
AUDIOINSIDE

from
Sonic Network, Inc.

JET

Programming Manual

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Revision: 0.2
Date: 30-Jan-07

1

Revision History
Rev Date By Notes
0.1 03-Nov-06 dls Draft specification
0.2 12-Jan-07 dls Updates based on implementation
0.3 30-Jan-07 dls Added JCOP and JAPP to file format

2

Abstract
JET is an interactive music library implemented as a middleware layer on top of
the EAS audio library. JET handles the complexity of managing multiple MIDI
streams and sound libraries, providing a simple API for controlling audio in an
application that requires a high degree of interactivity. JET allows content authors
to develop content using standard MIDI software tools. A simple post-processing
tool combines the content into JET compatible content files for use in the JET
environment.

Nomenclature
It is important to use a common set of terms to minimize confusion. Since JET
uses MIDI in a unique way, normal industry terms may not always suffice. Here
are the definition of terms as they are used in this document:

Channel: MIDI data associated with a specific instrument. Standard MIDI allows
for 16 channels of MIDI data each of which are typically associated with a
specific instrument.

Controller: A MIDI event consisting of a channel number, controller number, and a
controller value. The MIDI spec associates many controller numbers with specific
functions, such as volume, expression, sustain pedal, etc. JET also uses
controller events as a means of embedding special control information in a MIDI
sequence to provide for audio synchronization.

Segment: A musical section such as a chorus or verse that is a component of the
overall composition. In JET, a segment can be an entire MIDI file or a derived
from a portion of a MIDI file.

SMF-0: Standard MIDI File Type 0, a MIDI file that contains a single track, but
may be made up of multiple channels of MIDI data.

SMF-1: Standard MIDI File Type 1, a MIDI file that contains a one more tracks,
and each track may in turn be made up of one or more channels of MIDI data. By
convention, each channel is stored on a separate track in an SMF-1 file.
However, it is possible to have multiple MIDI channels on a single track, or
multiple tracks that contain data for the same MIDI channel.

Track: A track is a timed sequence of MIDI events consisting of one or more
channels of MIDI data.

JET Operation
JET supports a flexible music format that can be used to create extended
musical sequences with a minimal amount of data. A musical composition is
broken up into segments that can be sequenced to create a longer piece. The
sequencing can be fixed at the time the music file is authored, or it can be
created dynamically under program control.

3

Linear Music Example

Intro

Verse

Chorus

Lift

Bridge

Vamp

Ending

Intro Verse LiftChorus Verse ChorusBridge Verse Vamp EndingChorus Vamp

Figure 1: Linear Music Piece

This diagram shows how musical segments are stored. Each segment is
authored as a separate MIDI file. A post-processing tool combines the files into a
single container file. Each segment can contain alternate music tracks that can
be muted or un-muted to create additional interest. An example might be a brass
accent in the chorus that is played only the last time through. Also, segments can
be transposed up or down.

The bottom part of the diagram shows how the musical segments can be
recombined to create a linear music piece. In this example, the bridge might end
with a half-step key modulation and the remaining segments could be transposed
up a half-step to match.

4

Non-linear Music Example

Intro

Searching

Danger nearby

Combat

Victory

Defeat

Intro Searching CombatDanger DefeatVictory Searching Danger Combat Combat

Figure 2: Non-linear music piece

In this diagram, we see a non-linear music piece. The scenario is a first-person-
shooter (FPS) and JET is providing the background music. The intro plays as the
level is loading and then transitions under program control to the Searching
segment. This segment is repeated indefinitely, perhaps with small variations
(using the mute/un-mute feature) until activity in the game dictates a change.

As the player nears a monster lair, the program starts a synchronized transition
to the Danger segment, increasing the tension level in the audio. As the player
draws closer to the lair, additional tracks are un-muted to increase the tension.

As the player enters into combat with the monster, the program starts a
synchronized transition to the Combat segment. The segment repeats indefinitely
as the combat continues. A Bonus Hit temporarily un-mutes a decorative track
that notifies the player of a successful attack, and similarly, another track is
temporarily un-muted to signify when the player receives Special Damage.

At the end of combat, the music transitions to a victory or defeat segment based
on the outcome of battle.

Mute/Un-mute Synchronization
JET can also synchronize the muting and un-muting of tracks to events in the
music. For example, in the FPS game, it would probably be desirable to place the

5

musical events relating to bonuses and damage as close to the actual game
event as possible. However, simply un-muting a track at the moment the game
event occurs might result in a music clip starting in the middle. Alternatively, a clip
could be started from the beginning, but then it wouldn’t be synchronized with the
other music tracks.

However, with the JET sync engine, a clip can be started at the next opportune
moment and maintain synchronization. This can be accomplished by placing a
number of short music clips on a decorative track. A MIDI event in the stream
signifies the start of a clip and a second event signifies the end of a clip. When
the application calls the JET clip function, the next clip in the track is allowed to
play fully synchronized to the music. Optionally, the track can be automatically
muted by a second MIDI event.

Clip Clip Clip Clip Clip Clip

Unmute Mute Unmute Mute Unmute Mute Unmute Mute

Unmute

Mute Unmute Mute

Figure 3: Synchronized Mute/Unmute

Audio Synchronization
JET provides an audio synchronization API that allows game play to be
synchronized to events in the audio. The mechanism relies on data embedded in
the MIDI file at the time the content is authored. When the JET engine senses an
event during playback it generates a callback into the application program. The
timing of the callback can be adjusted to compensate for any latency in the audio
playback system so that audio and video can be synchronized. The diagram
below shows an example of a simple music game that involves pressing the left
and right arrows in time with the music.

Music Track

Left Left Left Right RightLeft Left Left LeftRight Right End

Figure 4: Music Game with Synchronization

6

The arrows represent events in the music sequence where game events need to
be synchronized. In this case, the blue arrow represents a time where the player
is supposed to press the left button, and the red arrow is for the right button. The
yellow arrow tells the game engine that the sequence is complete. The player is
allowed a certain time window before and after the event to press the appropriate
key.

If an event is received and the player has not pressed a button, a timer is set to
half the length of the window. If the player presses the button before the timer
expires, the game registers a success, and if not, the game registers a failure.

If the player presses the button before the event is received, a timer is set to half
the length of the window. If an event is received before the timer expires, the
game registers a success, and if not, the game registers a failure. Game play
might also include bonuses for getting close to the timing of the actual event.

Operational Details
JET uses the standard EAS library calls to manage multiple MIDI streams that
are synchronized to sound like a seamless audio track. JET requires the use of
the dynamic memory model, i.e. support for malloc() and free() memory
allocation functions or their equivalent. JET also requires the DLS parser and
synthesizer module to support custom instruments in JET content files.

JET uses standard MIDI events for audio synchronization. This simplifies the
authoring process by allowing content authors to use their favorite tools for
developing content. After the content has been developed, a simple post-
processing tool pulls the content together into a JET compatible content file.

Synchronization Events
JET uses MIDI controller events to synchronize audio. The controllers used by
JET are among those not defined for specific use by the MIDI specification. The
specific controller definitions are as follows:

Controllers 80-83 Reserved for use by application
Controller 102 JET event marker
Controller 103 JET clip marker
Controllers 104-119 Reserved for future use

Controllers 80-83 – Application Controllers
The application may use controllers in this range for its own purposes. When a
controller in this range is encountered, the event is entered into an event queue
that can be queried by the application. Some possible uses include synchronizing
video events with audio and marking a point in a MIDI segment to queue up the
next segment. The range of controllers monitored by the application can be
modified by the application during initialization.

7

Controller 102 – JET Event Marker
Controller 102 is reserved for marking events in the MIDI streams that are
specific to JET functionality. Currently, the only defined value is 0, which marks
the end of a segment for timing purposes.

Normally, JET starts playback of the next segment (or repeats the current
segment) when the MIDI end-of-track meta-event is encountered. Some MIDI
authoring tools make it difficult to place the end-of-track marker accurately,
resulting in synchronization problems when segments are joined together.

To avoid this problem, the author can place a JET end-of-segment marker
(controller=102, value=0) at the point where the segment is to be looped. When
the end-of-segment marker is encountered, the next segment will be triggered, or
if the current segment is looped, playback will resume at the start of the segment.

The end-of-segment marker can also be used to allow for completion of a
musical figure beyond the end of measure that marks the start of the next
segment. For example, the content author might create a 4-bar segment with a
drum fill that ends on beat 1 of the 5th bar – a bar beyond the natural end of the
segment. By placing an end-of-segment marker at the end of the 4th bar, the next
segment will be triggered, but the drum fill will continue in parallel with the next
segment providing musical continuity.

Segment 0

Segment 1

End-of-
Segment

Drum Fill

Figure 5: End-of-segment Marker

Controller 103 – JET Clip Marker
Controller 103 is reserved for marking clips in a MIDI track that can be triggered
by the JET_TriggerClip API call. The clip ID is encoded in the low 6 bits of the
controller value. Bit 6 is set to one to indicate the start of a clip, and set to zero to
indicate the end of a clip.

For example, to identify a clip with a clip ID of 1, the author inserts a MIDI
controller event with controller=103 and value=65 at the start of the clip and
another event with controller=103 and value=1 at the end of the clip. When the
JET_TriggerClip() function is called with a clip ID of 1, the track will be un-muted
when the controller value 65 is encountered and muted again when the controller
value 1 is encountered.

8

Track 0

Track 1

Track 2

Track 3

Un-Mute Event
Controller=103

Value=65

Clip #1

Mute Event
Controller=103

Value=1

Un-Mute Event
Controller=103

Value=65

Clip #2

Mute Event
Controller=103

Value=1

Figure 6: Synchronized Clip

In the figure above, if the JET_TriggerClip() function is called prior to the first
controller event, Track 3 will be un-muted when the first controller event occurs,
the first clip will play, and the track will be muted when the second controller
event occurs. If the JET_TriggerClip() function is called after the first controller
event has occurred, Track 3 will be un-muted when the third controller event
occurs, the second clip will play, and the track will be muted again when the
fourth controller event occurs.

Note: Normally, the track containing the clip is muted by the application when the
segment is initially queued by the call to JET_QueueSegment(). If it is not muted,
the clip will always play until Jet_TriggerClip() has been called with the clip ID.

Creating JET Content
JET uses standard MIDI files and DLS files that can be created with
commercially available content tools as its source material. These source files
are then bundled into a package file suitable for JET using a Python script called
“jetfile.py”.

Creating MIDI Files
JET can use both type 0 (SMF-0) and type 1 (SMF-1) MIDI files as source
material. However, SMF-0 files are typically larger than the same file in SMF-1
format and it is not possible to take advantage of clip automation (synchronized

9

muting and un-muting of tracks) using SMF-0 files. Therefore, it is generally
advisable to use SMF-1 files.

Jetfile.py
The jetfile.py tool uses a simple text based configuration file for describing the
content in the JET file. To create a JET content file from source material, simply
include the name of the configuration file on the jetfile.py command line:

jetfile.py my_tune.jcfg

Here is a sample configuration file. It uses a fairly standard format with sections
denoted in brackets, e.g. “[section] “ followed by elements that belong to that
section. Comment lines begin with a semi-colon and are ignored by the file
processor.

;this is a comment line

;Define output file
[output]
filename=my_tune.jet
chase_controllers=true
delete_empty_tracks=false
copyright=(c) Copyright 2007, Sonic Network, Inc.
app_data=my_app_data.bin

;Intro segment
[segment0]
filename=my_tune.mid
start=0:0:0
length=4:0:0
quantize=3

;Verse segment
[segment1]
filename=my_tune.mid
start=4:0:0
length=8:0:0
quantize=3

;Chorus segment
[segment2]
filename=my_tune.mid
start=12:0:0
length=8:0:0
quantize=3
clip0=0,6,0,12:0:0,14:0:0
clip1=0,6,0,16:0:0,18:0:0

10

;Ending segment
[segment3]
filename=my_tune.mid
start=20:0:0
length=4:0:0
quantize=3

;DLS libraries
[libraries]
lib0=my_sounds.dls

This configuration file pulls source material from an SMF-1 file called
“my_tune.mid” and writes it to a file called “my_tune.jet”. The content consists of
4 segments denoted in the comments as “Intro, “Verse”, “Chorus”, and “Ending”.

Time Format and Length Format
Times and segment lengths in the configuration file are specified in the format
measures:beats:ticks where 0:0:0 is the start of the file. There are 4 beats per
measure (jetfile.py currently does not respond to the SMF meter meta-event).
The number of ticks per beat is specified in the MIDI file itself (sometimes
referred to as “parts per quarter note” or PPQN) and can typically be set in the
authoring tool.

For example, an 8-bar segment that starts on the 5th bar has a start time of 4:0:0,
and end time of 12:0:0, and a length of 8:0:0.

Quantization
Nearly all MIDI compositions that are created through performance (e.g. played
in via a MIDI controller) have some variability in the timing of notes. By
convention, beats always fall on tick 0, but a performance may have notes falling
slightly ahead of or behind the beat.

For example, if a given source file has a PPQN of 120, a note that is supposed to
fall on the first beat of the 8th measure (i.e. 8:0:0) may actually fall slightly ahead
of the beat, at 7:3:119 for example. If the file is segmented at 8:0:0, the note at
7:3:119 will be placed in the previous segment. For a piece that is linear, this may
not be an issue, but if the segments are linked in non-linear fashion, or if repeats
are used, this may cause a discontinuity in the music.

To assist with these kinds of marginal timing problems, a quantization feature has
been included. A quantization window can be specified where any notes that fall
within the window on a segment boundary will be moved to the following section.
In the example, a quantization window of 1 or more would result in moving the
note at 7:3:119 to 8:0:0 so that the note falls in the proper segment. Similarly, if
the same quantization window is specified for the previous segment, that
segment would not include the note.

11

[output]
The [output] section is a required element that describes the output file, where
the final packaged JET content is written. The supported entries in this section
are:

filename=<file-spec>
chase_controllers=<true/false>
omit_empty_tracks=<true/false>
copyright=<copyright string>
app_data=<file-spec>

The filename element is a required entry and sets the path to the output file. The
output file will be created if it does not exist and will be overwritten if it does exist.
This is where the file that will be opened by the JET_OpenFile() function.

The chase_controllers entry is optional and if omitted defaults to true. If true, the
MIDI file processor will “chase” the value of program changes, supported
continuous controllers, RPN’s, and channel pressure from the start of the file to
the point where MIDI data is extracted for a segment or at the start of a clip.
When the output file is written, MIDI events are inserted at the beginning of a
segment or clip to bring the state of all these values to the same point it would be
if the MIDI file were played sequentially to that point.

The omit_empty_tracks element is optional and if omitted, defaults to false. If
true, any tracks that do not contain MIDI notes, program changes, or controller
events will be omitted from the final output file (the source material is untouched).
Note that if a track is omitted, any tracks that follow it in the file will have lower
track numbers which in turn will affect the track values reported in the application
event queue.

The copyright element is optional. Any ASCII alphanumeric string is acceptable
on this line and will be copied into a JCOP chunk in the JET content file. The
string is zero-terminated and may have an additional zero pad byte to make the
length divisible by two.

The app_data element is optional. If included, it should be path to a file that
contains application specific data. The data in the file is copied into a JAPP
chunk that can be retrieved through the JET_GetAppData() function. If the file
size is odd, the data will be padded with a zero to make the length divisible by
two.

[segmentx]
The segment sections describe the source and processing options for JET
segments. The segments can be defined in any order, but there must be a
segment0 and the sequence numbers must be contiguous regardless of order
(i.e. segment2, segment3, segment1, segment0 is OK, but segment3, segment1,
segment0 is not).

12

The supported entries are as follows:

filename=<file-spec>
start=<start-time>
end=<end-time>
length=<end_time>
quantize=<ticks>
clipx=<ID>,<track#>,<channel#>,<start-time>,<end-time>
end_marker=<track#>,<channel#>,<marker_time>

The filename element is a required entry and sets the path to the source MIDI file
for the segment.

The start element is optional and if not specified, the default is 0:0:0.

The end element is optional and if not specified, the default is the end of the
source file, i.e. the time of the last end-of-track meta-event in the source file. This
option may not be used if the length element is present.

The length element is optional, and if not specified, the length is determined by
the time of the last end-of-track meta-event in the source file. This option may not
be used if the end element is present.

The quantize element is optional and defaults to 0 if omitted. This value sets a
window size in ticks for the breaks in a segment when notes are extracted from a
larger file. See the section on Quantization for further detail on the operation of
this parameter.

The clipx element specifies a triggerable clip within a segment. The x portion of is
a serial number starting with 0, i.e. the first clip is specified as clip0, the second
as clip1, etc. The ID identifies the clip to the JET engine (i.e. the clipID in the
JET_TriggerClip() function). Multiple clips can share the same clipID provided
that they do no overlap in the segment. The track number is the track on which
the clip event markers are to be placed. The channel number is the MIDI channel
of the event marker. The start- and end-times are the points in the segment
where the event markers should be placed. Note that these times are relative to
the start of the source file and not the segment itself.

The end_marker element is optional. If specified, a JET end-of-segment marker
is placed at the specified time. The track number and channel number specify
which track and channel to place the marker. JET will respond to a marker on
any track or channel in the segment. The application may use the track and
channel number to encode additional information that can be retrieved in the
application event queue.

13

[libraries]
The [libraries] section describes the custom DLS sound sets used in the JET file.
It is not necessary to have a DLS library and the entire libraries section can be
omitted if no custom sounds are included. Library numbers must be sequential
and start with 0, e.g. “lib0”, “lib1”, “lib2”, etc.

JET Programming
The JET library builds on functionality in the EAS library. It is assumed that the
reader is familiar with EAS and has implemented basic EAS audio functionality in
the application. Specifically, the application must first initialize EAS by calling
EAS_Init() and must call EAS_Render() at appropriate times to render audio and
stream it to the audio hardware. JET also requires the use of the dynamic
memory model which uses malloc() and free() or functional equivalents.

Most JET function calls return an EAS_RESULT type which should be checked
against the EAS_SUCCESS return code. Most failures are not fatal, i.e. they will
not put the library in a state where it must be re-initialized. However, some
failures such as memory allocation or file open/read errors will likely result in the
specific open content failing to render.

JET Application Initialization
The JET library is initialized by the JET_Init() function. The application must first
call EAS_Init() and then pass the EAS data handle returned by EAS_Init() to the
JET_Init() function. Currently, only a single JET application can be active at a
time.

The JET_Init function takes 3 arguments: The first is the EAS data handle. The
second is a pointer to a configuration structure S_JET_CONFIG and the third is
the size of the configuration structure. For most applications, it is sufficient to
pass a NULL pointer and size 0 for the configuration data.

However, if desired, the configuration can be modified to allow the application to
monitor MIDI events outside the normal range of controllers allocated for JET
application events. In this case, a configuration structure should be allocated and
the data fields initialized with the appropriate values with the low and high
controller numbers to be monitored. The size field should be the sizeof() of the
data structure. This is to allow for future enhancement of the configuration data
while maintaining compatibility.

JET Application Termination
When the JET application terminates, it should call JET_Shutdown() to release
the resources allocated by the JET engine. If the application has no other use for
the EAS library, it should also call EAS_Shutdown().

JET Audio Processing
To start the JET engine, the content must first be opened with the
JET_OpenFile() function. Just as with EAS_OpenFile(), the file locator is an

14

opaque value that is passed to the EAS_HWOpenFile() function. It can either be
a pointer to a filename, or a pointer to an in-memory object, depending on the
user implementation of file I/O in the eas_host.c or eas_hostmm.c module. Only
a single JET content file can be opened at a time.

Once the JET file is opened, the application can begin queuing up segments for
playback by calling the JET_QueueSegment() function. Generally, it is advisable
to keep a minimum of two segments queued at all times: the currently playing
segment plus an additional segment that is ready to start playing when the
current segment finishes. However, with proper programming, it is possible to
queue up segments using a “just-in-time” technique. This technique typically
involves careful placement of application controller events near the end of a
segment so that the application is informed when a segment is about to end.

After the segment(s) are queued up, playback can begin. By default, the
segments are initialized in a paused state. To start playback, call the JET_Play()
function. Playback can be paused again by calling the JET_Pause() function.
Once initiated, playback will continue as long as the application continues to
queue up new segments before all the segments in the queue are exhausted.

The JET_Status() function can be used to monitor progress. It returns the
number of segments queued, repeat count, current segment ID, and play status.
By monitor the number of segments queued, the application can determine when
it needs to queue another segment and when playback has completed.

When playback has completed and the application is finished with the contents of
the currently open file, the application should call JET_CloseFile() to close the file
and release any resources associated with the file.

JET_Init
EAS_PUBLIC EAS_RESULT JET_Init (EAS_DATA_HANDLE easHandle,
S_JET_CONFIG *pConfig, EAS_INT configSize)

Initializes JET library for use by application. Most application should simply pass
a NULL for pConfig and 0 for configSize, which means that only controller events
in the application range (80-83) will end up in the application event queue. If
desired, the application can instantiate an S_JET_CONFIG data structure and
set the controller range to a different range. In this case, the configSize
parameter should be set to sizeof(S_JET_CONFIG).

JET_Shutdown
EAS_PUBLIC EAS_RESULT JET_Shutdown (EAS_DATA_HANDLE
easHandle)

Releases resources used by the JET library. The application should call this
function when it is no longer using the JET library.

15

JET_ OpenFile
EAS_PUBLIC EAS_RESULT JET_OpenFile (EAS_DATA_HANDLE
easHandle, EAS_FILE_LOCATOR locator)

Opens a JET content file for playback. Content must be formatted for use by the
JET library, which is typically accomplished with the jetfile.py script (see “Creating
JET Content”). Only a single JET content file can be opened at a time. However,
since JET can contain many MIDI files and DLS libraries, this limitation is
normally not an issue.

JET_ CloseFile
EAS_PUBLIC EAS_RESULT JET_CloseFile (EAS_DATA_HANDLE
easHandle)

Closes a JET file and release the resources associated with it.

JET_ Status
EAS_PUBLIC EAS_RESULT JET_Status (EAS_DATA_HANDLE
easHandle, S_JET_STATUS *pStatus)

Returns the current JET status. The elements of the status data structure are as
follows:

typedef struct s_jet_status_tag
{

EAS_INT currentUserID;
EAS_INT segmentRepeatCount;
EAS_INT numQueuedSegments;
EAS_BOOL paused;

} S_JET_STATUS;

currentUserID: An 8-bit value assigned by the application.

segmentRepeatCount: Number of times left to repeat. Zero indicates no repeats,
a negative number indicates an infinite number of repeats. Any positive value
indicates that the segment will play n+1 times.

numQueuedSegments: Number of segments currently queued to play including
the currently playing segment. A value of zero indicates that nothing is playing.
Normally, the application will queue a new segment each time the value is 1 so
that playback is uninterrupted.

JET_ QueueSegment
EAS_PUBLIC EAS_RESULT JET_QueueSegment (EAS_DATA_HANDLE
easHandle, EAS_INT segmentNum, EAS_INT libNum, EAS_INT
repeatCount, EAS_INT transpose, EAS_U32 muteFlags, EAS_U8
userID)

16

Queues up a JET MIDI segment for playback. The parameters are as follows:

segmentNum: Segment number as identified in the JET content configuration file.

libNum: The library number as specified in the JET content configuration file. Use
-1 to select the standard General MIDI library.

repeatCount: The number of times this segment should repeat. Zero indicates no
repeat, i.e. play only once. Any positive number indicates to play n+1 times. Set
to -1 to repeat indefinitely.

transpose: The amount of pitch transposition. Set to 0 for normal playback.
Range is -12 to +12.

muteFlags: Specific which MIDI tracks (not MIDI channels) should be muted
during playback. These flags can be changed dynamically using the mute
functions. Bit 0 = track 0, bit 1 = track 1, etc.

userID: 8-bit value specified by the application that uniquely identifies the
segment. This value is returned in the JET_Status() function as well as by the
application event when an event is detected in a segment. Normally, the
application keeps an 8-bit value that is incremented each time a new segment is
queued up. This can be used to look up any special characteristics of that track
including trigger clips and mute flags.

JET_ Play
EAS_PUBLIC EAS_RESULT JET_Play (EAS_DATA_HANDLE easHandle)

Starts playback of the current segment. This function must be called once after
the initial segments are queued up to start playback. It is also called after
JET_Pause() to resume playback.

JET_ Pause
EAS_PUBLIC EAS_RESULT JET_Pause (EAS_DATA_HANDLE easHandle)

Pauses playback of the current segment. Call JET_Pause() to resume playback.

JET_ SetMuteFlags
EAS_PUBLIC EAS_RESULT JET_SetMuteFlags (EAS_DATA_HANDLE
easHandle, EAS_U32 muteFlags, EAS_BOOL sync)

Modifies the mute flags during playback. If the sync parameter is false, the mute
flags are updated at the beginning of the next render. This means that any new
notes or controller events will be processed during the next audio frame. If the
sync parameter is true, the mute flags will be updated at the start of the next

17

segment. If the segment is repeated, the flags will take effect the next time
segment is repeated.

JET_ SetMuteFlag
EAS_PUBLIC EAS_RESULT JET_SetMuteFlag (EAS_DATA_HANDLE
easHandle, EAS_INT trackNum, EAS_BOOL muteFlag, EAS_BOOL
sync)
Modifies a mute flag for a single track during playback. If the sync parameter is
false, the mute flag is updated at the beginning of the next render. This means
that any new notes or controller events will be processed during the next audio
frame. If the sync parameter is true, the mute flag will be updated at the start of
the next segment. If the segment is repeated, the flag will take effect the next
time segment is repeated.

JET_ TriggerClip
EAS_PUBLIC EAS_RESULT JET_TriggerClip (EAS_DATA_HANDLE
easHandle, EAS_INT clipID)

Automatically updates mute flags in sync with the JET Clip Marker (controller
103). The parameter clipID must be in the range of 0-63. After the call to
JET_TriggerClip, when JET next encounters a controller event 103 with bits 0-5
of the value equal to clipID and bit 6 set to 1, it will automatically un-mute the
track containing the controller event. When JET encounters the complementary
controller event 103 with bits 0-5 of the value equal to clipID and bit 6 set to 0, it
will mute the track again.

JET_ GetEvent
EAS_BOOL JET_GetEvent (EAS_DATA_HANDLE easHandle, EAS_U32
*pEventRaw, S_JET_EVENT *pEvent)

Attempts to read an event from the application event queue, return EAS_TRUE if
an event is found and EAS_FALSE if not. If the application passes a valid pointer
for pEventRaw, a 32-bit compressed event code is returned. If the application
passes a valid pointer for pEvent, the event is parsed into the S_JET_EVENT
fields. The application can pass NULL for either parameter and that variable will
be ignored. Normally, the application will call JET_GetEvent() repeatedly to
retrieve events until it returns EAS_FALSE.

JET_ ParseEvent
EAS_PUBLIC void JET_ParseEvent (EAS_U32 event, S_JET_EVENT
*pEvent)
Parses a 32-bit compressed event code into a data structure. The application
passes the event code received from JET_GetEvent(). The parsed event data is
returned in the memory pointed to by pEvent.

18

JET_GetAppData
EAS_RESULT JET_GetAppData (EAS_DATA_HANDLE easHandle,
EAS_I32 *pAppDataOffset, EAS_I32 *pAppDataSize)
Returns the offset and size of the JAPP chunk in the JET file. The application can
use the file I/O functions in the eas_host module to retrieve application specific
data from the file.

19

	from
Sonic Network, Inc.
	JET
	Programming Manual
	Revision History
	Abstract
	Nomenclature
	JET Operation
	Linear Music Example
	Non-linear Music Example
	Mute/Un-mute Synchronization

	Audio Synchronization
	Operational Details
	Synchronization Events
	Controllers 80-83 – Application Controllers
	Controller 102 – JET Event Marker
	Controller 103 – JET Clip Marker

	Creating JET Content
	Creating MIDI Files
	Jetfile.py
	Time Format and Length Format
	Quantization
	[output]
	[segmentx]
	[libraries]

	JET Programming
	JET Application Initialization
	JET Application Termination
	JET Audio Processing
	JET_Init
	JET_Shutdown
	JET_ OpenFile
	JET_ CloseFile
	JET_ Status
	JET_ QueueSegment
	JET_ Play
	JET_ Pause
	JET_ SetMuteFlags
	JET_ SetMuteFlag
	JET_ TriggerClip
	JET_ GetEvent
	JET_ ParseEvent
	JET_GetAppData

