),
+ backtrack_(NULL),
+ stop_node_(NULL),
+ loop_label_(NULL),
+ characters_preloaded_(0),
+ bound_checked_up_to_(0),
+ flush_budget_(100),
+ at_start_(UNKNOWN) { }
+
+ // End the trace. This involves flushing the deferred actions in the trace
+ // and pushing a backtrack location onto the backtrack stack. Once this is
+ // done we can start a new trace or go to one that has already been
+ // generated.
+ void Flush(RegExpCompiler* compiler, RegExpNode* successor);
+ int cp_offset() { return cp_offset_; }
+ DeferredAction* actions() { return actions_; }
+ // A trivial trace is one that has no deferred actions or other state that
+ // affects the assumptions used when generating code. There is no recorded
+ // backtrack location in a trivial trace, so with a trivial trace we will
+ // generate code that, on a failure to match, gets the backtrack location
+ // from the backtrack stack rather than using a direct jump instruction. We
+ // always start code generation with a trivial trace and non-trivial traces
+ // are created as we emit code for nodes or add to the list of deferred
+ // actions in the trace. The location of the code generated for a node using
+ // a trivial trace is recorded in a label in the node so that gotos can be
+ // generated to that code.
+ bool is_trivial() {
+ return backtrack_ == NULL &&
+ actions_ == NULL &&
+ cp_offset_ == 0 &&
+ characters_preloaded_ == 0 &&
+ bound_checked_up_to_ == 0 &&
+ quick_check_performed_.characters() == 0 &&
+ at_start_ == UNKNOWN;
+ }
+ TriBool at_start() { return at_start_; }
+ void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
+ Label* backtrack() { return backtrack_; }
+ Label* loop_label() { return loop_label_; }
+ RegExpNode* stop_node() { return stop_node_; }
+ int characters_preloaded() { return characters_preloaded_; }
+ int bound_checked_up_to() { return bound_checked_up_to_; }
+ int flush_budget() { return flush_budget_; }
+ QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
+ bool mentions_reg(int reg);
+ // Returns true if a deferred position store exists to the specified
+ // register and stores the offset in the out-parameter. Otherwise
+ // returns false.
+ bool GetStoredPosition(int reg, int* cp_offset);
+ // These set methods and AdvanceCurrentPositionInTrace should be used only on
+ // new traces - the intention is that traces are immutable after creation.
+ void add_action(DeferredAction* new_action) {
+ ASSERT(new_action->next_ == NULL);
+ new_action->next_ = actions_;
+ actions_ = new_action;
+ }
+ void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
+ void set_stop_node(RegExpNode* node) { stop_node_ = node; }
+ void set_loop_label(Label* label) { loop_label_ = label; }
+ void set_characters_preloaded(int cpre) { characters_preloaded_ = cpre; }
+ void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
+ void set_flush_budget(int to) { flush_budget_ = to; }
+ void set_quick_check_performed(QuickCheckDetails* d) {
+ quick_check_performed_ = *d;
+ }
+ void InvalidateCurrentCharacter();
+ void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
+ private:
+ int FindAffectedRegisters(OutSet* affected_registers);
+ void PerformDeferredActions(RegExpMacroAssembler* macro,
+ int max_register,
+ OutSet& affected_registers,
+ OutSet* registers_to_pop,
+ OutSet* registers_to_clear);
+ void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
+ int max_register,
+ OutSet& registers_to_pop,
+ OutSet& registers_to_clear);
+ int cp_offset_;
+ DeferredAction* actions_;
+ Label* backtrack_;
+ RegExpNode* stop_node_;
+ Label* loop_label_;
+ int characters_preloaded_;
+ int bound_checked_up_to_;
+ QuickCheckDetails quick_check_performed_;
+ int flush_budget_;
+ TriBool at_start_;
+};
+
+
+class NodeVisitor {
+ public:
+ virtual ~NodeVisitor() { }
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that) = 0;
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
+};
+
+
+// Node visitor used to add the start set of the alternatives to the
+// dispatch table of a choice node.
+class DispatchTableConstructor: public NodeVisitor {
+ public:
+ DispatchTableConstructor(DispatchTable* table, bool ignore_case)
+ : table_(table),
+ choice_index_(-1),
+ ignore_case_(ignore_case) { }
+
+ void BuildTable(ChoiceNode* node);
+
+ void AddRange(CharacterRange range) {
+ table()->AddRange(range, choice_index_);
+ }
+
+ void AddInverse(ZoneList<CharacterRange>* ranges);
+
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+
+ DispatchTable* table() { return table_; }
+ void set_choice_index(int value) { choice_index_ = value; }
+
+ protected:
+ DispatchTable* table_;
+ int choice_index_;
+ bool ignore_case_;
+};
+
+
+// Assertion propagation moves information about assertions such as
+// \b to the affected nodes. For instance, in /.\b./ information must
+// be propagated to the first '.' that whatever follows needs to know
+// if it matched a word or a non-word, and to the second '.' that it
+// has to check if it succeeds a word or non-word. In this case the
+// result will be something like:
+//
+// +-------+ +------------+
+// | . | | . |
+// +-------+ ---> +------------+
+// | word? | | check word |
+// +-------+ +------------+
+class Analysis: public NodeVisitor {
+ public:
+ explicit Analysis(bool ignore_case)
+ : ignore_case_(ignore_case), error_message_(NULL) { }
+ void EnsureAnalyzed(RegExpNode* node);
+
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ virtual void VisitLoopChoice(LoopChoiceNode* that);
+
+ bool has_failed() { return error_message_ != NULL; }
+ const char* error_message() {
+ ASSERT(error_message_ != NULL);
+ return error_message_;
+ }
+ void fail(const char* error_message) {
+ error_message_ = error_message;
+ }
+ private:
+ bool ignore_case_;
+ const char* error_message_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
+};
+
+
+struct RegExpCompileData {
+ RegExpCompileData()
+ : tree(NULL),
+ node(NULL),
+ simple(true),
+ contains_anchor(false),
+ capture_count(0) { }
+ RegExpTree* tree;
+ RegExpNode* node;
+ bool simple;
+ bool contains_anchor;
+ Handle<String> error;
+ int capture_count;
+};
+
+
+class RegExpEngine: public AllStatic {
+ public:
+ struct CompilationResult {
+ explicit CompilationResult(const char* error_message)
+ : error_message(error_message),
+ code(Heap::the_hole_value()),
+ num_registers(0) {}
+ CompilationResult(Object* code, int registers)
+ : error_message(NULL),
+ code(code),
+ num_registers(registers) {}
+ const char* error_message;
+ Object* code;
+ int num_registers;
+ };
+
+ static CompilationResult Compile(RegExpCompileData* input,
+ bool ignore_case,
+ bool multiline,
+ Handle<String> pattern,
+ bool is_ascii);
+
+ static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
+};
+
+
+} } // namespace v8::internal
+
+#endif // V8_JSREGEXP_H_