summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--AUTHORS1
-rw-r--r--Android.v8common.mk1
-rw-r--r--ChangeLog9
-rw-r--r--V8_MERGE_REVISION4
-rw-r--r--include/v8.h8
-rwxr-xr-xsrc/SConscript1
-rw-r--r--src/api.cc14
-rw-r--r--src/arm/assembler-arm.cc35
-rw-r--r--src/arm/assembler-arm.h13
-rw-r--r--src/arm/constants-arm.h7
-rw-r--r--src/arm/ic-arm.cc4
-rw-r--r--src/arm/simulator-arm.cc108
-rw-r--r--src/arm/simulator-arm.h3
-rw-r--r--src/bignum.cc767
-rw-r--r--src/bignum.h140
-rw-r--r--src/code-stubs.h28
-rw-r--r--src/codegen.cc19
-rw-r--r--src/double.h32
-rw-r--r--src/flag-definitions.h1
-rw-r--r--src/heap.cc29
-rw-r--r--src/heap.h9
-rw-r--r--src/ia32/assembler-ia32.h1
-rw-r--r--src/ia32/code-stubs-ia32.cc20
-rw-r--r--src/ia32/codegen-ia32.cc6
-rw-r--r--src/ia32/macro-assembler-ia32.h2
-rw-r--r--src/ia32/stub-cache-ia32.cc174
-rw-r--r--src/objects-debug.cc5
-rw-r--r--src/objects-inl.h1
-rw-r--r--src/objects.h4
-rw-r--r--src/profile-generator.cc30
-rw-r--r--src/profile-generator.h2
-rw-r--r--src/spaces.cc34
-rw-r--r--src/spaces.h12
-rw-r--r--src/strtod.cc129
-rw-r--r--src/version.cc2
-rw-r--r--test/cctest/SConscript1
-rw-r--r--test/cctest/test-assembler-arm.cc68
-rw-r--r--test/cctest/test-bignum.cc1502
-rw-r--r--test/cctest/test-double.cc16
-rw-r--r--test/cctest/test-heap-profiler.cc35
-rw-r--r--test/cctest/test-mark-compact.cc4
-rw-r--r--test/cctest/test-spaces.cc6
-rw-r--r--test/cctest/test-strtod.cc164
-rw-r--r--test/mjsunit/regress/regress-927.js33
-rw-r--r--tools/gyp/v8.gyp2
-rw-r--r--tools/visual_studio/v8_base.vcproj32
46 files changed, 3276 insertions, 242 deletions
diff --git a/AUTHORS b/AUTHORS
index 3749cebc..68f9b63b 100644
--- a/AUTHORS
+++ b/AUTHORS
@@ -9,6 +9,7 @@ ARM Ltd.
Hewlett-Packard Development Company, LP
Alexander Botero-Lowry <alexbl@FreeBSD.org>
+Alexandre Rames <alexandre.rames@arm.com>
Alexandre Vassalotti <avassalotti@gmail.com>
Andreas Anyuru <andreas.anyuru@gmail.com>
Burcu Dogan <burcujdogan@gmail.com>
diff --git a/Android.v8common.mk b/Android.v8common.mk
index 67b0c3cf..90d1037f 100644
--- a/Android.v8common.mk
+++ b/Android.v8common.mk
@@ -6,6 +6,7 @@ V8_LOCAL_SRC_FILES := \
src/api.cc \
src/assembler.cc \
src/ast.cc \
+ src/bignum.cc \
src/bootstrapper.cc \
src/builtins.cc \
src/cached-powers.cc \
diff --git a/ChangeLog b/ChangeLog
index ea07009f..573ebb34 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,12 @@
+2010-11-10: Version 2.5.6
+
+ Added support for VFP rounding modes to the ARM simulator.
+
+ Fixed multiplication overflow bug (issue 927).
+
+ Added a limit for the amount of executable memory (issue 925).
+
+
2010-11-08: Version 2.5.5
Added more aggressive GC of external objects in near out-of-memory
diff --git a/V8_MERGE_REVISION b/V8_MERGE_REVISION
index f12be983..59bb5306 100644
--- a/V8_MERGE_REVISION
+++ b/V8_MERGE_REVISION
@@ -1,4 +1,4 @@
We use a V8 revision that has been used for a Chromium release.
-http://src.chromium.org/svn/releases/9.0.577.0/DEPS
-http://v8.googlecode.com/svn/trunk@5780
+http://src.chromium.org/svn/releases/9.0.589.0/DEPS
+http://v8.googlecode.com/svn/trunk@5804
diff --git a/include/v8.h b/include/v8.h
index 8c730df8..f6c3c8b3 100644
--- a/include/v8.h
+++ b/include/v8.h
@@ -2348,12 +2348,15 @@ class V8EXPORT ResourceConstraints {
void set_max_young_space_size(int value) { max_young_space_size_ = value; }
int max_old_space_size() const { return max_old_space_size_; }
void set_max_old_space_size(int value) { max_old_space_size_ = value; }
+ int max_executable_size() { return max_executable_size_; }
+ void set_max_executable_size(int value) { max_executable_size_ = value; }
uint32_t* stack_limit() const { return stack_limit_; }
// Sets an address beyond which the VM's stack may not grow.
void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
private:
int max_young_space_size_;
int max_old_space_size_;
+ int max_executable_size_;
uint32_t* stack_limit_;
};
@@ -2485,13 +2488,18 @@ class V8EXPORT HeapStatistics {
public:
HeapStatistics();
size_t total_heap_size() { return total_heap_size_; }
+ size_t total_heap_size_executable() { return total_heap_size_executable_; }
size_t used_heap_size() { return used_heap_size_; }
private:
void set_total_heap_size(size_t size) { total_heap_size_ = size; }
+ void set_total_heap_size_executable(size_t size) {
+ total_heap_size_executable_ = size;
+ }
void set_used_heap_size(size_t size) { used_heap_size_ = size; }
size_t total_heap_size_;
+ size_t total_heap_size_executable_;
size_t used_heap_size_;
friend class V8;
diff --git a/src/SConscript b/src/SConscript
index 596caf7f..030c6436 100755
--- a/src/SConscript
+++ b/src/SConscript
@@ -40,6 +40,7 @@ SOURCES = {
api.cc
assembler.cc
ast.cc
+ bignum.cc
bootstrapper.cc
builtins.cc
cached-powers.cc
diff --git a/src/api.cc b/src/api.cc
index ee7ad3a5..9da3346d 100644
--- a/src/api.cc
+++ b/src/api.cc
@@ -393,14 +393,18 @@ v8::Handle<Boolean> False() {
ResourceConstraints::ResourceConstraints()
: max_young_space_size_(0),
max_old_space_size_(0),
+ max_executable_size_(0),
stack_limit_(NULL) { }
bool SetResourceConstraints(ResourceConstraints* constraints) {
int young_space_size = constraints->max_young_space_size();
int old_gen_size = constraints->max_old_space_size();
- if (young_space_size != 0 || old_gen_size != 0) {
- bool result = i::Heap::ConfigureHeap(young_space_size / 2, old_gen_size);
+ int max_executable_size = constraints->max_executable_size();
+ if (young_space_size != 0 || old_gen_size != 0 || max_executable_size != 0) {
+ bool result = i::Heap::ConfigureHeap(young_space_size / 2,
+ old_gen_size,
+ max_executable_size);
if (!result) return false;
}
if (constraints->stack_limit() != NULL) {
@@ -3259,11 +3263,15 @@ bool v8::V8::Dispose() {
}
-HeapStatistics::HeapStatistics(): total_heap_size_(0), used_heap_size_(0) { }
+HeapStatistics::HeapStatistics(): total_heap_size_(0),
+ total_heap_size_executable_(0),
+ used_heap_size_(0) { }
void v8::V8::GetHeapStatistics(HeapStatistics* heap_statistics) {
heap_statistics->set_total_heap_size(i::Heap::CommittedMemory());
+ heap_statistics->set_total_heap_size_executable(
+ i::Heap::CommittedMemoryExecutable());
heap_statistics->set_used_heap_size(i::Heap::SizeOfObjects());
}
diff --git a/src/arm/assembler-arm.cc b/src/arm/assembler-arm.cc
index 72835ba3..4cb421c5 100644
--- a/src/arm/assembler-arm.cc
+++ b/src/arm/assembler-arm.cc
@@ -2144,6 +2144,7 @@ static Instr EncodeVCVT(const VFPType dst_type,
const int dst_code,
const VFPType src_type,
const int src_code,
+ Assembler::ConversionMode mode,
const Condition cond) {
ASSERT(src_type != dst_type);
int D, Vd, M, Vm;
@@ -2162,7 +2163,7 @@ static Instr EncodeVCVT(const VFPType dst_type,
if (IsIntegerVFPType(dst_type)) {
opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
- op = 1; // round towards zero
+ op = mode;
} else {
ASSERT(IsIntegerVFPType(src_type));
opc2 = 0x0;
@@ -2186,57 +2187,64 @@ static Instr EncodeVCVT(const VFPType dst_type,
void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(F64, dst.code(), S32, src.code(), cond));
+ emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
}
void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(F32, dst.code(), S32, src.code(), cond));
+ emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
}
void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(F64, dst.code(), U32, src.code(), cond));
+ emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
}
void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(S32, dst.code(), F64, src.code(), cond));
+ emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
}
void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(U32, dst.code(), F64, src.code(), cond));
+ emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
}
void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(F64, dst.code(), F32, src.code(), cond));
+ emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
}
void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
+ ConversionMode mode,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP3));
- emit(EncodeVCVT(F32, dst.code(), F64, src.code(), cond));
+ emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
}
@@ -2329,6 +2337,16 @@ void Assembler::vcmp(const DwVfpRegister src1,
}
+void Assembler::vmsr(Register dst, Condition cond) {
+ // Instruction details available in ARM DDI 0406A, A8-652.
+ // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
+ // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
+ ASSERT(CpuFeatures::IsEnabled(VFP3));
+ emit(cond | 0xE*B24 | 0xE*B20 | B16 |
+ dst.code()*B12 | 0xA*B8 | B4);
+}
+
+
void Assembler::vmrs(Register dst, Condition cond) {
// Instruction details available in ARM DDI 0406A, A8-652.
// cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
@@ -2339,7 +2357,6 @@ void Assembler::vmrs(Register dst, Condition cond) {
}
-
void Assembler::vsqrt(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
diff --git a/src/arm/assembler-arm.h b/src/arm/assembler-arm.h
index 05792354..de3931c2 100644
--- a/src/arm/assembler-arm.h
+++ b/src/arm/assembler-arm.h
@@ -1008,26 +1008,37 @@ class Assembler : public Malloced {
void vmov(const Register dst,
const SwVfpRegister src,
const Condition cond = al);
+ enum ConversionMode {
+ FPSCRRounding = 0,
+ RoundToZero = 1
+ };
void vcvt_f64_s32(const DwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vcvt_f32_s32(const SwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vcvt_f64_u32(const DwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vcvt_s32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vcvt_u32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vcvt_f64_f32(const DwVfpRegister dst,
const SwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vcvt_f32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
+ ConversionMode mode = RoundToZero,
const Condition cond = al);
void vadd(const DwVfpRegister dst,
@@ -1056,6 +1067,8 @@ class Assembler : public Malloced {
const Condition cond = al);
void vmrs(const Register dst,
const Condition cond = al);
+ void vmsr(const Register dst,
+ const Condition cond = al);
void vsqrt(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
diff --git a/src/arm/constants-arm.h b/src/arm/constants-arm.h
index 123c5e79..36f6283c 100644
--- a/src/arm/constants-arm.h
+++ b/src/arm/constants-arm.h
@@ -206,6 +206,13 @@ enum VFPRegPrecision {
kDoublePrecision = 1
};
+// VFP rounding modes. See ARM DDI 0406B Page A2-29.
+enum FPSCRRoundingModes {
+ RN, // Round to Nearest.
+ RP, // Round towards Plus Infinity.
+ RM, // Round towards Minus Infinity.
+ RZ // Round towards zero.
+};
typedef int32_t instr_t;
diff --git a/src/arm/ic-arm.cc b/src/arm/ic-arm.cc
index a09afdf7..4c1f9835 100644
--- a/src/arm/ic-arm.cc
+++ b/src/arm/ic-arm.cc
@@ -1988,9 +1988,9 @@ void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
// Not infinity or NaN simply convert to int.
if (IsElementTypeSigned(array_type)) {
- __ vcvt_s32_f64(s0, d0, ne);
+ __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
} else {
- __ vcvt_u32_f64(s0, d0, ne);
+ __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
}
__ vmov(r5, s0, ne);
diff --git a/src/arm/simulator-arm.cc b/src/arm/simulator-arm.cc
index cb91520f..3ec5f449 100644
--- a/src/arm/simulator-arm.cc
+++ b/src/arm/simulator-arm.cc
@@ -705,6 +705,7 @@ Simulator::Simulator() {
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = false;
v_flag_FPSCR_ = false;
+ FPSCR_rounding_mode_ = RZ;
inv_op_vfp_flag_ = false;
div_zero_vfp_flag_ = false;
@@ -2501,10 +2502,45 @@ void Simulator::DecodeTypeVFP(Instr* instr) {
(instr->VAField() == 0x7) &&
(instr->Bits(19, 16) == 0x1)) {
// vmrs
- if (instr->RtField() == 0xF)
+ uint32_t rt = instr->RtField();
+ if (rt == 0xF) {
Copy_FPSCR_to_APSR();
- else
- UNIMPLEMENTED(); // Not used by V8.
+ } else {
+ // Emulate FPSCR from the Simulator flags.
+ uint32_t fpscr = (n_flag_FPSCR_ << 31) |
+ (z_flag_FPSCR_ << 30) |
+ (c_flag_FPSCR_ << 29) |
+ (v_flag_FPSCR_ << 28) |
+ (inexact_vfp_flag_ << 4) |
+ (underflow_vfp_flag_ << 3) |
+ (overflow_vfp_flag_ << 2) |
+ (div_zero_vfp_flag_ << 1) |
+ (inv_op_vfp_flag_ << 0) |
+ (FPSCR_rounding_mode_ << 22);
+ set_register(rt, fpscr);
+ }
+ } else if ((instr->VLField() == 0x0) &&
+ (instr->VCField() == 0x0) &&
+ (instr->VAField() == 0x7) &&
+ (instr->Bits(19, 16) == 0x1)) {
+ // vmsr
+ uint32_t rt = instr->RtField();
+ if (rt == pc) {
+ UNREACHABLE();
+ } else {
+ uint32_t rt_value = get_register(rt);
+ n_flag_FPSCR_ = (rt_value >> 31) & 1;
+ z_flag_FPSCR_ = (rt_value >> 30) & 1;
+ c_flag_FPSCR_ = (rt_value >> 29) & 1;
+ v_flag_FPSCR_ = (rt_value >> 28) & 1;
+ inexact_vfp_flag_ = (rt_value >> 4) & 1;
+ underflow_vfp_flag_ = (rt_value >> 3) & 1;
+ overflow_vfp_flag_ = (rt_value >> 2) & 1;
+ div_zero_vfp_flag_ = (rt_value >> 1) & 1;
+ inv_op_vfp_flag_ = (rt_value >> 0) & 1;
+ FPSCR_rounding_mode_ =
+ static_cast<FPSCRRoundingModes>((rt_value >> 22) & 3);
+ }
} else {
UNIMPLEMENTED(); // Not used by V8.
}
@@ -2605,29 +2641,71 @@ void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr) {
if (to_integer) {
bool unsigned_integer = (instr->Bit(16) == 0);
+ FPSCRRoundingModes mode;
if (instr->Bit(7) != 1) {
- // Only rounding towards zero supported.
- UNIMPLEMENTED(); // Not used by V8.
+ // Use FPSCR defined rounding mode.
+ mode = FPSCR_rounding_mode_;
+ // Only RZ and RM modes are supported.
+ ASSERT((mode == RM) || (mode == RZ));
+ } else {
+ // VFP uses round towards zero by default.
+ mode = RZ;
}
int dst = instr->VFPDRegCode(kSinglePrecision);
int src = instr->VFPMRegCode(src_precision);
+ int32_t kMaxInt = v8::internal::kMaxInt;
+ int32_t kMinInt = v8::internal::kMinInt;
+ switch (mode) {
+ case RM:
+ if (src_precision == kDoublePrecision) {
+ double val = get_double_from_d_register(src);
- if (src_precision == kDoublePrecision) {
- double val = get_double_from_d_register(src);
+ inv_op_vfp_flag_ = (val > kMaxInt) || (val < kMinInt) || (val != val);
- int sint = unsigned_integer ? static_cast<uint32_t>(val) :
- static_cast<int32_t>(val);
+ int sint = unsigned_integer ? static_cast<uint32_t>(val) :
+ static_cast<int32_t>(val);
+ sint = sint > val ? sint - 1 : sint;
- set_s_register_from_sinteger(dst, sint);
- } else {
- float val = get_float_from_s_register(src);
+ set_s_register_from_sinteger(dst, sint);
+ } else {
+ float val = get_float_from_s_register(src);
+
+ inv_op_vfp_flag_ = (val > kMaxInt) || (val < kMinInt) || (val != val);
- int sint = unsigned_integer ? static_cast<uint32_t>(val) :
- static_cast<int32_t>(val);
+ int sint = unsigned_integer ? static_cast<uint32_t>(val) :
+ static_cast<int32_t>(val);
+ sint = sint > val ? sint - 1 : sint;
- set_s_register_from_sinteger(dst, sint);
+ set_s_register_from_sinteger(dst, sint);
+ }
+ break;
+ case RZ:
+ if (src_precision == kDoublePrecision) {
+ double val = get_double_from_d_register(src);
+
+ inv_op_vfp_flag_ = (val > kMaxInt) || (val < kMinInt) || (val != val);
+
+ int sint = unsigned_integer ? static_cast<uint32_t>(val) :
+ static_cast<int32_t>(val);
+
+ set_s_register_from_sinteger(dst, sint);
+ } else {
+ float val = get_float_from_s_register(src);
+
+ inv_op_vfp_flag_ = (val > kMaxInt) || (val < kMinInt) || (val != val);
+
+ int sint = unsigned_integer ? static_cast<uint32_t>(val) :
+ static_cast<int32_t>(val);
+
+ set_s_register_from_sinteger(dst, sint);
+ }
+ break;
+
+ default:
+ UNREACHABLE();
}
+
} else {
bool unsigned_integer = (instr->Bit(7) == 0);
diff --git a/src/arm/simulator-arm.h b/src/arm/simulator-arm.h
index 3e023489..c37b3f71 100644
--- a/src/arm/simulator-arm.h
+++ b/src/arm/simulator-arm.h
@@ -306,6 +306,9 @@ class Simulator {
bool c_flag_FPSCR_;
bool v_flag_FPSCR_;
+ // VFP rounding mode. See ARM DDI 0406B Page A2-29.
+ FPSCRRoundingModes FPSCR_rounding_mode_;
+
// VFP FP exception flags architecture state.
bool inv_op_vfp_flag_;
bool div_zero_vfp_flag_;
diff --git a/src/bignum.cc b/src/bignum.cc
new file mode 100644
index 00000000..dd1537a2
--- /dev/null
+++ b/src/bignum.cc
@@ -0,0 +1,767 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "bignum.h"
+#include "utils.h"
+
+namespace v8 {
+namespace internal {
+
+Bignum::Bignum()
+ : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
+ for (int i = 0; i < kBigitCapacity; ++i) {
+ bigits_[i] = 0;
+ }
+}
+
+
+template<typename S>
+static int BitSize(S value) {
+ return 8 * sizeof(value);
+}
+
+// Guaranteed to lie in one Bigit.
+void Bignum::AssignUInt16(uint16_t value) {
+ ASSERT(kBigitSize >= BitSize(value));
+ Zero();
+ if (value == 0) return;
+
+ EnsureCapacity(1);
+ bigits_[0] = value;
+ used_digits_ = 1;
+}
+
+
+void Bignum::AssignUInt64(uint64_t value) {
+ const int kUInt64Size = 64;
+
+ Zero();
+ if (value == 0) return;
+
+ int needed_bigits = kUInt64Size / kBigitSize + 1;
+ EnsureCapacity(needed_bigits);
+ for (int i = 0; i < needed_bigits; ++i) {
+ bigits_[i] = value & kBigitMask;
+ value = value >> kBigitSize;
+ }
+ used_digits_ = needed_bigits;
+ Clamp();
+}
+
+
+void Bignum::AssignBignum(const Bignum& other) {
+ exponent_ = other.exponent_;
+ for (int i = 0; i < other.used_digits_; ++i) {
+ bigits_[i] = other.bigits_[i];
+ }
+ // Clear the excess digits (if there were any).
+ for (int i = other.used_digits_; i < used_digits_; ++i) {
+ bigits_[i] = 0;
+ }
+ used_digits_ = other.used_digits_;
+}
+
+
+static uint64_t ReadUInt64(Vector<const char> buffer,
+ int from,
+ int digits_to_read) {
+ uint64_t result = 0;
+ for (int i = from; i < from + digits_to_read; ++i) {
+ int digit = buffer[i] - '0';
+ ASSERT(0 <= digit && digit <= 9);
+ result = result * 10 + digit;
+ }
+ return result;
+}
+
+
+void Bignum::AssignDecimalString(Vector<const char> value) {
+ // 2^64 = 18446744073709551616 > 10^19
+ const int kMaxUint64DecimalDigits = 19;
+ Zero();
+ int length = value.length();
+ int pos = 0;
+ // Let's just say that each digit needs 4 bits.
+ while (length >= kMaxUint64DecimalDigits) {
+ uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
+ pos += kMaxUint64DecimalDigits;
+ length -= kMaxUint64DecimalDigits;
+ MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
+ AddUInt64(digits);
+ }
+ uint64_t digits = ReadUInt64(value, pos, length);
+ MultiplyByPowerOfTen(length);
+ AddUInt64(digits);
+ Clamp();
+}
+
+
+static int HexCharValue(char c) {
+ if ('0' <= c && c <= '9') return c - '0';
+ if ('a' <= c && c <= 'f') return 10 + c - 'a';
+ if ('A' <= c && c <= 'F') return 10 + c - 'A';
+ UNREACHABLE();
+ return 0; // To make compiler happy.
+}
+
+
+void Bignum::AssignHexString(Vector<const char> value) {
+ Zero();
+ int length = value.length();
+
+ int needed_bigits = length * 4 / kBigitSize + 1;
+ EnsureCapacity(needed_bigits);
+ int string_index = length - 1;
+ for (int i = 0; i < needed_bigits - 1; ++i) {
+ // These bigits are guaranteed to be "full".
+ Chunk current_bigit = 0;
+ for (int j = 0; j < kBigitSize / 4; j++) {
+ current_bigit += HexCharValue(value[string_index--]) << (j * 4);
+ }
+ bigits_[i] = current_bigit;
+ }
+ used_digits_ = needed_bigits - 1;
+
+ Chunk most_significant_bigit = 0; // Could be = 0;
+ for (int j = 0; j <= string_index; ++j) {
+ most_significant_bigit <<= 4;
+ most_significant_bigit += HexCharValue(value[j]);
+ }
+ if (most_significant_bigit != 0) {
+ bigits_[used_digits_] = most_significant_bigit;
+ used_digits_++;
+ }
+ Clamp();
+}
+
+
+void Bignum::AddUInt64(uint64_t operand) {
+ if (operand == 0) return;
+ Bignum other;
+ other.AssignUInt64(operand);
+ AddBignum(other);
+}
+
+
+void Bignum::AddBignum(const Bignum& other) {
+ ASSERT(IsClamped());
+ ASSERT(other.IsClamped());
+
+ // If this has a greater exponent than other append zero-bigits to this.
+ // After this call exponent_ <= other.exponent_.
+ Align(other);
+
+ // There are two possibilities:
+ // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
+ // bbbbb 00000000
+ // ----------------
+ // ccccccccccc 0000
+ // or
+ // aaaaaaaaaa 0000
+ // bbbbbbbbb 0000000
+ // -----------------
+ // cccccccccccc 0000
+ // In both cases we might need a carry bigit.
+
+ EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
+ Chunk carry = 0;
+ int bigit_pos = other.exponent_ - exponent_;
+ ASSERT(bigit_pos >= 0);
+ for (int i = 0; i < other.used_digits_; ++i) {
+ Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
+ bigits_[bigit_pos] = sum & kBigitMask;
+ carry = sum >> kBigitSize;
+ bigit_pos++;
+ }
+
+ while (carry != 0) {
+ Chunk sum = bigits_[bigit_pos] + carry;
+ bigits_[bigit_pos] = sum & kBigitMask;
+ carry = sum >> kBigitSize;
+ bigit_pos++;
+ }
+ used_digits_ = Max(bigit_pos, used_digits_);
+ ASSERT(IsClamped());
+}
+
+
+void Bignum::SubtractBignum(const Bignum& other) {
+ ASSERT(IsClamped());
+ ASSERT(other.IsClamped());
+ // We require this to be bigger than other.
+ ASSERT(LessEqual(other, *this));
+
+ Align(other);
+
+ int offset = other.exponent_ - exponent_;
+ Chunk borrow = 0;
+ int i;
+ for (i = 0; i < other.used_digits_; ++i) {
+ ASSERT((borrow == 0) || (borrow == 1));
+ Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
+ bigits_[i + offset] = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ }
+ while (borrow != 0) {
+ Chunk difference = bigits_[i + offset] - borrow;
+ bigits_[i + offset] = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ ++i;
+ }
+ Clamp();
+}
+
+
+void Bignum::ShiftLeft(int shift_amount) {
+ if (used_digits_ == 0) return;
+ exponent_ += shift_amount / kBigitSize;
+ int local_shift = shift_amount % kBigitSize;
+ EnsureCapacity(used_digits_ + 1);
+ BigitsShiftLeft(local_shift);
+}
+
+
+void Bignum::MultiplyByUInt32(uint32_t factor) {
+ if (factor == 1) return;
+ if (factor == 0) {
+ Zero();
+ return;
+ }
+ if (used_digits_ == 0) return;
+
+ // The product of a bigit with the factor is of size kBigitSize + 32.
+ // Assert that this number + 1 (for the carry) fits into double chunk.
+ ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
+ DoubleChunk carry = 0;
+ for (int i = 0; i < used_digits_; ++i) {
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
+ bigits_[i] = static_cast<Chunk>(product & kBigitMask);
+ carry = (product >> kBigitSize);
+ }
+ while (carry != 0) {
+ EnsureCapacity(used_digits_ + 1);
+ bigits_[used_digits_] = carry & kBigitMask;
+ used_digits_++;
+ carry >>= kBigitSize;
+ }
+}
+
+
+void Bignum::MultiplyByUInt64(uint64_t factor) {
+ if (factor == 1) return;
+ if (factor == 0) {
+ Zero();
+ return;
+ }
+ ASSERT(kBigitSize < 32);
+ uint64_t carry = 0;
+ uint64_t low = factor & 0xFFFFFFFF;
+ uint64_t high = factor >> 32;
+ for (int i = 0; i < used_digits_; ++i) {
+ uint64_t product_low = low * bigits_[i];
+ uint64_t product_high = high * bigits_[i];
+ uint64_t tmp = (carry & kBigitMask) + product_low;
+ bigits_[i] = tmp & kBigitMask;
+ carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
+ (product_high << (32 - kBigitSize));
+ }
+ while (carry != 0) {
+ EnsureCapacity(used_digits_ + 1);
+ bigits_[used_digits_] = carry & kBigitMask;
+ used_digits_++;
+ carry >>= kBigitSize;
+ }
+}
+
+
+void Bignum::MultiplyByPowerOfTen(int exponent) {
+ const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
+ const uint16_t kFive1 = 5;
+ const uint16_t kFive2 = kFive1 * 5;
+ const uint16_t kFive3 = kFive2 * 5;
+ const uint16_t kFive4 = kFive3 * 5;
+ const uint16_t kFive5 = kFive4 * 5;
+ const uint16_t kFive6 = kFive5 * 5;
+ const uint32_t kFive7 = kFive6 * 5;
+ const uint32_t kFive8 = kFive7 * 5;
+ const uint32_t kFive9 = kFive8 * 5;
+ const uint32_t kFive10 = kFive9 * 5;
+ const uint32_t kFive11 = kFive10 * 5;
+ const uint32_t kFive12 = kFive11 * 5;
+ const uint32_t kFive13 = kFive12 * 5;
+ const uint32_t kFive1_to_12[] =
+ { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
+ kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
+
+ ASSERT(exponent >= 0);
+ if (exponent == 0) return;
+ if (used_digits_ == 0) return;
+
+ // We shift by exponent at the end just before returning.
+ int remaining_exponent = exponent;
+ while (remaining_exponent >= 27) {
+ MultiplyByUInt64(kFive27);
+ remaining_exponent -= 27;
+ }
+ while (remaining_exponent >= 13) {
+ MultiplyByUInt32(kFive13);
+ remaining_exponent -= 13;
+ }
+ if (remaining_exponent > 0) {
+ MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
+ }
+ ShiftLeft(exponent);
+}
+
+
+void Bignum::Square() {
+ ASSERT(IsClamped());
+ int product_length = 2 * used_digits_;
+ EnsureCapacity(product_length);
+
+ // Comba multiplication: compute each column separately.
+ // Example: r = a2a1a0 * b2b1b0.
+ // r = 1 * a0b0 +
+ // 10 * (a1b0 + a0b1) +
+ // 100 * (a2b0 + a1b1 + a0b2) +
+ // 1000 * (a2b1 + a1b2) +
+ // 10000 * a2b2
+ //
+ // In the worst case we have to accumulate nb-digits products of digit*digit.
+ //
+ // Assert that the additional number of bits in a DoubleChunk are enough to
+ // sum up used_digits of Bigit*Bigit.
+ if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
+ UNIMPLEMENTED();
+ }
+ DoubleChunk accumulator = 0;
+ // First shift the digits so we don't overwrite them.
+ int copy_offset = used_digits_;
+ for (int i = 0; i < used_digits_; ++i) {
+ bigits_[copy_offset + i] = bigits_[i];
+ }
+ // We have two loops to avoid some 'if's in the loop.
+ for (int i = 0; i < used_digits_; ++i) {
+ // Process temporary digit i with power i.
+ // The sum of the two indices must be equal to i.
+ int bigit_index1 = i;
+ int bigit_index2 = 0;
+ // Sum all of the sub-products.
+ while (bigit_index1 >= 0) {
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1];
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2];
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
+ bigit_index1--;
+ bigit_index2++;
+ }
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
+ accumulator >>= kBigitSize;
+ }
+ for (int i = used_digits_; i < product_length; ++i) {
+ int bigit_index1 = used_digits_ - 1;
+ int bigit_index2 = i - bigit_index1;
+ // Invariant: sum of both indices is again equal to i.
+ // Inner loop runs 0 times on last iteration, emptying accumulator.
+ while (bigit_index2 < used_digits_) {
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1];
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2];
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
+ bigit_index1--;
+ bigit_index2++;
+ }
+ // The overwritten bigits_[i] will never be read in further loop iterations,
+ // because bigit_index1 and bigit_index2 are always greater
+ // than i - used_digits_.
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
+ accumulator >>= kBigitSize;
+ }
+ // Since the result was guaranteed to lie inside the number the
+ // accumulator must be 0 now.
+ ASSERT(accumulator == 0);
+
+ // Don't forget to update the used_digits and the exponent.
+ used_digits_ = product_length;
+ exponent_ *= 2;
+ Clamp();
+}
+
+
+void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
+ ASSERT(base != 0);
+ ASSERT(power_exponent >= 0);
+ if (power_exponent == 0) {
+ AssignUInt16(1);
+ return;
+ }
+ Zero();
+ int shifts = 0;
+ // We expect base to be in range 2-32, and most often to be 10.
+ // It does not make much sense to implement different algorithms for counting
+ // the bits.
+ while ((base & 1) == 0) {
+ base >>= 1;
+ shifts++;
+ }
+ int bit_size = 0;
+ int tmp_base = base;
+ while (tmp_base != 0) {
+ tmp_base >>= 1;
+ bit_size++;
+ }
+ int final_size = bit_size * power_exponent;
+ // 1 extra bigit for the shifting, and one for rounded final_size.
+ EnsureCapacity(final_size / kBigitSize + 2);
+
+ // Left to Right exponentiation.
+ int mask = 1;
+ while (power_exponent >= mask) mask <<= 1;
+
+ // The mask is now pointing to the bit above the most significant 1-bit of
+ // power_exponent.
+ // Get rid of first 1-bit;
+ mask >>= 2;
+ uint64_t this_value = base;
+
+ bool delayed_multipliciation = false;
+ const uint64_t max_32bits = 0xFFFFFFFF;
+ while (mask != 0 && this_value <= max_32bits) {
+ this_value = this_value * this_value;
+ // Verify that there is enough space in this_value to perform the
+ // multiplication. The first bit_size bits must be 0.
+ if ((power_exponent & mask) != 0) {
+ uint64_t base_bits_mask =
+ ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
+ bool high_bits_zero = (this_value & base_bits_mask) == 0;
+ if (high_bits_zero) {
+ this_value *= base;
+ } else {
+ delayed_multipliciation = true;
+ }
+ }
+ mask >>= 1;
+ }
+ AssignUInt64(this_value);
+ if (delayed_multipliciation) {
+ MultiplyByUInt32(base);
+ }
+
+ // Now do the same thing as a bignum.
+ while (mask != 0) {
+ Square();
+ if ((power_exponent & mask) != 0) {
+ MultiplyByUInt32(base);
+ }
+ mask >>= 1;
+ }
+
+ // And finally add the saved shifts.
+ ShiftLeft(shifts * power_exponent);
+}
+
+
+// Precondition: this/other < 16bit.
+uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
+ ASSERT(IsClamped());
+ ASSERT(other.IsClamped());
+ ASSERT(other.used_digits_ > 0);
+
+ // Easy case: if we have less digits than the divisor than the result is 0.
+ // Note: this handles the case where this == 0, too.
+ if (BigitLength() < other.BigitLength()) {
+ return 0;
+ }
+
+ Align(other);
+
+ uint16_t result = 0;
+
+ // Start by removing multiples of 'other' until both numbers have the same
+ // number of digits.
+ while (BigitLength() > other.BigitLength()) {
+ // This naive approach is extremely inefficient if the this divided other
+ // might be big. This function is implemented for doubleToString where
+ // the result should be small (less than 10).
+ ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
+ // Remove the multiples of the first digit.
+ // Example this = 23 and other equals 9. -> Remove 2 multiples.
+ result += bigits_[used_digits_ - 1];
+ SubtractTimes(other, bigits_[used_digits_ - 1]);
+ }
+
+ ASSERT(BigitLength() == other.BigitLength());
+
+ // Both bignums are at the same length now.
+ // Since other has more than 0 digits we know that the access to
+ // bigits_[used_digits_ - 1] is safe.
+ Chunk this_bigit = bigits_[used_digits_ - 1];
+ Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
+
+ if (other.used_digits_ == 1) {
+ // Shortcut for easy (and common) case.
+ int quotient = this_bigit / other_bigit;
+ bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
+ result += quotient;
+ Clamp();
+ return result;
+ }
+
+ int division_estimate = this_bigit / (other_bigit + 1);
+ result += division_estimate;
+ SubtractTimes(other, division_estimate);
+
+ if (other_bigit * (division_estimate + 1) > this_bigit) {
+ // No need to even try to subtract. Even if other's remaining digits were 0
+ // another subtraction would be too much.
+ return result;
+ }
+
+ while (LessEqual(other, *this)) {
+ SubtractBignum(other);
+ result++;
+ }
+ return result;
+}
+
+
+template<typename S>
+static int SizeInHexChars(S number) {
+ ASSERT(number > 0);
+ int result = 0;
+ while (number != 0) {
+ number >>= 4;
+ result++;
+ }
+ return result;
+}
+
+
+static char HexCharOfValue(int value) {
+ ASSERT(0 <= value && value <= 16);
+ if (value < 10) return value + '0';
+ return value - 10 + 'A';
+}
+
+
+bool Bignum::ToHexString(char* buffer, int buffer_size) const {
+ ASSERT(IsClamped());
+ // Each bigit must be printable as separate hex-character.
+ ASSERT(kBigitSize % 4 == 0);
+ const int kHexCharsPerBigit = kBigitSize / 4;
+
+ if (used_digits_ == 0) {
+ if (buffer_size < 2) return false;
+ buffer[0] = '0';
+ buffer[1] = '\0';
+ return true;
+ }
+ // We add 1 for the terminating '\0' character.
+ int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
+ SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
+ if (needed_chars > buffer_size) return false;
+ int string_index = needed_chars - 1;
+ buffer[string_index--] = '\0';
+ for (int i = 0; i < exponent_; ++i) {
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
+ buffer[string_index--] = '0';
+ }
+ }
+ for (int i = 0; i < used_digits_ - 1; ++i) {
+ Chunk current_bigit = bigits_[i];
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
+ buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
+ current_bigit >>= 4;
+ }
+ }
+ // And finally the last bigit.
+ Chunk most_significant_bigit = bigits_[used_digits_ - 1];
+ while (most_significant_bigit != 0) {
+ buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
+ most_significant_bigit >>= 4;
+ }
+ return true;
+}
+
+
+Bignum::Chunk Bignum::BigitAt(int index) const {
+ if (index >= BigitLength()) return 0;
+ if (index < exponent_) return 0;
+ return bigits_[index - exponent_];
+}
+
+
+int Bignum::Compare(const Bignum& a, const Bignum& b) {
+ ASSERT(a.IsClamped());
+ ASSERT(b.IsClamped());
+ int bigit_length_a = a.BigitLength();
+ int bigit_length_b = b.BigitLength();
+ if (bigit_length_a < bigit_length_b) return -1;
+ if (bigit_length_a > bigit_length_b) return +1;
+ for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
+ Chunk bigit_a = a.BigitAt(i);
+ Chunk bigit_b = b.BigitAt(i);
+ if (bigit_a < bigit_b) return -1;
+ if (bigit_a > bigit_b) return +1;
+ // Otherwise they are equal up to this digit. Try the next digit.
+ }
+ return 0;
+}
+
+
+int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
+ ASSERT(a.IsClamped());
+ ASSERT(b.IsClamped());
+ ASSERT(c.IsClamped());
+ if (a.BigitLength() < b.BigitLength()) {
+ return PlusCompare(b, a, c);
+ }
+ if (a.BigitLength() + 1 < c.BigitLength()) return -1;
+ if (a.BigitLength() > c.BigitLength()) return +1;
+ // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
+ // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
+ // of 'a'.
+ if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
+ return -1;
+ }
+
+ Chunk borrow = 0;
+ // Starting at min_exponent all digits are == 0. So no need to compare them.
+ int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
+ for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
+ Chunk chunk_a = a.BigitAt(i);
+ Chunk chunk_b = b.BigitAt(i);
+ Chunk chunk_c = c.BigitAt(i);
+ Chunk sum = chunk_a + chunk_b;
+ if (sum > chunk_c + borrow) {
+ return +1;
+ } else {
+ borrow = chunk_c + borrow - sum;
+ if (borrow > 1) return -1;
+ borrow <<= kBigitSize;
+ }
+ }
+ if (borrow == 0) return 0;
+ return -1;
+}
+
+
+void Bignum::Clamp() {
+ while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
+ used_digits_--;
+ }
+ if (used_digits_ == 0) {
+ // Zero.
+ exponent_ = 0;
+ }
+}
+
+
+bool Bignum::IsClamped() const {
+ return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
+}
+
+
+void Bignum::Zero() {
+ for (int i = 0; i < used_digits_; ++i) {
+ bigits_[i] = 0;
+ }
+ used_digits_ = 0;
+ exponent_ = 0;
+}
+
+
+void Bignum::Align(const Bignum& other) {
+ if (exponent_ > other.exponent_) {
+ // If "X" represents a "hidden" digit (by the exponent) then we are in the
+ // following case (a == this, b == other):
+ // a: aaaaaaXXXX or a: aaaaaXXX
+ // b: bbbbbbX b: bbbbbbbbXX
+ // We replace some of the hidden digits (X) of a with 0 digits.
+ // a: aaaaaa000X or a: aaaaa0XX
+ int zero_digits = exponent_ - other.exponent_;
+ EnsureCapacity(used_digits_ + zero_digits);
+ for (int i = used_digits_ - 1; i >= 0; --i) {
+ bigits_[i + zero_digits] = bigits_[i];
+ }
+ for (int i = 0; i < zero_digits; ++i) {
+ bigits_[i] = 0;
+ }
+ used_digits_ += zero_digits;
+ exponent_ -= zero_digits;
+ ASSERT(used_digits_ >= 0);
+ ASSERT(exponent_ >= 0);
+ }
+}
+
+
+void Bignum::BigitsShiftLeft(int shift_amount) {
+ ASSERT(shift_amount < kBigitSize);
+ ASSERT(shift_amount >= 0);
+ Chunk carry = 0;
+ for (int i = 0; i < used_digits_; ++i) {
+ Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
+ bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
+ carry = new_carry;
+ }
+ if (carry != 0) {
+ bigits_[used_digits_] = carry;
+ used_digits_++;
+ }
+}
+
+
+void Bignum::SubtractTimes(const Bignum& other, int factor) {
+ ASSERT(exponent_ <= other.exponent_);
+ if (factor < 3) {
+ for (int i = 0; i < factor; ++i) {
+ SubtractBignum(other);
+ }
+ return;
+ }
+ Chunk borrow = 0;
+ int exponent_diff = other.exponent_ - exponent_;
+ for (int i = 0; i < other.used_digits_; ++i) {
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
+ DoubleChunk remove = borrow + product;
+ Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
+ bigits_[i + exponent_diff] = difference & kBigitMask;
+ borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
+ (remove >> kBigitSize));
+ }
+ for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
+ if (borrow == 0) return;
+ Chunk difference = bigits_[i] - borrow;
+ bigits_[i] = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ ++i;
+ }
+ Clamp();
+}
+
+
+} } // namespace v8::internal
diff --git a/src/bignum.h b/src/bignum.h
new file mode 100644
index 00000000..1d2bff61
--- /dev/null
+++ b/src/bignum.h
@@ -0,0 +1,140 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_BIGNUM_H_
+#define V8_BIGNUM_H_
+
+namespace v8 {
+namespace internal {
+
+class Bignum {
+ public:
+ // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately.
+ // This bignum can encode much bigger numbers, since it contains an
+ // exponent.
+ static const int kMaxSignificantBits = 3584;
+
+ Bignum();
+ void AssignUInt16(uint16_t value);
+ void AssignUInt64(uint64_t value);
+ void AssignBignum(const Bignum& other);
+
+ void AssignDecimalString(Vector<const char> value);
+ void AssignHexString(Vector<const char> value);
+
+ void AssignPowerUInt16(uint16_t base, int exponent);
+
+ void AddUInt16(uint16_t operand);
+ void AddUInt64(uint64_t operand);
+ void AddBignum(const Bignum& other);
+ // Precondition: this >= other.
+ void SubtractBignum(const Bignum& other);
+
+ void Square();
+ void ShiftLeft(int shift_amount);
+ void MultiplyByUInt32(uint32_t factor);
+ void MultiplyByUInt64(uint64_t factor);
+ void MultiplyByPowerOfTen(int exponent);
+ void Times10() { return MultiplyByUInt32(10); }
+ // Pseudocode:
+ // int result = this / other;
+ // this = this % other;
+ // In the worst case this function is in O(this/other).
+ uint16_t DivideModuloIntBignum(const Bignum& other);
+
+ bool ToHexString(char* buffer, int buffer_size) const;
+
+ static int Compare(const Bignum& a, const Bignum& b);
+ static bool Equal(const Bignum& a, const Bignum& b) {
+ return Compare(a, b) == 0;
+ }
+ static bool LessEqual(const Bignum& a, const Bignum& b) {
+ return Compare(a, b) <= 0;
+ }
+ static bool Less(const Bignum& a, const Bignum& b) {
+ return Compare(a, b) < 0;
+ }
+ // Returns Compare(a + b, c);
+ static int PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c);
+ // Returns a + b == c
+ static bool PlusEqual(const Bignum& a, const Bignum& b, const Bignum& c) {
+ return PlusCompare(a, b, c) == 0;
+ }
+ // Returns a + b <= c
+ static bool PlusLessEqual(const Bignum& a, const Bignum& b, const Bignum& c) {
+ return PlusCompare(a, b, c) <= 0;
+ }
+ // Returns a + b < c
+ static bool PlusLess(const Bignum& a, const Bignum& b, const Bignum& c) {
+ return PlusCompare(a, b, c) < 0;
+ }
+ private:
+ typedef uint32_t Chunk;
+ typedef uint64_t DoubleChunk;
+
+ static const int kChunkSize = sizeof(Chunk) * 8;
+ static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8;
+ // With bigit size of 28 we loose some bits, but a double still fits easily
+ // into two chunks, and more importantly we can use the Comba multiplication.
+ static const int kBigitSize = 28;
+ static const Chunk kBigitMask = (1 << kBigitSize) - 1;
+ // Every instance allocates kBigitLength chunks on the stack. Bignums cannot
+ // grow. There are no checks if the stack-allocated space is sufficient.
+ static const int kBigitCapacity = kMaxSignificantBits / kBigitSize;
+
+ void EnsureCapacity(int size) {
+ if (size > kBigitCapacity) {
+ UNREACHABLE();
+ }
+ }
+ void Align(const Bignum& other);
+ void Clamp();
+ bool IsClamped() const;
+ void Zero();
+ // Requires this to have enough capacity (no tests done).
+ // Updates used_digits_ if necessary.
+ // by must be < kBigitSize.
+ void BigitsShiftLeft(int shift_amount);
+ // BigitLength includes the "hidden" digits encoded in the exponent.
+ int BigitLength() const { return used_digits_ + exponent_; }
+ Chunk BigitAt(int index) const;
+ void SubtractTimes(const Bignum& other, int factor);
+
+ Chunk bigits_buffer_[kBigitCapacity];
+ // A vector backed by bigits_buffer_. This way accesses to the array are
+ // checked for out-of-bounds errors.
+ Vector<Chunk> bigits_;
+ int used_digits_;
+ // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
+ int exponent_;
+
+ DISALLOW_COPY_AND_ASSIGN(Bignum);
+};
+
+} } // namespace v8::internal
+
+#endif // V8_BIGNUM_H_
diff --git a/src/code-stubs.h b/src/code-stubs.h
index c0a8d306..ec643534 100644
--- a/src/code-stubs.h
+++ b/src/code-stubs.h
@@ -542,7 +542,7 @@ class ApiGetterEntryStub : public CodeStub {
ApiFunction* fun() { return fun_; }
Major MajorKey() { return NoCache; }
int MinorKey() { return 0; }
- const char* GetName() { return "ApiEntryStub"; }
+ const char* GetName() { return "ApiGetterEntryStub"; }
// The accessor info associated with the function.
Handle<AccessorInfo> info_;
// The function to be called.
@@ -550,6 +550,32 @@ class ApiGetterEntryStub : public CodeStub {
};
+class ApiCallEntryStub : public CodeStub {
+ public:
+ ApiCallEntryStub(Handle<CallHandlerInfo> info,
+ ApiFunction* fun)
+ : info_(info),
+ fun_(fun) { }
+ void Generate(MacroAssembler* masm);
+ virtual bool has_custom_cache() { return true; }
+ virtual bool GetCustomCache(Code** code_out);
+ virtual void SetCustomCache(Code* value);
+
+ static const int kStackSpace = 0;
+ static const int kArgc = 5;
+ private:
+ Handle<CallHandlerInfo> info() { return info_; }
+ ApiFunction* fun() { return fun_; }
+ Major MajorKey() { return NoCache; }
+ int MinorKey() { return 0; }
+ const char* GetName() { return "ApiCallEntryStub"; }
+ // The call handler info associated with the function.
+ Handle<CallHandlerInfo> info_;
+ // The function to be called.
+ ApiFunction* fun_;
+};
+
+
class JSEntryStub : public CodeStub {
public:
JSEntryStub() { }
diff --git a/src/codegen.cc b/src/codegen.cc
index 2e324180..e954dd66 100644
--- a/src/codegen.cc
+++ b/src/codegen.cc
@@ -482,8 +482,8 @@ int CEntryStub::MinorKey() {
}
-bool ApiGetterEntryStub::GetCustomCache(Code** code_out) {
- Object* cache = info()->load_stub_cache();
+// Implementation of CodeStub::GetCustomCache.
+static bool GetCustomCacheHelper(Object* cache, Code** code_out) {
if (cache->IsUndefined()) {
return false;
} else {
@@ -493,9 +493,24 @@ bool ApiGetterEntryStub::GetCustomCache(Code** code_out) {
}
+bool ApiGetterEntryStub::GetCustomCache(Code** code_out) {
+ return GetCustomCacheHelper(info()->load_stub_cache(), code_out);
+}
+
+
void ApiGetterEntryStub::SetCustomCache(Code* value) {
info()->set_load_stub_cache(value);
}
+bool ApiCallEntryStub::GetCustomCache(Code** code_out) {
+ return GetCustomCacheHelper(info()->call_stub_cache(), code_out);
+}
+
+
+void ApiCallEntryStub::SetCustomCache(Code* value) {
+ info()->set_call_stub_cache(value);
+}
+
+
} } // namespace v8::internal
diff --git a/src/double.h b/src/double.h
index e805173e..65eded99 100644
--- a/src/double.h
+++ b/src/double.h
@@ -54,18 +54,20 @@ class Double {
explicit Double(DiyFp diy_fp)
: d64_(DiyFpToUint64(diy_fp)) {}
+ // The value encoded by this Double must be greater or equal to +0.0.
+ // It must not be special (infinity, or NaN).
DiyFp AsDiyFp() const {
+ ASSERT(Sign() > 0);
ASSERT(!IsSpecial());
return DiyFp(Significand(), Exponent());
}
- // this->Significand() must not be 0.
+ // The value encoded by this Double must be strictly greater than 0.
DiyFp AsNormalizedDiyFp() const {
+ ASSERT(value() > 0.0);
uint64_t f = Significand();
int e = Exponent();
- ASSERT(f != 0);
-
// The current double could be a denormal.
while ((f & kHiddenBit) == 0) {
f <<= 1;
@@ -82,6 +84,20 @@ class Double {
return d64_;
}
+ // Returns the next greater double. Returns +infinity on input +infinity.
+ double NextDouble() const {
+ if (d64_ == kInfinity) return Double(kInfinity).value();
+ if (Sign() < 0 && Significand() == 0) {
+ // -0.0
+ return 0.0;
+ }
+ if (Sign() < 0) {
+ return Double(d64_ - 1).value();
+ } else {
+ return Double(d64_ + 1).value();
+ }
+ }
+
int Exponent() const {
if (IsDenormal()) return kDenormalExponent;
@@ -120,24 +136,30 @@ class Double {
((d64 & kSignificandMask) != 0);
}
-
bool IsInfinite() const {
uint64_t d64 = AsUint64();
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) == 0);
}
-
int Sign() const {
uint64_t d64 = AsUint64();
return (d64 & kSignMask) == 0? 1: -1;
}
+ // Precondition: the value encoded by this Double must be greater or equal
+ // than +0.0.
+ DiyFp UpperBoundary() const {
+ ASSERT(Sign() > 0);
+ return DiyFp(Significand() * 2 + 1, Exponent() - 1);
+ }
// Returns the two boundaries of this.
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
// exponent as m_plus.
+ // Precondition: the value encoded by this Double must be greater than 0.
void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
+ ASSERT(value() > 0.0);
DiyFp v = this->AsDiyFp();
bool significand_is_zero = (v.f() == kHiddenBit);
DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
diff --git a/src/flag-definitions.h b/src/flag-definitions.h
index 54501ec9..46feea77 100644
--- a/src/flag-definitions.h
+++ b/src/flag-definitions.h
@@ -186,6 +186,7 @@ DEFINE_bool(always_inline_smi_code, false,
// heap.cc
DEFINE_int(max_new_space_size, 0, "max size of the new generation (in kBytes)")
DEFINE_int(max_old_space_size, 0, "max size of the old generation (in Mbytes)")
+DEFINE_int(max_executable_size, 0, "max size of executable memory (in Mbytes)")
DEFINE_bool(gc_global, false, "always perform global GCs")
DEFINE_int(gc_interval, -1, "garbage collect after <n> allocations")
DEFINE_bool(trace_gc, false,
diff --git a/src/heap.cc b/src/heap.cc
index 226a2022..134f40e5 100644
--- a/src/heap.cc
+++ b/src/heap.cc
@@ -83,16 +83,19 @@ int Heap::max_semispace_size_ = 2*MB;
intptr_t Heap::max_old_generation_size_ = 192*MB;
int Heap::initial_semispace_size_ = 128*KB;
intptr_t Heap::code_range_size_ = 0;
+intptr_t Heap::max_executable_size_ = max_old_generation_size_;
#elif defined(V8_TARGET_ARCH_X64)
int Heap::max_semispace_size_ = 16*MB;
intptr_t Heap::max_old_generation_size_ = 1*GB;
int Heap::initial_semispace_size_ = 1*MB;
intptr_t Heap::code_range_size_ = 512*MB;
+intptr_t Heap::max_executable_size_ = 256*MB;
#else
int Heap::max_semispace_size_ = 8*MB;
intptr_t Heap::max_old_generation_size_ = 512*MB;
int Heap::initial_semispace_size_ = 512*KB;
intptr_t Heap::code_range_size_ = 0;
+intptr_t Heap::max_executable_size_ = 128*MB;
#endif
// The snapshot semispace size will be the default semispace size if
@@ -172,6 +175,12 @@ intptr_t Heap::CommittedMemory() {
lo_space_->Size();
}
+intptr_t Heap::CommittedMemoryExecutable() {
+ if (!HasBeenSetup()) return 0;
+
+ return MemoryAllocator::SizeExecutable();
+}
+
intptr_t Heap::Available() {
if (!HasBeenSetup()) return 0;
@@ -4313,7 +4322,9 @@ static bool heap_configured = false;
// TODO(1236194): Since the heap size is configurable on the command line
// and through the API, we should gracefully handle the case that the heap
// size is not big enough to fit all the initial objects.
-bool Heap::ConfigureHeap(int max_semispace_size, int max_old_gen_size) {
+bool Heap::ConfigureHeap(int max_semispace_size,
+ int max_old_gen_size,
+ int max_executable_size) {
if (HasBeenSetup()) return false;
if (max_semispace_size > 0) max_semispace_size_ = max_semispace_size;
@@ -4334,6 +4345,15 @@ bool Heap::ConfigureHeap(int max_semispace_size, int max_old_gen_size) {
}
if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
+ if (max_executable_size > 0) {
+ max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
+ }
+
+ // The max executable size must be less than or equal to the max old
+ // generation size.
+ if (max_executable_size_ > max_old_generation_size_) {
+ max_executable_size_ = max_old_generation_size_;
+ }
// The new space size must be a power of two to support single-bit testing
// for containment.
@@ -4351,8 +4371,9 @@ bool Heap::ConfigureHeap(int max_semispace_size, int max_old_gen_size) {
bool Heap::ConfigureHeapDefault() {
- return ConfigureHeap(
- FLAG_max_new_space_size * (KB / 2), FLAG_max_old_space_size * MB);
+ return ConfigureHeap(FLAG_max_new_space_size / 2 * KB,
+ FLAG_max_old_space_size * MB,
+ FLAG_max_executable_size * MB);
}
@@ -4435,7 +4456,7 @@ bool Heap::Setup(bool create_heap_objects) {
// space. The chunk is double the size of the requested reserved
// new space size to ensure that we can find a pair of semispaces that
// are contiguous and aligned to their size.
- if (!MemoryAllocator::Setup(MaxReserved())) return false;
+ if (!MemoryAllocator::Setup(MaxReserved(), MaxExecutableSize())) return false;
void* chunk =
MemoryAllocator::ReserveInitialChunk(4 * reserved_semispace_size_);
if (chunk == NULL) return false;
diff --git a/src/heap.h b/src/heap.h
index 714bf0dc..c37ced39 100644
--- a/src/heap.h
+++ b/src/heap.h
@@ -222,7 +222,9 @@ class Heap : public AllStatic {
public:
// Configure heap size before setup. Return false if the heap has been
// setup already.
- static bool ConfigureHeap(int max_semispace_size, int max_old_gen_size);
+ static bool ConfigureHeap(int max_semispace_size,
+ int max_old_gen_size,
+ int max_executable_size);
static bool ConfigureHeapDefault();
// Initializes the global object heap. If create_heap_objects is true,
@@ -253,6 +255,7 @@ class Heap : public AllStatic {
static int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
static int InitialSemiSpaceSize() { return initial_semispace_size_; }
static intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
+ static intptr_t MaxExecutableSize() { return max_executable_size_; }
// Returns the capacity of the heap in bytes w/o growing. Heap grows when
// more spaces are needed until it reaches the limit.
@@ -261,6 +264,9 @@ class Heap : public AllStatic {
// Returns the amount of memory currently committed for the heap.
static intptr_t CommittedMemory();
+ // Returns the amount of executable memory currently committed for the heap.
+ static intptr_t CommittedMemoryExecutable();
+
// Returns the available bytes in space w/o growing.
// Heap doesn't guarantee that it can allocate an object that requires
// all available bytes. Check MaxHeapObjectSize() instead.
@@ -1096,6 +1102,7 @@ class Heap : public AllStatic {
static int max_semispace_size_;
static int initial_semispace_size_;
static intptr_t max_old_generation_size_;
+ static intptr_t max_executable_size_;
static intptr_t code_range_size_;
// For keeping track of how much data has survived
diff --git a/src/ia32/assembler-ia32.h b/src/ia32/assembler-ia32.h
index 624be0c3..79637a19 100644
--- a/src/ia32/assembler-ia32.h
+++ b/src/ia32/assembler-ia32.h
@@ -521,7 +521,6 @@ class Assembler : public Malloced {
void push(const Immediate& x);
void push(Register src);
void push(const Operand& src);
- void push(Label* label, RelocInfo::Mode relocation_mode);
void pop(Register dst);
void pop(const Operand& dst);
diff --git a/src/ia32/code-stubs-ia32.cc b/src/ia32/code-stubs-ia32.cc
index b2b73926..a7d658bd 100644
--- a/src/ia32/code-stubs-ia32.cc
+++ b/src/ia32/code-stubs-ia32.cc
@@ -3067,6 +3067,26 @@ void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
}
+void ApiCallEntryStub::Generate(MacroAssembler* masm) {
+ __ PrepareCallApiFunction(kStackSpace, kArgc);
+ STATIC_ASSERT(kArgc == 5);
+
+ // Allocate the v8::Arguments structure in the arguments' space since
+ // it's not controlled by GC.
+ __ mov(ApiParameterOperand(1), eax); // v8::Arguments::implicit_args_.
+ __ mov(ApiParameterOperand(2), ebx); // v8::Arguments::values_.
+ __ mov(ApiParameterOperand(3), edx); // v8::Arguments::length_.
+ // v8::Arguments::is_construct_call_.
+ __ mov(ApiParameterOperand(4), Immediate(0));
+
+ // v8::InvocationCallback's argument.
+ __ lea(eax, ApiParameterOperand(1));
+ __ mov(ApiParameterOperand(0), eax);
+
+ __ CallApiFunctionAndReturn(fun(), kArgc);
+}
+
+
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
diff --git a/src/ia32/codegen-ia32.cc b/src/ia32/codegen-ia32.cc
index 72953407..6f4ef87e 100644
--- a/src/ia32/codegen-ia32.cc
+++ b/src/ia32/codegen-ia32.cc
@@ -8578,9 +8578,11 @@ void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) {
}
right.Unuse();
frame_->Push(&left);
- if (!node->to_int32()) {
- // If ToInt32 is called on the result of ADD, SUB, or MUL, we don't
+ if (!node->to_int32() || op == Token::MUL) {
+ // If ToInt32 is called on the result of ADD, SUB, we don't
// care about overflows.
+ // Result of MUL can be non-representable precisely in double so
+ // we have to check for overflow.
unsafe_bailout_->Branch(overflow);
}
break;
diff --git a/src/ia32/macro-assembler-ia32.h b/src/ia32/macro-assembler-ia32.h
index 7b9b8439..d65eebbc 100644
--- a/src/ia32/macro-assembler-ia32.h
+++ b/src/ia32/macro-assembler-ia32.h
@@ -488,7 +488,7 @@ class MacroAssembler: public Assembler {
// stored in ApiParameterOperand(0), ApiParameterOperand(1) etc.
void PrepareCallApiFunction(int stack_space, int argc);
- // Tail call an API function (jump). Allocates HandleScope, extracts
+ // Calls an API function. Allocates HandleScope, extracts
// returned value from handle and propagates exceptions.
// Clobbers ebx, esi, edi and caller-save registers.
void CallApiFunctionAndReturn(ApiFunction* function, int argc);
diff --git a/src/ia32/stub-cache-ia32.cc b/src/ia32/stub-cache-ia32.cc
index 042335ae..f59928fe 100644
--- a/src/ia32/stub-cache-ia32.cc
+++ b/src/ia32/stub-cache-ia32.cc
@@ -413,6 +413,10 @@ static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm,
}
+// Number of pointers to be reserved on stack for fast API call.
+static const int kFastApiCallArguments = 3;
+
+
// Reserves space for the extra arguments to FastHandleApiCall in the
// caller's frame.
//
@@ -423,10 +427,9 @@ static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// -- esp[4] : last argument in the internal frame of the caller
// -----------------------------------
__ pop(scratch);
- __ push(Immediate(Smi::FromInt(0)));
- __ push(Immediate(Smi::FromInt(0)));
- __ push(Immediate(Smi::FromInt(0)));
- __ push(Immediate(Smi::FromInt(0)));
+ for (int i = 0; i < kFastApiCallArguments; i++) {
+ __ push(Immediate(Smi::FromInt(0)));
+ }
__ push(scratch);
}
@@ -434,75 +437,81 @@ static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
- // -- esp[0] : return address
- // -- esp[4] : last fast api call extra argument
+ // -- esp[0] : return address.
+ // -- esp[4] : last fast api call extra argument.
// -- ...
- // -- esp[16] : first fast api call extra argument
- // -- esp[20] : last argument in the internal frame
+ // -- esp[kFastApiCallArguments * 4] : first fast api call extra argument.
+ // -- esp[kFastApiCallArguments * 4 + 4] : last argument in the internal
+ // frame.
// -----------------------------------
__ pop(scratch);
- __ add(Operand(esp), Immediate(kPointerSize * 4));
+ __ add(Operand(esp), Immediate(kPointerSize * kFastApiCallArguments));
__ push(scratch);
}
// Generates call to FastHandleApiCall builtin.
-static void GenerateFastApiCall(MacroAssembler* masm,
+static bool GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
- int argc) {
+ int argc,
+ Failure** failure) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : object passing the type check
// (last fast api call extra argument,
// set by CheckPrototypes)
- // -- esp[8] : api call data
- // -- esp[12] : api callback
- // -- esp[16] : api function
+ // -- esp[8] : api function
// (first fast api call extra argument)
- // -- esp[20] : last argument
+ // -- esp[12] : api call data
+ // -- esp[16] : last argument
// -- ...
- // -- esp[(argc + 5) * 4] : first argument
- // -- esp[(argc + 6) * 4] : receiver
+ // -- esp[(argc + 3) * 4] : first argument
+ // -- esp[(argc + 4) * 4] : receiver
// -----------------------------------
-
// Get the function and setup the context.
JSFunction* function = optimization.constant_function();
__ mov(edi, Immediate(Handle<JSFunction>(function)));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Pass the additional arguments FastHandleApiCall expects.
- __ mov(Operand(esp, 4 * kPointerSize), edi);
- bool info_loaded = false;
- Object* callback = optimization.api_call_info()->callback();
- if (Heap::InNewSpace(callback)) {
- info_loaded = true;
- __ mov(ecx, Handle<CallHandlerInfo>(optimization.api_call_info()));
- __ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kCallbackOffset));
- __ mov(Operand(esp, 3 * kPointerSize), ebx);
- } else {
- __ mov(Operand(esp, 3 * kPointerSize), Immediate(Handle<Object>(callback)));
- }
+ __ mov(Operand(esp, 2 * kPointerSize), edi);
Object* call_data = optimization.api_call_info()->data();
+ Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info());
if (Heap::InNewSpace(call_data)) {
- if (!info_loaded) {
- __ mov(ecx, Handle<CallHandlerInfo>(optimization.api_call_info()));
- }
+ __ mov(ecx, api_call_info_handle);
__ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kDataOffset));
- __ mov(Operand(esp, 2 * kPointerSize), ebx);
+ __ mov(Operand(esp, 3 * kPointerSize), ebx);
} else {
- __ mov(Operand(esp, 2 * kPointerSize),
+ __ mov(Operand(esp, 3 * kPointerSize),
Immediate(Handle<Object>(call_data)));
}
- // Set the number of arguments.
- __ mov(eax, Immediate(argc + 4));
+ // Prepare arguments for ApiCallEntryStub.
+ __ lea(eax, Operand(esp, 3 * kPointerSize));
+ __ lea(ebx, Operand(esp, (argc + 3) * kPointerSize));
+ __ Set(edx, Immediate(argc));
- // Jump to the fast api call builtin (tail call).
- Handle<Code> code = Handle<Code>(
- Builtins::builtin(Builtins::FastHandleApiCall));
- ParameterCount expected(0);
- __ InvokeCode(code, expected, expected,
- RelocInfo::CODE_TARGET, JUMP_FUNCTION);
+ Object* callback = optimization.api_call_info()->callback();
+ Address api_function_address = v8::ToCData<Address>(callback);
+ ApiFunction fun(api_function_address);
+
+ ApiCallEntryStub stub(api_call_info_handle, &fun);
+
+ __ EnterInternalFrame();
+
+ // Emitting a stub call may try to allocate (if the code is not
+ // already generated). Do not allow the assembler to perform a
+ // garbage collection but instead return the allocation failure
+ // object.
+ MaybeObject* result = masm->TryCallStub(&stub);
+ if (result->IsFailure()) {
+ *failure = Failure::cast(result);
+ return false;
+ }
+
+ __ LeaveInternalFrame();
+ __ ret((argc + 4) * kPointerSize);
+ return true;
}
@@ -515,7 +524,7 @@ class CallInterceptorCompiler BASE_EMBEDDED {
arguments_(arguments),
name_(name) {}
- void Compile(MacroAssembler* masm,
+ bool Compile(MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
@@ -524,7 +533,8 @@ class CallInterceptorCompiler BASE_EMBEDDED {
Register scratch1,
Register scratch2,
Register scratch3,
- Label* miss) {
+ Label* miss,
+ Failure** failure) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
@@ -535,17 +545,18 @@ class CallInterceptorCompiler BASE_EMBEDDED {
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
- CompileCacheable(masm,
- object,
- receiver,
- scratch1,
- scratch2,
- scratch3,
- holder,
- lookup,
- name,
- optimization,
- miss);
+ return CompileCacheable(masm,
+ object,
+ receiver,
+ scratch1,
+ scratch2,
+ scratch3,
+ holder,
+ lookup,
+ name,
+ optimization,
+ miss,
+ failure);
} else {
CompileRegular(masm,
object,
@@ -556,11 +567,12 @@ class CallInterceptorCompiler BASE_EMBEDDED {
name,
holder,
miss);
+ return true;
}
}
private:
- void CompileCacheable(MacroAssembler* masm,
+ bool CompileCacheable(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
@@ -570,7 +582,8 @@ class CallInterceptorCompiler BASE_EMBEDDED {
LookupResult* lookup,
String* name,
const CallOptimization& optimization,
- Label* miss_label) {
+ Label* miss_label,
+ Failure** failure) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
@@ -632,7 +645,11 @@ class CallInterceptorCompiler BASE_EMBEDDED {
// Invoke function.
if (can_do_fast_api_call) {
- GenerateFastApiCall(masm, optimization, arguments_.immediate());
+ bool success = GenerateFastApiCall(masm, optimization,
+ arguments_.immediate(), failure);
+ if (!success) {
+ return false;
+ }
} else {
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION);
@@ -650,6 +667,8 @@ class CallInterceptorCompiler BASE_EMBEDDED {
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
+
+ return true;
}
void CompileRegular(MacroAssembler* masm,
@@ -1046,8 +1065,7 @@ bool StubCompiler::GenerateLoadCallback(JSObject* object,
__ EnterInternalFrame();
// Push the stack address where the list of arguments ends.
- __ mov(scratch2, esp);
- __ sub(Operand(scratch2), Immediate(2 * kPointerSize));
+ __ lea(scratch2, Operand(esp, -2 * kPointerSize));
__ push(scratch2);
__ push(receiver); // receiver
__ push(reg); // holder
@@ -1061,12 +1079,11 @@ bool StubCompiler::GenerateLoadCallback(JSObject* object,
__ push(name_reg); // name
// Save a pointer to where we pushed the arguments pointer.
// This will be passed as the const AccessorInfo& to the C++ callback.
- __ mov(eax, esp);
- __ add(Operand(eax), Immediate(4 * kPointerSize));
+ STATIC_ASSERT(ApiGetterEntryStub::kStackSpace == 5);
+ __ lea(eax, Operand(esp, 4 * kPointerSize));
__ mov(ebx, esp);
// Do call through the api.
- ASSERT_EQ(5, ApiGetterEntryStub::kStackSpace);
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
ApiGetterEntryStub stub(callback_handle, &fun);
@@ -2208,7 +2225,11 @@ MaybeObject* CallStubCompiler::CompileCallConstant(Object* object,
}
if (depth != kInvalidProtoDepth) {
- GenerateFastApiCall(masm(), optimization, argc);
+ Failure* failure;
+ bool success = GenerateFastApiCall(masm(), optimization, argc, &failure);
+ if (!success) {
+ return failure;
+ }
} else {
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
}
@@ -2253,16 +2274,21 @@ MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object,
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), ecx);
- compiler.Compile(masm(),
- object,
- holder,
- name,
- &lookup,
- edx,
- ebx,
- edi,
- eax,
- &miss);
+ Failure* failure;
+ bool success = compiler.Compile(masm(),
+ object,
+ holder,
+ name,
+ &lookup,
+ edx,
+ ebx,
+ edi,
+ eax,
+ &miss,
+ &failure);
+ if (!success) {
+ return false;
+ }
// Restore receiver.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
diff --git a/src/objects-debug.cc b/src/objects-debug.cc
index c0e5610a..2b79016a 100644
--- a/src/objects-debug.cc
+++ b/src/objects-debug.cc
@@ -997,6 +997,8 @@ void AccessorInfo::AccessorInfoPrint() {
data()->ShortPrint();
PrintF("\n - flag: ");
flag()->ShortPrint();
+ PrintF("\n - load_stub_cache: ");
+ load_stub_cache()->ShortPrint();
}
void AccessCheckInfo::AccessCheckInfoVerify() {
@@ -1046,6 +1048,7 @@ void CallHandlerInfo::CallHandlerInfoVerify() {
CHECK(IsCallHandlerInfo());
VerifyPointer(callback());
VerifyPointer(data());
+ VerifyPointer(call_stub_cache());
}
void CallHandlerInfo::CallHandlerInfoPrint() {
@@ -1054,6 +1057,8 @@ void CallHandlerInfo::CallHandlerInfoPrint() {
callback()->ShortPrint();
PrintF("\n - data: ");
data()->ShortPrint();
+ PrintF("\n - call_stub_cache: ");
+ call_stub_cache()->ShortPrint();
}
void TemplateInfo::TemplateInfoVerify() {
diff --git a/src/objects-inl.h b/src/objects-inl.h
index 399ef35c..79d70e11 100644
--- a/src/objects-inl.h
+++ b/src/objects-inl.h
@@ -2557,6 +2557,7 @@ ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
+ACCESSORS(CallHandlerInfo, call_stub_cache, Object, kCallStubCacheOffset)
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
diff --git a/src/objects.h b/src/objects.h
index 6029ad54..9d975ec5 100644
--- a/src/objects.h
+++ b/src/objects.h
@@ -5423,6 +5423,7 @@ class CallHandlerInfo: public Struct {
public:
DECL_ACCESSORS(callback, Object)
DECL_ACCESSORS(data, Object)
+ DECL_ACCESSORS(call_stub_cache, Object)
static inline CallHandlerInfo* cast(Object* obj);
@@ -5433,7 +5434,8 @@ class CallHandlerInfo: public Struct {
static const int kCallbackOffset = HeapObject::kHeaderSize;
static const int kDataOffset = kCallbackOffset + kPointerSize;
- static const int kSize = kDataOffset + kPointerSize;
+ static const int kCallStubCacheOffset = kDataOffset + kPointerSize;
+ static const int kSize = kCallStubCacheOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
diff --git a/src/profile-generator.cc b/src/profile-generator.cc
index a4d9a828..29f9ab4d 100644
--- a/src/profile-generator.cc
+++ b/src/profile-generator.cc
@@ -1848,22 +1848,6 @@ HeapEntry* HeapSnapshotGenerator::GetEntry(Object* obj) {
}
-int HeapSnapshotGenerator::GetGlobalSecurityToken() {
- return collection_->token_enumerator()->GetTokenId(
- Top::context()->global()->global_context()->security_token());
-}
-
-
-int HeapSnapshotGenerator::GetObjectSecurityToken(HeapObject* obj) {
- if (obj->IsGlobalContext()) {
- return collection_->token_enumerator()->GetTokenId(
- Context::cast(obj)->security_token());
- } else {
- return TokenEnumerator::kNoSecurityToken;
- }
-}
-
-
class IndexedReferencesExtractor : public ObjectVisitor {
public:
IndexedReferencesExtractor(HeapSnapshotGenerator* generator,
@@ -1893,19 +1877,11 @@ class IndexedReferencesExtractor : public ObjectVisitor {
void HeapSnapshotGenerator::ExtractReferences(HeapObject* obj) {
// We need to reference JS global objects from snapshot's root.
- // We also need to only include global objects from the current
- // security context. And we don't want to add the global proxy,
- // as we don't have a special type for it.
+ // We use JSGlobalProxy because this is what embedder (e.g. browser)
+ // uses for the global object.
if (obj->IsJSGlobalProxy()) {
- int global_security_token = GetGlobalSecurityToken();
JSGlobalProxy* proxy = JSGlobalProxy::cast(obj);
- int object_security_token =
- collection_->token_enumerator()->GetTokenId(
- Context::cast(proxy->context())->security_token());
- if (object_security_token == TokenEnumerator::kNoSecurityToken
- || object_security_token == global_security_token) {
- SetRootReference(proxy->map()->prototype());
- }
+ SetRootReference(proxy->map()->prototype());
return;
}
diff --git a/src/profile-generator.h b/src/profile-generator.h
index 6f63f6a1..b691a056 100644
--- a/src/profile-generator.h
+++ b/src/profile-generator.h
@@ -948,8 +948,6 @@ class HeapSnapshotGenerator {
private:
HeapEntry* GetEntry(Object* obj);
- int GetGlobalSecurityToken();
- int GetObjectSecurityToken(HeapObject* obj);
void ExtractReferences(HeapObject* obj);
void ExtractClosureReferences(JSObject* js_obj, HeapEntry* entry);
void ExtractPropertyReferences(JSObject* js_obj, HeapEntry* entry);
diff --git a/src/spaces.cc b/src/spaces.cc
index e3fb9233..2f3e41ae 100644
--- a/src/spaces.cc
+++ b/src/spaces.cc
@@ -270,8 +270,9 @@ void CodeRange::TearDown() {
// -----------------------------------------------------------------------------
// MemoryAllocator
//
-intptr_t MemoryAllocator::capacity_ = 0;
-intptr_t MemoryAllocator::size_ = 0;
+intptr_t MemoryAllocator::capacity_ = 0;
+intptr_t MemoryAllocator::capacity_executable_ = 0;
+intptr_t MemoryAllocator::size_ = 0;
intptr_t MemoryAllocator::size_executable_ = 0;
List<MemoryAllocator::MemoryAllocationCallbackRegistration>
@@ -302,8 +303,10 @@ int MemoryAllocator::Pop() {
}
-bool MemoryAllocator::Setup(intptr_t capacity) {
+bool MemoryAllocator::Setup(intptr_t capacity, intptr_t capacity_executable) {
capacity_ = RoundUp(capacity, Page::kPageSize);
+ capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
+ ASSERT_GE(capacity_, capacity_executable_);
// Over-estimate the size of chunks_ array. It assumes the expansion of old
// space is always in the unit of a chunk (kChunkSize) except the last
@@ -346,6 +349,7 @@ void MemoryAllocator::TearDown() {
ASSERT(top_ == max_nof_chunks_); // all chunks are free
top_ = 0;
capacity_ = 0;
+ capacity_executable_ = 0;
size_ = 0;
max_nof_chunks_ = 0;
}
@@ -357,16 +361,31 @@ void* MemoryAllocator::AllocateRawMemory(const size_t requested,
if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) {
return NULL;
}
+
void* mem;
- if (executable == EXECUTABLE && CodeRange::exists()) {
- mem = CodeRange::AllocateRawMemory(requested, allocated);
+ if (executable == EXECUTABLE) {
+ // Check executable memory limit.
+ if (size_executable_ + requested >
+ static_cast<size_t>(capacity_executable_)) {
+ LOG(StringEvent("MemoryAllocator::AllocateRawMemory",
+ "V8 Executable Allocation capacity exceeded"));
+ return NULL;
+ }
+ // Allocate executable memory either from code range or from the
+ // OS.
+ if (CodeRange::exists()) {
+ mem = CodeRange::AllocateRawMemory(requested, allocated);
+ } else {
+ mem = OS::Allocate(requested, allocated, true);
+ }
+ // Update executable memory size.
+ size_executable_ += static_cast<int>(*allocated);
} else {
- mem = OS::Allocate(requested, allocated, (executable == EXECUTABLE));
+ mem = OS::Allocate(requested, allocated, false);
}
int alloced = static_cast<int>(*allocated);
size_ += alloced;
- if (executable == EXECUTABLE) size_executable_ += alloced;
#ifdef DEBUG
ZapBlock(reinterpret_cast<Address>(mem), alloced);
#endif
@@ -391,6 +410,7 @@ void MemoryAllocator::FreeRawMemory(void* mem,
if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length);
ASSERT(size_ >= 0);
+ ASSERT(size_executable_ >= 0);
}
diff --git a/src/spaces.h b/src/spaces.h
index 3ed2fe8b..0c10d2c7 100644
--- a/src/spaces.h
+++ b/src/spaces.h
@@ -491,8 +491,8 @@ class CodeRange : public AllStatic {
class MemoryAllocator : public AllStatic {
public:
// Initializes its internal bookkeeping structures.
- // Max capacity of the total space.
- static bool Setup(intptr_t max_capacity);
+ // Max capacity of the total space and executable memory limit.
+ static bool Setup(intptr_t max_capacity, intptr_t capacity_executable);
// Deletes valid chunks.
static void TearDown();
@@ -590,6 +590,12 @@ class MemoryAllocator : public AllStatic {
// Returns allocated spaces in bytes.
static intptr_t Size() { return size_; }
+ // Returns the maximum available executable bytes of heaps.
+ static int AvailableExecutable() {
+ if (capacity_executable_ < size_executable_) return 0;
+ return capacity_executable_ - size_executable_;
+ }
+
// Returns allocated executable spaces in bytes.
static intptr_t SizeExecutable() { return size_executable_; }
@@ -653,6 +659,8 @@ class MemoryAllocator : public AllStatic {
private:
// Maximum space size in bytes.
static intptr_t capacity_;
+ // Maximum subset of capacity_ that can be executable
+ static intptr_t capacity_executable_;
// Allocated space size in bytes.
static intptr_t size_;
diff --git a/src/strtod.cc b/src/strtod.cc
index 0ed1b0d9..0523d885 100644
--- a/src/strtod.cc
+++ b/src/strtod.cc
@@ -31,6 +31,7 @@
#include "v8.h"
#include "strtod.h"
+#include "bignum.h"
#include "cached-powers.h"
#include "double.h"
@@ -83,44 +84,12 @@ static const double exact_powers_of_ten[] = {
// 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
10000000000000000000000.0
};
-
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
-
-extern "C" double gay_strtod(const char* s00, const char** se);
-
-static double old_strtod(Vector<const char> buffer, int exponent) {
- // gay_strtod is broken on Linux,x86. For numbers with few decimal digits
- // the computation is done using floating-point operations which (on Linux)
- // are prone to double-rounding errors.
- // By adding several zeroes to the buffer gay_strtod falls back to a slower
- // (but correct) algorithm.
- const int kInsertedZeroesCount = 20;
- char gay_buffer[1024];
- Vector<char> gay_buffer_vector(gay_buffer, sizeof(gay_buffer));
- int pos = 0;
- for (int i = 0; i < buffer.length(); ++i) {
- gay_buffer_vector[pos++] = buffer[i];
- }
- for (int i = 0; i < kInsertedZeroesCount; ++i) {
- gay_buffer_vector[pos++] = '0';
- }
- exponent -= kInsertedZeroesCount;
- gay_buffer_vector[pos++] = 'e';
- if (exponent < 0) {
- gay_buffer_vector[pos++] = '-';
- exponent = -exponent;
- }
- const int kNumberOfExponentDigits = 5;
- for (int i = kNumberOfExponentDigits - 1; i >= 0; i--) {
- gay_buffer_vector[pos + i] = exponent % 10 + '0';
- exponent /= 10;
- }
- pos += kNumberOfExponentDigits;
- gay_buffer_vector[pos] = '\0';
- return gay_strtod(gay_buffer, NULL);
-}
-
+// Maximum number of significant digits in the decimal representation.
+// In fact the value is 772 (see conversions.cc), but to give us some margin
+// we round up to 780.
+static const int kMaxSignificantDecimalDigits = 780;
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
for (int i = 0; i < buffer.length(); i++) {
@@ -142,6 +111,23 @@ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
}
+static void TrimToMaxSignificantDigits(Vector<const char> buffer,
+ int exponent,
+ char* significant_buffer,
+ int* significant_exponent) {
+ for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
+ significant_buffer[i] = buffer[i];
+ }
+ // The input buffer has been trimmed. Therefore the last digit must be
+ // different from '0'.
+ ASSERT(buffer[buffer.length() - 1] != '0');
+ // Set the last digit to be non-zero. This is sufficient to guarantee
+ // correct rounding.
+ significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
+ *significant_exponent =
+ exponent + (buffer.length() - kMaxSignificantDecimalDigits);
+}
+
// Reads digits from the buffer and converts them to a uint64.
// Reads in as many digits as fit into a uint64.
// When the string starts with "1844674407370955161" no further digit is read.
@@ -374,20 +360,81 @@ static bool DiyFpStrtod(Vector<const char> buffer,
}
+// Returns the correct double for the buffer*10^exponent.
+// The variable guess should be a close guess that is either the correct double
+// or its lower neighbor (the nearest double less than the correct one).
+// Preconditions:
+// buffer.length() + exponent <= kMaxDecimalPower + 1
+// buffer.length() + exponent > kMinDecimalPower
+// buffer.length() <= kMaxDecimalSignificantDigits
+static double BignumStrtod(Vector<const char> buffer,
+ int exponent,
+ double guess) {
+ if (guess == V8_INFINITY) {
+ return guess;
+ }
+
+ DiyFp upper_boundary = Double(guess).UpperBoundary();
+
+ ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
+ ASSERT(buffer.length() + exponent > kMinDecimalPower);
+ ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
+ // Make sure that the Bignum will be able to hold all our numbers.
+ // Our Bignum implementation has a separate field for exponents. Shifts will
+ // consume at most one bigit (< 64 bits).
+ // ln(10) == 3.3219...
+ ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
+ Bignum input;
+ Bignum boundary;
+ input.AssignDecimalString(buffer);
+ boundary.AssignUInt64(upper_boundary.f());
+ if (exponent >= 0) {
+ input.MultiplyByPowerOfTen(exponent);
+ } else {
+ boundary.MultiplyByPowerOfTen(-exponent);
+ }
+ if (upper_boundary.e() > 0) {
+ boundary.ShiftLeft(upper_boundary.e());
+ } else {
+ input.ShiftLeft(-upper_boundary.e());
+ }
+ int comparison = Bignum::Compare(input, boundary);
+ if (comparison < 0) {
+ return guess;
+ } else if (comparison > 0) {
+ return Double(guess).NextDouble();
+ } else if ((Double(guess).Significand() & 1) == 0) {
+ // Round towards even.
+ return guess;
+ } else {
+ return Double(guess).NextDouble();
+ }
+}
+
+
double Strtod(Vector<const char> buffer, int exponent) {
Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
exponent += left_trimmed.length() - trimmed.length();
if (trimmed.length() == 0) return 0.0;
+ if (trimmed.length() > kMaxSignificantDecimalDigits) {
+ char significant_buffer[kMaxSignificantDecimalDigits];
+ int significant_exponent;
+ TrimToMaxSignificantDigits(trimmed, exponent,
+ significant_buffer, &significant_exponent);
+ trimmed =
+ Vector<const char>(significant_buffer, kMaxSignificantDecimalDigits);
+ exponent = significant_exponent;
+ }
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
- double result;
- if (DoubleStrtod(trimmed, exponent, &result) ||
- DiyFpStrtod(trimmed, exponent, &result)) {
- return result;
+ double guess;
+ if (DoubleStrtod(trimmed, exponent, &guess) ||
+ DiyFpStrtod(trimmed, exponent, &guess)) {
+ return guess;
}
- return old_strtod(trimmed, exponent);
+ return BignumStrtod(trimmed, exponent, guess);
}
} } // namespace v8::internal
diff --git a/src/version.cc b/src/version.cc
index 5ef2a651..b45510ca 100644
--- a/src/version.cc
+++ b/src/version.cc
@@ -34,7 +34,7 @@
// cannot be changed without changing the SCons build script.
#define MAJOR_VERSION 2
#define MINOR_VERSION 5
-#define BUILD_NUMBER 5
+#define BUILD_NUMBER 6
#define PATCH_LEVEL 0
#define CANDIDATE_VERSION false
diff --git a/test/cctest/SConscript b/test/cctest/SConscript
index 006653c2..620cd825 100644
--- a/test/cctest/SConscript
+++ b/test/cctest/SConscript
@@ -41,6 +41,7 @@ SOURCES = {
'test-alloc.cc',
'test-api.cc',
'test-ast.cc',
+ 'test-bignum.cc',
'test-circular-queue.cc',
'test-compiler.cc',
'test-conversions.cc',
diff --git a/test/cctest/test-assembler-arm.cc b/test/cctest/test-assembler-arm.cc
index 4f90b613..0f12f985 100644
--- a/test/cctest/test-assembler-arm.cc
+++ b/test/cctest/test-assembler-arm.cc
@@ -397,4 +397,72 @@ TEST(6) {
}
}
+
+static void TestRoundingMode(int32_t mode, double value, int expected) {
+ InitializeVM();
+ v8::HandleScope scope;
+
+ Assembler assm(NULL, 0);
+
+ __ vmrs(r1);
+ // Set custom FPSCR.
+ __ bic(r2, r1, Operand(((mode ^ 3) << 22) | 0xf));
+ __ orr(r2, r2, Operand(mode << 22));
+ __ vmsr(r2);
+
+ // Load value, convert, and move back result to r0.
+ __ vmov(d1, value);
+ __ vcvt_s32_f64(s0, d1, Assembler::FPSCRRounding, al);
+ __ vmov(r0, s0);
+
+ __ mov(pc, Operand(lr));
+
+ CodeDesc desc;
+ assm.GetCode(&desc);
+ Object* code = Heap::CreateCode(
+ desc,
+ Code::ComputeFlags(Code::STUB),
+ Handle<Object>(Heap::undefined_value()))->ToObjectChecked();
+ CHECK(code->IsCode());
+#ifdef DEBUG
+ Code::cast(code)->Print();
+#endif
+ F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
+ int res = reinterpret_cast<int>(
+ CALL_GENERATED_CODE(f, 0, 0, 0, 0, 0));
+ ::printf("res = %d\n", res);
+ CHECK_EQ(expected, res);
+}
+
+
+TEST(7) {
+ // Test vfp rounding modes.
+
+ // See ARM DDI 0406B Page A2-29.
+ enum FPSCRRoungingMode {
+ RN, // Round to Nearest.
+ RP, // Round towards Plus Infinity.
+ RM, // Round towards Minus Infinity.
+ RZ // Round towards zero.
+ };
+
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+
+ TestRoundingMode(RZ, 0.5, 0);
+ TestRoundingMode(RZ, -0.5, 0);
+ TestRoundingMode(RZ, 123.7, 123);
+ TestRoundingMode(RZ, -123.7, -123);
+ TestRoundingMode(RZ, 123456.2, 123456);
+ TestRoundingMode(RZ, -123456.2, -123456);
+
+ TestRoundingMode(RM, 0.5, 0);
+ TestRoundingMode(RM, -0.5, -1);
+ TestRoundingMode(RM, 123.7, 123);
+ TestRoundingMode(RM, -123.7, -124);
+ TestRoundingMode(RM, 123456.2, 123456);
+ TestRoundingMode(RM, -123456.2, -123457);
+ }
+}
+
#undef __
diff --git a/test/cctest/test-bignum.cc b/test/cctest/test-bignum.cc
new file mode 100644
index 00000000..9aa5ef30
--- /dev/null
+++ b/test/cctest/test-bignum.cc
@@ -0,0 +1,1502 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdlib.h>
+
+#include "v8.h"
+
+#include "platform.h"
+#include "cctest.h"
+#include "bignum.h"
+
+using namespace v8::internal;
+
+
+static const int kBufferSize = 1024;
+
+static void AssignHexString(Bignum* bignum, const char* str) {
+ bignum->AssignHexString(Vector<const char>(str, StrLength(str)));
+}
+
+
+static void AssignDecimalString(Bignum* bignum, const char* str) {
+ bignum->AssignDecimalString(Vector<const char>(str, StrLength(str)));
+}
+
+
+TEST(Assign) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+ Bignum bignum2;
+ bignum.AssignUInt16(0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+ bignum.AssignUInt16(0xA);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+ bignum.AssignUInt16(0x20);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("20", buffer);
+
+
+ bignum.AssignUInt64(0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+ bignum.AssignUInt64(0xA);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+ bignum.AssignUInt64(0x20);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("20", buffer);
+ bignum.AssignUInt64(0x100);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100", buffer);
+
+ // The first real test, since this will not fit into one bigit.
+ bignum.AssignUInt64(0x12345678);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("12345678", buffer);
+
+ uint64_t big = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
+ bignum.AssignUInt64(big);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFFFF", buffer);
+
+ big = V8_2PART_UINT64_C(0x12345678, 9ABCDEF0);
+ bignum.AssignUInt64(big);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("123456789ABCDEF0", buffer);
+
+ bignum2.AssignBignum(bignum);
+ CHECK(bignum2.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("123456789ABCDEF0", buffer);
+
+ AssignDecimalString(&bignum, "0");
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+
+ AssignDecimalString(&bignum, "1");
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ AssignDecimalString(&bignum, "1234567890");
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("499602D2", buffer);
+
+ AssignHexString(&bignum, "0");
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+
+ AssignHexString(&bignum, "123456789ABCDEF0");
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("123456789ABCDEF0", buffer);
+}
+
+
+TEST(ShiftLeft) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+ AssignHexString(&bignum, "0");
+ bignum.ShiftLeft(100);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.ShiftLeft(1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.ShiftLeft(4);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.ShiftLeft(32);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000000", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.ShiftLeft(64);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000", buffer);
+
+ AssignHexString(&bignum, "123456789ABCDEF");
+ bignum.ShiftLeft(64);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("123456789ABCDEF0000000000000000", buffer);
+ bignum.ShiftLeft(1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2468ACF13579BDE0000000000000000", buffer);
+}
+
+
+TEST(AddUInt64) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+ AssignHexString(&bignum, "0");
+ bignum.AddUInt64(0xA);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddUInt64(0xA);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("B", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddUInt64(0x100);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("101", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddUInt64(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000", buffer);
+
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.AddUInt64(0x1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
+ bignum.AddUInt64(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000000000000000000000000000000000FFFF", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
+ bignum.AddUInt64(0x1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000000000000000000000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ bignum.AddUInt64(1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000001", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ bignum.AddUInt64(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000000000000000FFFF", buffer);
+
+ AssignHexString(&bignum, "0");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0xA, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A00000000", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0xA, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A00000001", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0x100, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000001", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0xFFFF, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFF00000001", buffer);
+
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0x1, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10FFFFFFF", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0xFFFF, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000000000FFFF00000000", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
+ bignum.AddUInt64(V8_2PART_UINT64_C(0x1, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000000000000000000000000000000FFFFFFFF", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ bignum.AddUInt64(V8_2PART_UINT64_C(0x1, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000100000000", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ bignum.AddUInt64(V8_2PART_UINT64_C(0xFFFF, 00000000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000FFFF00000000", buffer);
+}
+
+
+TEST(AddBignum) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+ Bignum other;
+
+ AssignHexString(&other, "1");
+ AssignHexString(&bignum, "0");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ AssignHexString(&bignum, "1");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2", buffer);
+
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFF");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000000000000", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000000000000000000001", buffer);
+
+ AssignHexString(&other, "1000000000000");
+
+ AssignHexString(&bignum, "1");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000001", buffer);
+
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000FFFFFFF", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000000001000000000000", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000000000000000000000000FFFFFFFFFFFF", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000001000000000000", buffer);
+
+ other.ShiftLeft(64);
+ // other == "10000000000000000000000000000"
+
+ bignum.AssignUInt16(0x1);
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000001", buffer);
+
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000000000000000FFFFFFF", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000010000000000000000000000000000", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFF", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ bignum.AddBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10010000000000000000000000000", buffer);
+}
+
+
+TEST(SubtractBignum) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+ Bignum other;
+
+ AssignHexString(&bignum, "1");
+ AssignHexString(&other, "0");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ AssignHexString(&bignum, "2");
+ AssignHexString(&other, "0");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2", buffer);
+
+ AssignHexString(&bignum, "10000000");
+ AssignHexString(&other, "1");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFF", buffer);
+
+ AssignHexString(&bignum, "100000000000000");
+ AssignHexString(&other, "1");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFF", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000001");
+ AssignHexString(&other, "1");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000000000000000000000", buffer);
+
+ AssignHexString(&bignum, "1000000000001");
+ AssignHexString(&other, "1000000000000");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ AssignHexString(&bignum, "100000FFFFFFF");
+ AssignHexString(&other, "1000000000000");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFF", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000001000000000000");
+ AssignHexString(&other, "1000000000000");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000000000000000000000", buffer);
+
+ AssignHexString(&bignum, "1000000000000000000000000000000FFFFFFFFFFFF");
+ AssignHexString(&other, "1000000000000");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ // "10 0000 0000 0000 0000 0000 0000"
+ AssignHexString(&other, "1000000000000");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFF000000000000", buffer);
+
+ AssignHexString(&other, "1000000000000");
+ other.ShiftLeft(48);
+ // other == "1000000000000000000000000"
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ // bignum == "10000000000000000000000000"
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("F000000000000000000000000", buffer);
+
+ other.AssignUInt16(0x1);
+ other.ShiftLeft(35);
+ // other == "800000000"
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.ShiftLeft(60);
+ // bignum = FFFFFFF000000000000000
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFEFFFFFF800000000", buffer);
+
+ AssignHexString(&bignum, "10000000000000000000000000000000000000000000");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF800000000", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
+ bignum.SubtractBignum(other);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFF", buffer);
+}
+
+
+TEST(MultiplyUInt32) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+
+ AssignHexString(&bignum, "0");
+ bignum.MultiplyByUInt32(0x25);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+
+ AssignHexString(&bignum, "2");
+ bignum.MultiplyByUInt32(0x5);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+
+ AssignHexString(&bignum, "10000000");
+ bignum.MultiplyByUInt32(0x9);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("90000000", buffer);
+
+ AssignHexString(&bignum, "100000000000000");
+ bignum.MultiplyByUInt32(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFF00000000000000", buffer);
+
+ AssignHexString(&bignum, "100000000000000");
+ bignum.MultiplyByUInt32(0xFFFFFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFF00000000000000", buffer);
+
+ AssignHexString(&bignum, "1234567ABCD");
+ bignum.MultiplyByUInt32(0xFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("12333335552433", buffer);
+
+ AssignHexString(&bignum, "1234567ABCD");
+ bignum.MultiplyByUInt32(0xFFFFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("12345679998A985433", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt32(0x2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1FFFFFFFFFFFFFFFE", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt32(0x4);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("3FFFFFFFFFFFFFFFC", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt32(0xF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("EFFFFFFFFFFFFFFF1", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt32(0xFFFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFEFFFFFFFFFF000001", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ // "10 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt32(2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("20000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ // "10 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt32(0xF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("F0000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0xFFFF);
+ bignum.ShiftLeft(100);
+ // "FFFF0 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt32(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFE00010000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0xFFFF);
+ bignum.ShiftLeft(100);
+ // "FFFF0 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt32(0xFFFFFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFEFFFF00010000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0xFFFF);
+ bignum.ShiftLeft(100);
+ // "FFFF0 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt32(0xFFFFFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFEFFFF00010000000000000000000000000", buffer);
+
+ AssignDecimalString(&bignum, "15611230384529777");
+ bignum.MultiplyByUInt32(10000000);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("210EDD6D4CDD2580EE80", buffer);
+}
+
+
+TEST(MultiplyUInt64) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+
+ AssignHexString(&bignum, "0");
+ bignum.MultiplyByUInt64(0x25);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+
+ AssignHexString(&bignum, "2");
+ bignum.MultiplyByUInt64(0x5);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+
+ AssignHexString(&bignum, "10000000");
+ bignum.MultiplyByUInt64(0x9);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("90000000", buffer);
+
+ AssignHexString(&bignum, "100000000000000");
+ bignum.MultiplyByUInt64(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFF00000000000000", buffer);
+
+ AssignHexString(&bignum, "100000000000000");
+ bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFFFF00000000000000", buffer);
+
+ AssignHexString(&bignum, "1234567ABCD");
+ bignum.MultiplyByUInt64(0xFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("12333335552433", buffer);
+
+ AssignHexString(&bignum, "1234567ABCD");
+ bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFF, FFFFFFFF));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1234567ABCBDCBA985433", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt64(0x2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1FFFFFFFFFFFFFFFE", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt64(0x4);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("3FFFFFFFFFFFFFFFC", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt64(0xF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("EFFFFFFFFFFFFFFF1", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFFFF");
+ bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFFFE0000000000000001", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ // "10 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt64(2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("20000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0x1);
+ bignum.ShiftLeft(100);
+ // "10 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt64(0xF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("F0000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0xFFFF);
+ bignum.ShiftLeft(100);
+ // "FFFF0 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt64(0xFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFE00010000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0xFFFF);
+ bignum.ShiftLeft(100);
+ // "FFFF0 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt64(0xFFFFFFFF);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFEFFFF00010000000000000000000000000", buffer);
+
+ bignum.AssignUInt16(0xFFFF);
+ bignum.ShiftLeft(100);
+ // "FFFF0 0000 0000 0000 0000 0000 0000"
+ bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFEFFFFFFFFFFFF00010000000000000000000000000", buffer);
+
+ AssignDecimalString(&bignum, "15611230384529777");
+ bignum.MultiplyByUInt64(V8_2PART_UINT64_C(0x8ac72304, 89e80000));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1E10EE4B11D15A7F3DE7F3C7680000", buffer);
+}
+
+
+TEST(MultiplyPowerOfTen) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("3034", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1E208", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(3);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("12D450", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(4);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("BC4B20", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(5);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("75AEF40", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(6);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("498D5880", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(7);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2DF857500", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(8);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1CBB369200", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(9);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("11F5021B400", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(10);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("B3921510800", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(11);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("703B4D2A5000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(12);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("4625103A72000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(13);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2BD72A24874000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(14);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1B667A56D488000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(15);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("11200C7644D50000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(16);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("AB407C9EB0520000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(17);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("6B084DE32E3340000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(18);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("42E530ADFCE0080000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(19);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("29CF3E6CBE0C0500000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(20);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1A218703F6C783200000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(21);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1054F4627A3CB1F400000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(22);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A3518BD8C65EF38800000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(23);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("6612F7677BFB5835000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(24);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("3FCBDAA0AD7D17212000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(25);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("27DF68A46C6E2E74B4000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(26);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("18EBA166C3C4DD08F08000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(27);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("F9344E03A5B0A259650000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(28);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("9BC0B0C2478E6577DF20000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(29);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("61586E796CB8FF6AEB740000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(30);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("3CD7450BE3F39FA2D32880000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(31);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("26068B276E7843C5C3F9500000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(50);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("149D1B4CFED03B23AB5F4E1196EF45C08000000000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(100);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("5827249F27165024FBC47DFCA9359BF316332D1B91ACEECF471FBAB06D9B2"
+ "0000000000000000000000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(200);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("64C1F5C06C3816AFBF8DAFD5A3D756365BB0FD020E6F084E759C1F7C99E4F"
+ "55B9ACC667CEC477EB958C2AEEB3C6C19BA35A1AD30B35C51EB72040920000"
+ "0000000000000000000000000000000000000000000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(500);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("96741A625EB5D7C91039FEB5C5ACD6D9831EDA5B083D800E6019442C8C8223"
+ "3EAFB3501FE2058062221E15121334928880827DEE1EC337A8B26489F3A40A"
+ "CB440A2423734472D10BFCE886F41B3AF9F9503013D86D088929CA86EEB4D8"
+ "B9C831D0BD53327B994A0326227CFD0ECBF2EB48B02387AAE2D4CCCDF1F1A1"
+ "B8CC4F1FA2C56AD40D0E4DAA9C28CDBF0A549098EA13200000000000000000"
+ "00000000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000000000000000", buffer);
+
+ AssignDecimalString(&bignum, "1234");
+ bignum.MultiplyByPowerOfTen(1000);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1258040F99B1CD1CC9819C676D413EA50E4A6A8F114BB0C65418C62D399B81"
+ "6361466CA8E095193E1EE97173553597C96673AF67FAFE27A66E7EF2E5EF2E"
+ "E3F5F5070CC17FE83BA53D40A66A666A02F9E00B0E11328D2224B8694C7372"
+ "F3D536A0AD1985911BD361496F268E8B23112500EAF9B88A9BC67B2AB04D38"
+ "7FEFACD00F5AF4F764F9ABC3ABCDE54612DE38CD90CB6647CA389EA0E86B16"
+ "BF7A1F34086E05ADBE00BD1673BE00FAC4B34AF1091E8AD50BA675E0381440"
+ "EA8E9D93E75D816BAB37C9844B1441C38FC65CF30ABB71B36433AF26DD97BD"
+ "ABBA96C03B4919B8F3515B92826B85462833380DC193D79F69D20DD6038C99"
+ "6114EF6C446F0BA28CC772ACBA58B81C04F8FFDE7B18C4E5A3ABC51E637FDF"
+ "6E37FDFF04C940919390F4FF92000000000000000000000000000000000000"
+ "00000000000000000000000000000000000000000000000000000000000000"
+ "00000000000000000000000000000000000000000000000000000000000000"
+ "00000000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000", buffer);
+
+ Bignum bignum2;
+ AssignHexString(&bignum2, "3DA774C07FB5DF54284D09C675A492165B830D5DAAEB2A7501"
+ "DA17CF9DFA1CA2282269F92A25A97314296B717E3DCBB9FE17"
+ "41A842FE2913F540F40796F2381155763502C58B15AF7A7F88"
+ "6F744C9164FF409A28F7FA0C41F89ED79C1BE9F322C8578B97"
+ "841F1CBAA17D901BE1230E3C00E1C643AF32638B5674E01FEA"
+ "96FC90864E621B856A9E1CE56E6EB545B9C2F8F0CC10DDA88D"
+ "CC6D282605F8DB67044F2DFD3695E7BA63877AE16701536AE6"
+ "567C794D0BFE338DFBB42D92D4215AF3BB22BF0A8B283FDDC2"
+ "C667A10958EA6D2");
+ CHECK(bignum2.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("3DA774C07FB5DF54284D09C675A492165B830D5DAAEB2A7501"
+ "DA17CF9DFA1CA2282269F92A25A97314296B717E3DCBB9FE17"
+ "41A842FE2913F540F40796F2381155763502C58B15AF7A7F88"
+ "6F744C9164FF409A28F7FA0C41F89ED79C1BE9F322C8578B97"
+ "841F1CBAA17D901BE1230E3C00E1C643AF32638B5674E01FEA"
+ "96FC90864E621B856A9E1CE56E6EB545B9C2F8F0CC10DDA88D"
+ "CC6D282605F8DB67044F2DFD3695E7BA63877AE16701536AE6"
+ "567C794D0BFE338DFBB42D92D4215AF3BB22BF0A8B283FDDC2"
+ "C667A10958EA6D2", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2688A8F84FD1AB949930261C0986DB4DF931E85A8AD2FA8921284EE1C2BC51"
+ "E55915823BBA5789E7EC99E326EEE69F543ECE890929DED9AC79489884BE57"
+ "630AD569E121BB76ED8DAC8FB545A8AFDADF1F8860599AFC47A93B6346C191"
+ "7237F5BD36B73EB29371F4A4EE7A116CB5E8E5808D1BEA4D7F7E3716090C13"
+ "F29E5DDA53F0FD513362A2D20F6505314B9419DB967F8A8A89589FC43917C3"
+ "BB892062B17CBE421DB0D47E34ACCCE060D422CFF60DCBD0277EE038BD509C"
+ "7BC494D8D854F5B76696F927EA99BC00C4A5D7928434", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1815699B31E30B3CDFBE17D185F44910BBBF313896C3DC95B4B9314D19B5B32"
+ "F57AD71655476B630F3E02DF855502394A74115A5BA2B480BCBCD5F52F6F69D"
+ "E6C5622CB5152A54788BD9D14B896DE8CB73B53C3800DDACC9C51E0C38FAE76"
+ "2F9964232872F9C2738E7150C4AE3F1B18F70583172706FAEE26DC5A78C77A2"
+ "FAA874769E52C01DA5C3499F233ECF3C90293E0FB69695D763DAA3AEDA5535B"
+ "43DAEEDF6E9528E84CEE0EC000C3C8495C1F9C89F6218AF4C23765261CD5ADD"
+ "0787351992A01E5BB8F2A015807AE7A6BB92A08", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(5);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("5E13A4863ADEE3E5C9FE8D0A73423D695D62D8450CED15A8C9F368952C6DC3"
+ "F0EE7D82F3D1EFB7AF38A3B3920D410AFCAD563C8F5F39116E141A3C5C14B3"
+ "58CD73077EA35AAD59F6E24AD98F10D5555ABBFBF33AC361EAF429FD5FBE94"
+ "17DA9EF2F2956011F9F93646AA38048A681D984ED88127073443247CCC167C"
+ "B354A32206EF5A733E73CF82D795A1AD598493211A6D613C39515E0E0F6304"
+ "DCD9C810F3518C7F6A7CB6C81E99E02FCC65E8FDB7B7AE97306CC16A8631CE"
+ "0A2AEF6568276BE4C176964A73C153FDE018E34CB4C2F40", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(10);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("8F8CB8EB51945A7E815809F6121EF2F4E61EF3405CD9432CAD2709749EEAFD"
+ "1B81E843F14A3667A7BDCCC9E0BB795F63CDFDB62844AC7438976C885A0116"
+ "29607DA54F9C023CC366570B7637ED0F855D931752038A614922D0923E382C"
+ "B8E5F6C975672DB76E0DE471937BB9EDB11E28874F1C122D5E1EF38CECE9D0"
+ "0723056BCBD4F964192B76830634B1D322B7EB0062F3267E84F5C824343A77"
+ "4B7DCEE6DD464F01EBDC8C671BB18BB4EF4300A42474A6C77243F2A12B03BF"
+ "0443C38A1C0D2701EDB393135AE0DEC94211F9D4EB51F990800", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(50);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("107A8BE345E24407372FC1DE442CBA696BC23C4FFD5B4BDFD9E5C39559815"
+ "86628CF8472D2D589F2FC2BAD6E0816EC72CBF85CCA663D8A1EC6C51076D8"
+ "2D247E6C26811B7EC4D4300FB1F91028DCB7B2C4E7A60C151161AA7E65E79"
+ "B40917B12B2B5FBE7745984D4E8EFA31F9AE6062427B068B144A9CB155873"
+ "E7C0C9F0115E5AC72DC5A73C4796DB970BF9205AB8C77A6996EB1B417F9D1"
+ "6232431E6313C392203601B9C22CC10DDA88DCC6D282605F8DB67044F2DFD"
+ "3695E7BA63877AE16701536AE6567C794D0BFE338DFBB42D924CF964BD2C0"
+ "F586E03A2FCD35A408000000000000", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(100);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("46784A90ACD0ED3E7759CC585FB32D36EB6034A6F78D92604E3BAA5ED3D8B"
+ "6E60E854439BE448897FB4B7EA5A3D873AA0FCB3CFFD80D0530880E45F511"
+ "722A50CE7E058B5A6F5464DB7500E34984EE3202A9441F44FA1554C0CEA96"
+ "B438A36F25E7C9D56D71AE2CD313EC37534DA299AC0854FC48591A7CF3171"
+ "31265AA4AE62DE32344CE7BEEEF894AE686A2DAAFE5D6D9A10971FFD9C064"
+ "5079B209E1048F58B5192D41D84336AC4C8C489EEF00939CFC9D55C122036"
+ "01B9C22CC10DDA88DCC6D282605F8DB67044F2DFD3695E7BA3F67B96D3A32"
+ "E11FB5561B68744C4035B0800DC166D49D98E3FD1D5BB2000000000000000"
+ "0000000000", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(200);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("508BD351221DF139D72D88CDC0416845A53EE2D0E6B98352509A9AC312F8C"
+ "6CB1A144889416201E0B6CE66EA3EBE259B5FD79ECFC1FD77963CE516CC7E"
+ "2FE73D4B5B710C19F6BCB092C7A2FD76286543B8DBD2C596DFF2C896720BA"
+ "DFF7BC9C366ACEA3A880AEC287C5E6207DF2739B5326FC19D773BD830B109"
+ "ED36C7086544BF8FDB9D4B73719C2B5BC2F571A5937EC46876CD428281F6B"
+ "F287E1E07F25C1B1D46BC37324FF657A8B2E0071DB83B86123CA34004F406"
+ "001082D7945E90C6E8C9A9FEC2B44BE0DDA46E9F52B152E4D1336D2FCFBC9"
+ "96E30CA0082256737365158FE36482AA7EB9DAF2AB128F10E7551A3CD5BE6"
+ "0A922F3A7D5EED38B634A7EC95BCF7021BA6820A292000000000000000000"
+ "00000000000000000000000000000000", buffer);
+
+ bignum.AssignBignum(bignum2);
+ bignum.MultiplyByPowerOfTen(500);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("7845F900E475B5086885BAAAE67C8E85185ACFE4633727F82A4B06B5582AC"
+ "BE933C53357DA0C98C20C5AC900C4D76A97247DF52B79F48F9E35840FB715"
+ "D392CE303E22622B0CF82D9471B398457DD3196F639CEE8BBD2C146873841"
+ "F0699E6C41F04FC7A54B48CEB995BEB6F50FE81DE9D87A8D7F849CC523553"
+ "7B7BBBC1C7CAAFF6E9650BE03B308C6D31012AEF9580F70D3EE2083ADE126"
+ "8940FA7D6308E239775DFD2F8C97FF7EBD525DAFA6512216F7047A62A93DC"
+ "38A0165BDC67E250DCC96A0181DE935A70B38704DC71819F02FC5261FF7E1"
+ "E5F11907678B0A3E519FF4C10A867B0C26CE02BE6960BA8621A87303C101C"
+ "3F88798BB9F7739655946F8B5744E6B1EAF10B0C5621330F0079209033C69"
+ "20DE2E2C8D324F0624463735D482BF291926C22A910F5B80FA25170B6B57D"
+ "8D5928C7BCA3FE87461275F69BD5A1B83181DAAF43E05FC3C72C4E93111B6"
+ "6205EBF49B28FEDFB7E7526CBDA658A332000000000000000000000000000"
+ "0000000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000000", buffer);
+}
+
+
+TEST(DivideModuloIntBignum) {
+ char buffer[kBufferSize];
+ Bignum bignum;
+ Bignum other;
+ Bignum third;
+
+ bignum.AssignUInt16(10);
+ other.AssignUInt16(2);
+ CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("0", buffer);
+
+ bignum.AssignUInt16(10);
+ bignum.ShiftLeft(500);
+ other.AssignUInt16(2);
+ other.ShiftLeft(500);
+ CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
+ CHECK_EQ("0", buffer);
+
+ bignum.AssignUInt16(11);
+ other.AssignUInt16(2);
+ CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignUInt16(10);
+ bignum.ShiftLeft(500);
+ other.AssignUInt16(1);
+ bignum.AddBignum(other);
+ other.AssignUInt16(2);
+ other.ShiftLeft(500);
+ CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignUInt16(10);
+ bignum.ShiftLeft(500);
+ other.AssignBignum(bignum);
+ bignum.MultiplyByUInt32(0x1234);
+ third.AssignUInt16(0xFFF);
+ bignum.AddBignum(third);
+ CHECK_EQ(0x1234, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFF", buffer);
+
+ bignum.AssignUInt16(10);
+ AssignHexString(&other, "1234567890");
+ CHECK_EQ(0, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+
+ AssignHexString(&bignum, "12345678");
+ AssignHexString(&other, "3789012");
+ CHECK_EQ(5, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("D9861E", buffer);
+
+ AssignHexString(&bignum, "70000001");
+ AssignHexString(&other, "1FFFFFFF");
+ CHECK_EQ(3, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000004", buffer);
+
+ AssignHexString(&bignum, "28000000");
+ AssignHexString(&other, "12A05F20");
+ CHECK_EQ(2, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2BF41C0", buffer);
+
+ bignum.AssignUInt16(10);
+ bignum.ShiftLeft(500);
+ other.AssignBignum(bignum);
+ bignum.MultiplyByUInt32(0x1234);
+ third.AssignUInt16(0xFFF);
+ other.SubtractBignum(third);
+ CHECK_EQ(0x1234, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1232DCC", buffer);
+ CHECK_EQ(0, bignum.DivideModuloIntBignum(other));
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1232DCC", buffer);
+}
+
+
+TEST(Compare) {
+ Bignum bignum1;
+ Bignum bignum2;
+ bignum1.AssignUInt16(1);
+ bignum2.AssignUInt16(1);
+ CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
+ CHECK(Bignum::Equal(bignum1, bignum2));
+ CHECK(Bignum::LessEqual(bignum1, bignum2));
+ CHECK(!Bignum::Less(bignum1, bignum2));
+
+ bignum1.AssignUInt16(0);
+ bignum2.AssignUInt16(1);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+ CHECK(!Bignum::Equal(bignum1, bignum2));
+ CHECK(!Bignum::Equal(bignum2, bignum1));
+ CHECK(Bignum::LessEqual(bignum1, bignum2));
+ CHECK(!Bignum::LessEqual(bignum2, bignum1));
+ CHECK(Bignum::Less(bignum1, bignum2));
+ CHECK(!Bignum::Less(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "1234567890ABCDEF12345");
+ AssignHexString(&bignum2, "1234567890ABCDEF12345");
+ CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
+
+ AssignHexString(&bignum1, "1234567890ABCDEF12345");
+ AssignHexString(&bignum2, "1234567890ABCDEF12346");
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "1234567890ABCDEF12345");
+ bignum1.ShiftLeft(500);
+ AssignHexString(&bignum2, "1234567890ABCDEF12345");
+ bignum2.ShiftLeft(500);
+ CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
+
+ AssignHexString(&bignum1, "1234567890ABCDEF12345");
+ bignum1.ShiftLeft(500);
+ AssignHexString(&bignum2, "1234567890ABCDEF12346");
+ bignum2.ShiftLeft(500);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ bignum1.AssignUInt16(1);
+ bignum1.ShiftLeft(64);
+ AssignHexString(&bignum2, "10000000000000000");
+ CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(0, Bignum::Compare(bignum2, bignum1));
+
+ bignum1.AssignUInt16(1);
+ bignum1.ShiftLeft(64);
+ AssignHexString(&bignum2, "10000000000000001");
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ bignum1.AssignUInt16(1);
+ bignum1.ShiftLeft(96);
+ AssignHexString(&bignum2, "10000000000000001");
+ bignum2.ShiftLeft(32);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
+ bignum2.AssignUInt16(1);
+ bignum2.ShiftLeft(64);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
+ bignum1.ShiftLeft(32);
+ bignum2.AssignUInt16(1);
+ bignum2.ShiftLeft(96);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
+ bignum1.ShiftLeft(32);
+ bignum2.AssignUInt16(1);
+ bignum2.ShiftLeft(95);
+ CHECK_EQ(+1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(-1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "FFFFFFFFFFFFFFFF");
+ bignum1.ShiftLeft(32);
+ bignum2.AssignUInt16(1);
+ bignum2.ShiftLeft(100);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "100000000000000");
+ bignum2.AssignUInt16(1);
+ bignum2.ShiftLeft(14*4);
+ CHECK_EQ(0, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(0, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "100000000000001");
+ bignum2.AssignUInt16(1);
+ bignum2.ShiftLeft(14*4);
+ CHECK_EQ(+1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(-1, Bignum::Compare(bignum2, bignum1));
+
+ AssignHexString(&bignum1, "200000000000000");
+ bignum2.AssignUInt16(3);
+ bignum2.ShiftLeft(14*4);
+ CHECK_EQ(-1, Bignum::Compare(bignum1, bignum2));
+ CHECK_EQ(+1, Bignum::Compare(bignum2, bignum1));
+}
+
+
+TEST(PlusCompare) {
+ Bignum a;
+ Bignum b;
+ Bignum c;
+ a.AssignUInt16(1);
+ b.AssignUInt16(0);
+ c.AssignUInt16(1);
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+ CHECK(Bignum::PlusEqual(a, b, c));
+ CHECK(Bignum::PlusLessEqual(a, b, c));
+ CHECK(!Bignum::PlusLess(a, b, c));
+
+ a.AssignUInt16(0);
+ b.AssignUInt16(0);
+ c.AssignUInt16(1);
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+ CHECK_EQ(+1, Bignum::PlusCompare(c, b, a));
+ CHECK(!Bignum::PlusEqual(a, b, c));
+ CHECK(!Bignum::PlusEqual(c, b, a));
+ CHECK(Bignum::PlusLessEqual(a, b, c));
+ CHECK(!Bignum::PlusLessEqual(c, b, a));
+ CHECK(Bignum::PlusLess(a, b, c));
+ CHECK(!Bignum::PlusLess(c, b, a));
+
+ AssignHexString(&a, "1234567890ABCDEF12345");
+ b.AssignUInt16(1);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(+1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890ABCDEF12344");
+ b.AssignUInt16(1);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4);
+ AssignHexString(&b, "ABCDEF12345");
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4);
+ AssignHexString(&b, "ABCDEF12344");
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4);
+ AssignHexString(&b, "ABCDEF12346");
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567891");
+ a.ShiftLeft(11*4);
+ AssignHexString(&b, "ABCDEF12345");
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567889");
+ a.ShiftLeft(11*4);
+ AssignHexString(&b, "ABCDEF12345");
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ c.ShiftLeft(32);
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12344");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ c.ShiftLeft(32);
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12346");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ c.ShiftLeft(32);
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567891");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ c.ShiftLeft(32);
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567889");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF12345");
+ c.ShiftLeft(32);
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF1234500000000");
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12344");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF1234500000000");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12346");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF1234500000000");
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567891");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF1234500000000");
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567889");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(32);
+ AssignHexString(&c, "1234567890ABCDEF1234500000000");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ AssignHexString(&c, "123456789000000000ABCDEF12345");
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12346");
+ AssignHexString(&c, "123456789000000000ABCDEF12345");
+ CHECK_EQ(1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12344");
+ AssignHexString(&c, "123456789000000000ABCDEF12345");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(16);
+ AssignHexString(&c, "12345678900000ABCDEF123450000");
+ CHECK_EQ(0, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12344");
+ b.ShiftLeft(16);
+ AssignHexString(&c, "12345678900000ABCDEF123450000");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12345");
+ b.ShiftLeft(16);
+ AssignHexString(&c, "12345678900000ABCDEF123450001");
+ CHECK_EQ(-1, Bignum::PlusCompare(a, b, c));
+
+ AssignHexString(&a, "1234567890");
+ a.ShiftLeft(11*4 + 32);
+ AssignHexString(&b, "ABCDEF12346");
+ b.ShiftLeft(16);
+ AssignHexString(&c, "12345678900000ABCDEF123450000");
+ CHECK_EQ(+1, Bignum::PlusCompare(a, b, c));
+}
+
+
+TEST(Square) {
+ Bignum bignum;
+ char buffer[kBufferSize];
+
+ bignum.AssignUInt16(1);
+ bignum.Square();
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignUInt16(2);
+ bignum.Square();
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("4", buffer);
+
+ bignum.AssignUInt16(10);
+ bignum.Square();
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("64", buffer);
+
+ AssignHexString(&bignum, "FFFFFFF");
+ bignum.Square();
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFE0000001", buffer);
+
+ AssignHexString(&bignum, "FFFFFFFFFFFFFF");
+ bignum.Square();
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FFFFFFFFFFFFFE00000000000001", buffer);
+}
+
+
+TEST(AssignPowerUInt16) {
+ Bignum bignum;
+ char buffer[kBufferSize];
+
+ bignum.AssignPowerUInt16(1, 0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(1, 1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(1, 2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(2, 0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(2, 1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2", buffer);
+
+ bignum.AssignPowerUInt16(2, 2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("4", buffer);
+
+ bignum.AssignPowerUInt16(16, 1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10", buffer);
+
+ bignum.AssignPowerUInt16(16, 2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100", buffer);
+
+ bignum.AssignPowerUInt16(16, 5);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000", buffer);
+
+ bignum.AssignPowerUInt16(16, 8);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("100000000", buffer);
+
+ bignum.AssignPowerUInt16(16, 16);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000", buffer);
+
+ bignum.AssignPowerUInt16(16, 30);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1000000000000000000000000000000", buffer);
+
+ bignum.AssignPowerUInt16(10, 0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(10, 1);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("A", buffer);
+
+ bignum.AssignPowerUInt16(10, 2);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("64", buffer);
+
+ bignum.AssignPowerUInt16(10, 5);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("186A0", buffer);
+
+ bignum.AssignPowerUInt16(10, 8);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("5F5E100", buffer);
+
+ bignum.AssignPowerUInt16(10, 16);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("2386F26FC10000", buffer);
+
+ bignum.AssignPowerUInt16(10, 30);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("C9F2C9CD04674EDEA40000000", buffer);
+
+ bignum.AssignPowerUInt16(10, 31);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("7E37BE2022C0914B2680000000", buffer);
+
+ bignum.AssignPowerUInt16(2, 0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(2, 100);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("10000000000000000000000000", buffer);
+
+ bignum.AssignPowerUInt16(17, 0);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1", buffer);
+
+ bignum.AssignPowerUInt16(17, 99);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("1942BB9853FAD924A3D4DD92B89B940E0207BEF05DB9C26BC1B757"
+ "80BE0C5A2C2990E02A681224F34ED68558CE4C6E33760931",
+ buffer);
+
+ bignum.AssignPowerUInt16(0xFFFF, 99);
+ CHECK(bignum.ToHexString(buffer, kBufferSize));
+ CHECK_EQ("FF9D12F09B886C54E77E7439C7D2DED2D34F669654C0C2B6B8C288250"
+ "5A2211D0E3DC9A61831349EAE674B11D56E3049D7BD79DAAD6C9FA2BA"
+ "528E3A794299F2EE9146A324DAFE3E88967A0358233B543E233E575B9"
+ "DD4E3AA7942146426C328FF55BFD5C45E0901B1629260AF9AE2F310C5"
+ "50959FAF305C30116D537D80CF6EBDBC15C5694062AF1AC3D956D0A41"
+ "B7E1B79FF11E21D83387A1CE1F5882B31E4B5D8DE415BDBE6854466DF"
+ "343362267A7E8833119D31D02E18DB5B0E8F6A64B0ED0D0062FFFF",
+ buffer);
+}
diff --git a/test/cctest/test-double.cc b/test/cctest/test-double.cc
index a7a604ea..3594a4fe 100644
--- a/test/cctest/test-double.cc
+++ b/test/cctest/test-double.cc
@@ -202,3 +202,19 @@ TEST(NormalizedBoundaries) {
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
}
+
+
+TEST(NextDouble) {
+ CHECK_EQ(4e-324, Double(0.0).NextDouble());
+ CHECK_EQ(0.0, Double(-0.0).NextDouble());
+ CHECK_EQ(-0.0, Double(-4e-324).NextDouble());
+ Double d0(-4e-324);
+ Double d1(d0.NextDouble());
+ Double d2(d1.NextDouble());
+ CHECK_EQ(-0.0, d1.value());
+ CHECK_EQ(0.0, d2.value());
+ CHECK_EQ(4e-324, d2.NextDouble());
+ CHECK_EQ(-1.7976931348623157e308, Double(-V8_INFINITY).NextDouble());
+ CHECK_EQ(V8_INFINITY,
+ Double(V8_2PART_UINT64_C(0x7fefffff, ffffffff)).NextDouble());
+}
diff --git a/test/cctest/test-heap-profiler.cc b/test/cctest/test-heap-profiler.cc
index b86a3361..b165190b 100644
--- a/test/cctest/test-heap-profiler.cc
+++ b/test/cctest/test-heap-profiler.cc
@@ -388,14 +388,10 @@ namespace {
class NamedEntriesDetector {
public:
NamedEntriesDetector()
- : has_A1(false), has_B1(false), has_C1(false),
- has_A2(false), has_B2(false), has_C2(false) {
+ : has_A2(false), has_B2(false), has_C2(false) {
}
void Apply(i::HeapEntry** entry_ptr) {
- if (IsReachableNodeWithName(*entry_ptr, "A1")) has_A1 = true;
- if (IsReachableNodeWithName(*entry_ptr, "B1")) has_B1 = true;
- if (IsReachableNodeWithName(*entry_ptr, "C1")) has_C1 = true;
if (IsReachableNodeWithName(*entry_ptr, "A2")) has_A2 = true;
if (IsReachableNodeWithName(*entry_ptr, "B2")) has_B2 = true;
if (IsReachableNodeWithName(*entry_ptr, "C2")) has_C2 = true;
@@ -405,9 +401,6 @@ class NamedEntriesDetector {
return strcmp(name, entry->name()) == 0 && entry->painted_reachable();
}
- bool has_A1;
- bool has_B1;
- bool has_C1;
bool has_A2;
bool has_B2;
bool has_C2;
@@ -464,21 +457,7 @@ static bool HasString(const v8::HeapGraphNode* node, const char* contents) {
TEST(HeapSnapshot) {
v8::HandleScope scope;
- v8::Handle<v8::String> token1 = v8::String::New("token1");
- LocalContext env1;
- env1->SetSecurityToken(token1);
-
- CompileRun(
- "function A1() {}\n"
- "function B1(x) { this.x = x; }\n"
- "function C1(x) { this.x1 = x; this.x2 = x; }\n"
- "var a1 = new A1();\n"
- "var b1_1 = new B1(a1), b1_2 = new B1(a1);\n"
- "var c1 = new C1(a1);");
-
- v8::Handle<v8::String> token2 = v8::String::New("token2");
LocalContext env2;
- env2->SetSecurityToken(token2);
CompileRun(
"function A2() {}\n"
@@ -498,14 +477,7 @@ TEST(HeapSnapshot) {
const_cast<i::HeapEntry*>(
reinterpret_cast<const i::HeapEntry*>(global_env2))->PaintAllReachable();
- // Verify, that JS global object of env2 doesn't have '..1'
- // properties, but has '..2' properties.
- CHECK_EQ(NULL, GetProperty(global_env2, v8::HeapGraphEdge::kProperty, "a1"));
- CHECK_EQ(
- NULL, GetProperty(global_env2, v8::HeapGraphEdge::kProperty, "b1_1"));
- CHECK_EQ(
- NULL, GetProperty(global_env2, v8::HeapGraphEdge::kProperty, "b1_2"));
- CHECK_EQ(NULL, GetProperty(global_env2, v8::HeapGraphEdge::kProperty, "c1"));
+ // Verify, that JS global object of env2 has '..2' properties.
const v8::HeapGraphNode* a2_node =
GetProperty(global_env2, v8::HeapGraphEdge::kProperty, "a2");
CHECK_NE(NULL, a2_node);
@@ -518,9 +490,6 @@ TEST(HeapSnapshot) {
// Verify that anything related to '[ABC]1' is not reachable.
NamedEntriesDetector det;
i_snapshot_env2->IterateEntries(&det);
- CHECK(!det.has_A1);
- CHECK(!det.has_B1);
- CHECK(!det.has_C1);
CHECK(det.has_A2);
CHECK(det.has_B2);
CHECK(det.has_C2);
diff --git a/test/cctest/test-mark-compact.cc b/test/cctest/test-mark-compact.cc
index ea5afecc..99425671 100644
--- a/test/cctest/test-mark-compact.cc
+++ b/test/cctest/test-mark-compact.cc
@@ -75,7 +75,7 @@ TEST(Promotion) {
// from new space.
FLAG_gc_global = true;
FLAG_always_compact = true;
- Heap::ConfigureHeap(2*256*KB, 4*MB);
+ Heap::ConfigureHeap(2*256*KB, 4*MB, 4*MB);
InitializeVM();
@@ -101,7 +101,7 @@ TEST(Promotion) {
TEST(NoPromotion) {
- Heap::ConfigureHeap(2*256*KB, 4*MB);
+ Heap::ConfigureHeap(2*256*KB, 4*MB, 4*MB);
// Test the situation that some objects in new space are promoted to
// the old space
diff --git a/test/cctest/test-spaces.cc b/test/cctest/test-spaces.cc
index 06f1bfac..b399a4ef 100644
--- a/test/cctest/test-spaces.cc
+++ b/test/cctest/test-spaces.cc
@@ -91,7 +91,7 @@ TEST(Page) {
TEST(MemoryAllocator) {
CHECK(Heap::ConfigureHeapDefault());
- CHECK(MemoryAllocator::Setup(Heap::MaxReserved()));
+ CHECK(MemoryAllocator::Setup(Heap::MaxReserved(), Heap::MaxExecutableSize()));
OldSpace faked_space(Heap::MaxReserved(), OLD_POINTER_SPACE, NOT_EXECUTABLE);
int total_pages = 0;
@@ -147,7 +147,7 @@ TEST(MemoryAllocator) {
TEST(NewSpace) {
CHECK(Heap::ConfigureHeapDefault());
- CHECK(MemoryAllocator::Setup(Heap::MaxReserved()));
+ CHECK(MemoryAllocator::Setup(Heap::MaxReserved(), Heap::MaxExecutableSize()));
NewSpace new_space;
@@ -172,7 +172,7 @@ TEST(NewSpace) {
TEST(OldSpace) {
CHECK(Heap::ConfigureHeapDefault());
- CHECK(MemoryAllocator::Setup(Heap::MaxReserved()));
+ CHECK(MemoryAllocator::Setup(Heap::MaxReserved(), Heap::MaxExecutableSize()));
OldSpace* s = new OldSpace(Heap::MaxOldGenerationSize(),
OLD_POINTER_SPACE,
diff --git a/test/cctest/test-strtod.cc b/test/cctest/test-strtod.cc
index 56b26ea1..d71d126b 100644
--- a/test/cctest/test-strtod.cc
+++ b/test/cctest/test-strtod.cc
@@ -4,7 +4,10 @@
#include "v8.h"
+#include "bignum.h"
#include "cctest.h"
+#include "diy-fp.h"
+#include "double.h"
#include "strtod.h"
using namespace v8::internal;
@@ -202,11 +205,14 @@ TEST(Strtod) {
CHECK_EQ(1.7976931348623158E+308, StrtodChar("17976931348623158", 292));
CHECK_EQ(V8_INFINITY, StrtodChar("17976931348623159", 292));
- // The following number is the result of 89255.0/1e-22. Both floating-point
+ // The following number is the result of 89255.0/1e22. Both floating-point
// numbers can be accurately represented with doubles. However on Linux,x86
// the floating-point stack is set to 80bits and the double-rounding
// introduces an error.
CHECK_EQ(89255e-22, StrtodChar("89255", -22));
+
+ // Some random values.
+ CHECK_EQ(358416272e-33, StrtodChar("358416272", -33));
CHECK_EQ(104110013277974872254e-225,
StrtodChar("104110013277974872254", -225));
@@ -252,4 +258,160 @@ TEST(Strtod) {
StrtodChar("1234567890123456789052345", 114));
CHECK_EQ(1234567890123456789052345e115,
StrtodChar("1234567890123456789052345", 115));
+
+ // Boundary cases. Boundaries themselves should round to even.
+ //
+ // 0x1FFFFFFFFFFFF * 2^3 = 72057594037927928
+ // next: 72057594037927936
+ // boundary: 72057594037927932 should round up.
+ CHECK_EQ(72057594037927928.0, StrtodChar("72057594037927928", 0));
+ CHECK_EQ(72057594037927936.0, StrtodChar("72057594037927936", 0));
+ CHECK_EQ(72057594037927936.0, StrtodChar("72057594037927932", 0));
+ CHECK_EQ(72057594037927928.0, StrtodChar("7205759403792793199999", -5));
+ CHECK_EQ(72057594037927936.0, StrtodChar("7205759403792793200001", -5));
+
+ // 0x1FFFFFFFFFFFF * 2^10 = 9223372036854774784
+ // next: 9223372036854775808
+ // boundary: 9223372036854775296 should round up.
+ CHECK_EQ(9223372036854774784.0, StrtodChar("9223372036854774784", 0));
+ CHECK_EQ(9223372036854775808.0, StrtodChar("9223372036854775808", 0));
+ CHECK_EQ(9223372036854775808.0, StrtodChar("9223372036854775296", 0));
+ CHECK_EQ(9223372036854774784.0, StrtodChar("922337203685477529599999", -5));
+ CHECK_EQ(9223372036854775808.0, StrtodChar("922337203685477529600001", -5));
+
+ // 0x1FFFFFFFFFFFF * 2^50 = 10141204801825834086073718800384
+ // next: 10141204801825835211973625643008
+ // boundary: 10141204801825834649023672221696 should round up.
+ CHECK_EQ(10141204801825834086073718800384.0,
+ StrtodChar("10141204801825834086073718800384", 0));
+ CHECK_EQ(10141204801825835211973625643008.0,
+ StrtodChar("10141204801825835211973625643008", 0));
+ CHECK_EQ(10141204801825835211973625643008.0,
+ StrtodChar("10141204801825834649023672221696", 0));
+ CHECK_EQ(10141204801825834086073718800384.0,
+ StrtodChar("1014120480182583464902367222169599999", -5));
+ CHECK_EQ(10141204801825835211973625643008.0,
+ StrtodChar("1014120480182583464902367222169600001", -5));
+
+ // 0x1FFFFFFFFFFFF * 2^99 = 5708990770823838890407843763683279797179383808
+ // next: 5708990770823839524233143877797980545530986496
+ // boundary: 5708990770823839207320493820740630171355185152
+ // The boundary should round up.
+ CHECK_EQ(5708990770823838890407843763683279797179383808.0,
+ StrtodChar("5708990770823838890407843763683279797179383808", 0));
+ CHECK_EQ(5708990770823839524233143877797980545530986496.0,
+ StrtodChar("5708990770823839524233143877797980545530986496", 0));
+ CHECK_EQ(5708990770823839524233143877797980545530986496.0,
+ StrtodChar("5708990770823839207320493820740630171355185152", 0));
+ CHECK_EQ(5708990770823838890407843763683279797179383808.0,
+ StrtodChar("5708990770823839207320493820740630171355185151999", -3));
+ CHECK_EQ(5708990770823839524233143877797980545530986496.0,
+ StrtodChar("5708990770823839207320493820740630171355185152001", -3));
+}
+
+
+static int CompareBignumToDiyFp(const Bignum& bignum_digits,
+ int bignum_exponent,
+ DiyFp diy_fp) {
+ Bignum bignum;
+ bignum.AssignBignum(bignum_digits);
+ Bignum other;
+ other.AssignUInt64(diy_fp.f());
+ if (bignum_exponent >= 0) {
+ bignum.MultiplyByPowerOfTen(bignum_exponent);
+ } else {
+ other.MultiplyByPowerOfTen(-bignum_exponent);
+ }
+ if (diy_fp.e() >= 0) {
+ other.ShiftLeft(diy_fp.e());
+ } else {
+ bignum.ShiftLeft(-diy_fp.e());
+ }
+ return Bignum::Compare(bignum, other);
+}
+
+
+static bool CheckDouble(Vector<const char> buffer,
+ int exponent,
+ double to_check) {
+ DiyFp lower_boundary;
+ DiyFp upper_boundary;
+ Bignum input_digits;
+ input_digits.AssignDecimalString(buffer);
+ if (to_check == 0.0) {
+ const double kMinDouble = 4e-324;
+ // Check that the buffer*10^exponent < (0 + kMinDouble)/2.
+ Double d(kMinDouble);
+ d.NormalizedBoundaries(&lower_boundary, &upper_boundary);
+ return CompareBignumToDiyFp(input_digits, exponent, lower_boundary) <= 0;
+ }
+ if (to_check == V8_INFINITY) {
+ const double kMaxDouble = 1.7976931348623157e308;
+ // Check that the buffer*10^exponent >= boundary between kMaxDouble and inf.
+ Double d(kMaxDouble);
+ d.NormalizedBoundaries(&lower_boundary, &upper_boundary);
+ return CompareBignumToDiyFp(input_digits, exponent, upper_boundary) >= 0;
+ }
+ Double d(to_check);
+ d.NormalizedBoundaries(&lower_boundary, &upper_boundary);
+ if ((d.Significand() & 1) == 0) {
+ return CompareBignumToDiyFp(input_digits, exponent, lower_boundary) >= 0 &&
+ CompareBignumToDiyFp(input_digits, exponent, upper_boundary) <= 0;
+ } else {
+ return CompareBignumToDiyFp(input_digits, exponent, lower_boundary) > 0 &&
+ CompareBignumToDiyFp(input_digits, exponent, upper_boundary) < 0;
+ }
+}
+
+
+// Copied from v8.cc and adapted to make the function deterministic.
+static uint32_t DeterministicRandom() {
+ // Random number generator using George Marsaglia's MWC algorithm.
+ static uint32_t hi = 0;
+ static uint32_t lo = 0;
+
+ // Initialization values don't have any special meaning. (They are the result
+ // of two calls to random().)
+ if (hi == 0) hi = 0xbfe166e7;
+ if (lo == 0) lo = 0x64d1c3c9;
+
+ // Mix the bits.
+ hi = 36969 * (hi & 0xFFFF) + (hi >> 16);
+ lo = 18273 * (lo & 0xFFFF) + (lo >> 16);
+ return (hi << 16) + (lo & 0xFFFF);
+}
+
+
+static const int kBufferSize = 1024;
+static const int kShortStrtodRandomCount = 2;
+static const int kLargeStrtodRandomCount = 2;
+
+TEST(RandomStrtod) {
+ char buffer[kBufferSize];
+ for (int length = 1; length < 15; length++) {
+ for (int i = 0; i < kShortStrtodRandomCount; ++i) {
+ int pos = 0;
+ for (int j = 0; j < length; ++j) {
+ buffer[pos++] = random() % 10 + '0';
+ }
+ int exponent = DeterministicRandom() % (25*2 + 1) - 25 - length;
+ buffer[pos] = '\0';
+ Vector<const char> vector(buffer, pos);
+ double strtod_result = Strtod(vector, exponent);
+ CHECK(CheckDouble(vector, exponent, strtod_result));
+ }
+ }
+ for (int length = 15; length < 800; length += 2) {
+ for (int i = 0; i < kLargeStrtodRandomCount; ++i) {
+ int pos = 0;
+ for (int j = 0; j < length; ++j) {
+ buffer[pos++] = random() % 10 + '0';
+ }
+ int exponent = DeterministicRandom() % (308*2 + 1) - 308 - length;
+ buffer[pos] = '\0';
+ Vector<const char> vector(buffer, pos);
+ double strtod_result = Strtod(vector, exponent);
+ CHECK(CheckDouble(vector, exponent, strtod_result));
+ }
+ }
}
diff --git a/test/mjsunit/regress/regress-927.js b/test/mjsunit/regress/regress-927.js
new file mode 100644
index 00000000..c671f7d4
--- /dev/null
+++ b/test/mjsunit/regress/regress-927.js
@@ -0,0 +1,33 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+function a1() {
+ var a2 = -1756315459;
+ return ((((a2 & a2) ^ 1) * a2) << -10);
+}
+
+assertEquals(a1(), -2147483648);
diff --git a/tools/gyp/v8.gyp b/tools/gyp/v8.gyp
index 3e40fcc6..65b86203 100644
--- a/tools/gyp/v8.gyp
+++ b/tools/gyp/v8.gyp
@@ -280,6 +280,8 @@
'../../src/ast.cc',
'../../src/ast-inl.h',
'../../src/ast.h',
+ '../../src/bignum.cc',
+ '../../src/bignum.h',
'../../src/bootstrapper.cc',
'../../src/bootstrapper.h',
'../../src/builtins.cc',
diff --git a/tools/visual_studio/v8_base.vcproj b/tools/visual_studio/v8_base.vcproj
index bddf38e2..d1ee48d6 100644
--- a/tools/visual_studio/v8_base.vcproj
+++ b/tools/visual_studio/v8_base.vcproj
@@ -145,6 +145,22 @@
</FileConfiguration>
</File>
<File
+ RelativePath="..\..\src\bignum.cc"
+ >
+ </File>
+ <File
+ RelativePath="..\..\src\bignum.h"
+ >
+ </File>
+ <File
+ RelativePath="..\..\src\bignum-dtoa.cc"
+ >
+ </File>
+ <File
+ RelativePath="..\..\src\bignum-dtoa.h"
+ >
+ </File>
+ <File
RelativePath="..\..\src\dtoa.cc"
>
</File>
@@ -241,6 +257,22 @@
>
</File>
<File
+ RelativePath="..\..\src\bignum.cc"
+ >
+ </File>
+ <File
+ RelativePath="..\..\src\bignum.h"
+ >
+ </File>
+ <File
+ RelativePath="..\..\src\bignum-dtoa.cc"
+ >
+ </File>
+ <File
+ RelativePath="..\..\src\bignum-dtoa.h"
+ >
+ </File>
+ <File
RelativePath="..\..\src\bootstrapper.cc"
>
</File>