
MMAPI support for EAS

MMAPI Support For EAS
version 1.1 from 07/24/06

Table of Contents
1Overview...2
2Architecture...3

2.1General Limitations..3
2.2Workspace Layout...3
2.3Notes about the Code..7
2.4Known Problems..11
2.5Troubleshooting...12

3Windows Test Workspace..14
3.1Development Tools..14
3.2Workspace Setup...15
3.3Building the Emulator...16
3.4Run the Emulator...17
3.5Feature Tests...19

4Extending the Implementation..23
4.1Enabling TempoControl...23
4.2Adding a new protocol...23
4.3Adding a new Content Type..23
4.4Adding a new File Type...24
4.5Adding meta data types...24
4.6Adding a Capture Format..24
4.7Changing the default Capture Format...25
4.8Adding Java security..25
4.9Changing Settings in the Make System...25

5Acronyms..26

1/26

MMAPI support for EAS

1 Overview
This document describes the architecture and installation of the MMAPI wrapper for EAS. It is
targeted to people porting or testing EAS's MMAPI support.

2/26

MMAPI support for EAS

2 Architecture

2.1 General Limitations
Interfacing a C library from a J2ME VM brings some limitations, especially if a broad range of
devices should be supported:

Single Thread VM
Some small VMs for devices are single threaded (“Green Threads”). This requires any
native code to not block, otherwise the VM will appear frozen. This is important for the
EAS_Render() function and length file I/O.

General Thread Handling
A VM may implement thread handling in a different way than native (stack pointers,
etc.). Therefore, a native thread shouldn't interact with a Java thread, and vice versa.
Also, the respective yield()/sleep() functions cannot be called for a thread of the “other
side”.

One Way Native Interface
Some VM's (notably the KVM) only provide an interface to call native C functions from
Java, but do not offer a standard way to call Java methods from a C function. This
limitation requires a push architecture for data originating from Java, and polling for
data originating from the C layer. The implementation uses complex pre-buffering for
EAS, since Java data I/O can only push data to the native layer, while EAS implements
a “pull” architecture for the media data.

2.2 Workspace Layout
The “mmapi” directory has two sub directories: “classes”, containing the Java source files and
“native” for C source files.

2.2.1 mmapi/classes/com
This directory and subdirs contain the sources for the com.sonivox.mmapi package. This
package provides the private Java implementation of MMAPI's classes and functionality. The
public javax.microedition.media.* classes call into this package.

Only for the integration into Sun's MIDP RI there is one override of a class
(com.sun.midp.lcdui.DefaultEventHandler) to remove “magic” code for Sun's ABB
implementation.

Config.java

3/26

MMAPI support for EAS

Central configuration for the Java implementation. Select here which control are active
for which media type, which media types are activated, etc. Also some numerical
settings are here, like the buffer size for streaming media. Most settings must be
synchronized with the respective symbols in the native configuration file,
eas_mmapi_config.h.

Constants.java
This file contains constants for the Java implementation, like file type extensions and
mime types.

ControlBase.java
Base class for controls which are implementing the javax.microedition.media.Control
interface, and providing a little common code.

ControlMetaData.java
Implementation of MetaDataControl.

ControlMIDI.java
Implementation of MIDIControl.

ControlPitch.java
Implementation of PitchControl.

ControlRate.java
Implementation of RateControl.

ControlRecord.java
Implementation of RecordControl.

ControlStopTime.java
Implementation of StopTimeControl. This is done by monitoring the current media time
and stopping the player when the stop time is reached. Some of the implementation is
in PlayerEAS.java.

ControlTempo.java
Stub implementation of TempoControl.

ControlTone.java
Implementation of ToneControl.

ControlVolume.java
Implementation of VolumeControl.

DataSourceBase.java
Base class for implementations of the abstract class DataSource. Provides common
functionality, like connected/disconnected handling. Introduces abstract “*Impl”
methods for subclasses to implement.

DataSourceCapture.java
An implementation of DataSource for capture players. This class does not actually
provide captured data, but it centralizes all Java code for capture functionality, notably
the locator parser to gather the capture format from the locator.

4/26

MMAPI support for EAS

DataSourceHTTP.java
An implementation of DataSource for HTTP streams. It extends
DataSourceInputStream, providing the INputStream from the HTTP connection.
Furthermore it implements “SEEKABLE_TO_START” functionality: seek to the
beginning of the file is realized by disconnecting and reconnecting to the HTTP file.

DataSourceInputStream.java
An implementation of DataSource where the data originates from an InputStream.
Used for players that are created with Manager.createPlayer(InputStream, String).

DataSourceNone.java
A data source implementation that does not provide any data. This is used for players
that do not get their audio data from Java, e.g. when playing native files. A separate
type is necessary for various “instanceof” checks in the Player code.

EAS.java
Bridge to the native EAS library. It handles initialization and shutdown of the
synthesizer, as well as all other communication with the engine.

EventDispatcher.java
Thread for asynchronously dispatching PlayerListener events.

ManagerEAS.java
Class to implement javax.microedition.media.Manager methods in the private sonivox
package. By implementing these methods in the sonivox package, all other sonivox
classes can be made package private. This minimizes security risks.

PlayerBase.java
A base class for Players. It implements some of the basic functionality like listener
handling, state transitions, etc.

PlayerEAS.java
The implementation of the Player interface for the EAS synth.

PlayTone.java
Implementation of Manager.playTone() with device://midi (i.e. the MIDIControl). It uses
a thread to start/stop the tones.

Security.java
A basic security framework. Extend here for restricting recording, etc.

SystemTimeBase.java
The default system time base, as returned by Manager.getSystemTimeBase().

Utils.java
Common utility methods, especially for parsing URLs.

5/26

MMAPI support for EAS

2.2.2 mmapi/classes/javax
This directory and subdirs contain the public Java source files for MMAPI. The interfaces and
pure abstract class files are just taken from the specification. The other classes (like
Manager.java) contain actual implementation, that is copyrighted by Sonivox. Usually, all
methods just delegate the work to “shadow” classes in com.sonivox.mmapi package. For
example, class javax.microedition.media.Manager delegates all methods to same-named
methods in com.sonivox.mmapi.ManagerImpl. This architecture facilitates access to the
package private classes and methods of package com.sonivox.mmapi.

2.2.3 mmapi/native
This directory contains the C source files for the native MMAPI implementation:

eas_mmapi_config.h
Central location for selecting features and capabilities of the native MMAPI
implementation. Note that some settings need to be synchronized with Config.java.

eas_mmapi_types.h
Central type and constant definitions for the native implementation.

eas_mmapi.h
Public declarations for the main functionality. Used for interfacing the native interface
functions with the actual implementation.

eas_mmapi.c
Portable implementation of the functions declared in eas_mmapi.h. Most of the
functions directly call the equivalent EAS functions. It does some wrapping of handles
to provide further data to the host dependent implementation. It also handles caching
of data for the host functions for media data provided by the Java layer.

eas_mmapi_host.c
Implementation of EAS's host functions. This file is rather complex, since it deals with 3
different modes of media data retrieval:
1. NATIVE (opened with native stdio functions like fopen())
2. MEMORY (media data is pre-loaded to a memory area)
3. STREAM (media data is provided in a circular buffer).
This reference implementation uses separate functions for each of the host functions,
plus master functions that just dispatch to the respective NATIVE, MEMORY, or
STREAM implementation.
This architecture is not exactly the most optimized one, but it can easily be adapted to
different architectures. Also, it re-uses most of the code in the EAS example
implementations eas_host.c and eas_hostmm.c, so improvements or existing ports of
those files can be easily backported to eas_mmapi_host.c. At least in theory...

eas_mmapi_kvm.c
This file is the bridge from Java to eas_mmapi.c. It is specific to the KVM and uses the
KNI. It calls the respective functions in eas_mmapi.c. If a different native interface is

6/26

MMAPI support for EAS

used, replace this file.

eas_mmapi_midp.c
This file contains implementation specific to Sun's MIDP 2.0 RI, which requires 2
functions for the vibrator to be implemented. Note that these functions are not fully
implemented. Either remove from build if not using Sun's MIDP 2.0 RI, or complete the
implementation.

eas_mmapi_wave.c
MMAPI WAVE writing support (RecordControl). It is based on eas_wave.c. Added the
“size of optional data” field to the format chunk, since this is required by some WAVE
reading software. This requires the writing capability of host streams.

eas_mmapi_wave.h
Header file for eas_mmapi_wave.c.

eas_mmapi_windows.c
This file has the windows specific implementation for the debug RI. It uses a simplistic
API defined in eas_mmapi.h for output of the audio data to a file and/or the audio
device (see eas_mmapi_conf.h for selection). It uses EAS' eas_wave.c and
eas_waveout.c for audio output.

eas_wavein.c and eas_wavein.h
Windows-specific implementation for accessing the audio capture device and providing
raw PCM data from the audio input device.

eas_waveout.c and eas_waveout.h
Windows-specific implementation for accessing the audio playback device and playing
raw PCM data on the system's audio output device.

2.3 Notes about the Code

2.3.1 TODO and FIXME marks
Incomplete code or code that can be extended in future is marked with “TODO”. Development
tools like Eclipse and Microsoft Visual Studio can generate a list of code lines with such
TODO comments. The same applies to FIXME comments, which mark code that should be
reviewed again for a possible bug or unclear intentions.

These marks should not be seen as lack of code quality.

2.3.2 DEBUG flags
Some java files have a boolean private static native DEBUG flag. A centralized DEBUG flag
would be nicer, but this model allows fine-grained source level turning on/off debugging for
specific modules. Furthermore, setting such a class-private DEBUG flag to false will cause
the compiler to completely remove all code in a “if (DEBUG)” block completely from the
compiled .class file, saving .class file size and optimizing it by removing these if statements.

7/26

MMAPI support for EAS

The DEBUG code is deliberately kept in the code, because it is a somewhat natural
documentation, and it may help for future debugging sessions.

2.3.3 Java Package Encapsulation / Code Security
All implementation classes are package private, where possible. That prevents public access
and tightens security.

2.3.4 Java Field Initialization
Field initializations are omitted if they equal 0, null, or false to save .class file size. A comment
like "// = null" documents the intentional default initialization.

2.3.5 File Character Encoding
All source files are with DOS newlines, and ASCII character encoding.

2.3.6 Native/Java Encapsulation
All native functions are located in EAS.java. It maintains the eas handle and provides static
high level methods for each individual method. The native C function implementations are
found in eas_mmapi_kvm.c, which contains a KVM implementation for each native Java
method. The KVM implementation is merely a wrapper to call the appropriate functions from
eas_mmapi.h. This architecture allows easy switching to a different native interface.

2.3.7 General Commands
A trick is used to reduce the number of native functions. Since every native function requires
one public method and one private native method in EAS, plus the native interface function,
plus the actual implementation from eas_mmapi.h, the “general command” trick reduces code
size and increases maintainability: for functions with 0 or 1 integer parameter returning void or
integer, one single native method is used, with an additional command parameter. The
command parameter is evaluated in native, specifying the actual function to execute. In
particular for getters/setters like EAS.getMode() this is saving code size.

For readability, this concept is not maxed out, but for optimization many more methods in
EAS can be converted to use the general command native wrapper.

2.3.8 Usage of Host Functions from eas_mmapi.c
The native implementation in eas_mmapi.c calls some of the host implementation functions
directly, like EAS_HWMalloc().

Since eas_mmapi.c does not have access to the instance handle, it cannot call these
functions with a valid instance handle as first parameter. So for implementations requiring the
instance handle in EAS_HWMalloc() and EAS_HWFree(), the code needs to be modified.

8/26

MMAPI support for EAS

For some advanced functionality, eas_mmapi_host.c stores the host instance handle and
host file handle in the locator structure, so that eas_mmapi.c can access the host file
functions directly. This is used for switching the buffering mode from STREAM to MEMORY
(function MMAPI_HWSwitchToMemoryMode()) and for writing to a native file for
RecordControl.

2.3.9 Looping support
MMAPI mandates looping (repeat) support. At the end of media, the Player needs to loop
back, sending an END_OF_MEDIA event followed by a STARTED event. So the Java layer
needs to keep track of the end of media, and when EAS loops back to the beginning. For that,
the maintenance thread regularly checks the current repeat counter from EAS_GetRepeat().
Each time that it changes, the events are sent to the listeners. This architecture guarantees
the correct number of events even with very short media files (which repeat many times per
second).

Now when setting the repeat count to infinite (-1), EAS will not decrement the repeat count as
returned by EAS_GetRepeat(). This causes the algorithm above to not work. To work around
this, the implementation in class PlayerEAS will set the EAS repeat count to a high value
(PlayerEAS.INFINITE_LOOPCOUNT) instead. As a safeguard, the repeat count is bumped
up if it gets too low.

2.3.10 Duration handling
Since EAS does not have a designated getDuration() function, and EAS_ParseMetaData()
function is potentially time-consuming, an on-demand mechanism is used for retrieving the
media duration:

Only if Player.getDuration() is explicitly called, the native function MMAPI_getDuration() is
called, which will invoke EAS_ParseMetaData(). This is done from PlayerEAS.calcDuration().

Also retrieving meta data will first invoke EAS_ParseMetaData(). For this, ControlMetaData
will call PlayerEAS.calcDuration() after retrieving meta data.

If the duration is retrieved in REALIZED state or higher, a DURATION_UPDATED event is
sent to listeners of the Player. This is done in PlayerBase.setDuration().

2.3.11 Manager.playTone
This method is not well suited for a native synthesizer, because it has no methods for
explicitly opening/closing the engine. Instead, a timer needs to care for opening the engine,
playing the tone, wait, stopping the tone, and closing the engine. If additional tones are
played, they need to be queued and played after the already queued/sounding tones.

In this implementation, Manager.playTone is implemented in the class
com.sonivox.mmapi.PlayTone, which uses a MIDIControl instance retrieved by way of
Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR). A Java thread is used to
dispatch the queued tones as MIDI events to the engine. After the queue is fully played, the

9/26

MMAPI support for EAS

thread waits for some more seconds, for the case that a new tone is issued shortly after the
other tones. If that does not happen, the thread closes the player (which causes closure of the
EAS engine) and finishes itself.

2.3.12 Recording
Recording in MMAPI means saving a currently playing stream to a file or a Java
OutputStream. This is done with RecordControl, which can be armed either with a URL for
saving to a local file (or possibly an http POST operation), or with an OutputStream which will
receive the recorded data as it is being played back.

This implementation allows saving to a local file (with the file:// pseudo protocol in the URL),
or recording to an OutputStream. Currently, it works with WAVE streams only, i.e. WAVE files
or a WAVE capture stream from MMAPI's capture://audio special locator.

Recording is implemented mostly in the native implementation. It hooks into the host read
operation (i.e. EAS_HWReadFile()): each time data is read, it is written to the record stream,
too. Now the record stream is a host file directly opened with EAS_HWOpenFile(). For
recording to a local file, the file is opened with the locator as parameter (mode
OPEN_MODE_NATIVE), for the OutputStream operation, the file is opened in
OPEN_MODE_STREAM, using a circular buffer which EAS_HWReadFile() writes the audio
data to. A WAVE header is written before the first audio bytes are written.

This architecture, where all data is processed in native, has the advantage that for most
combinations the data remains in native. Double-buffering is only necessary for recording to
the OutputStream. This will be impossible to prevent, since pushing data from native to Java
is not possible.

For file mode, the WAVE header is patched when calling commit(), so that the chunk size
fields are corrected.

For OutputStream mode, the Java PlayerEAS class regularly reads the data from the circular
buffer and writes it to the OutputStream. Since it is impossible to seek to the beginning of the
OutputStream and patch the header upon completion (commit()) of the recording, the header
will have 0xFFFFFFFF in the length fields of the RIFF file header, and the data chunk header.
This follows the WAVE file format specification, and most players handle it gracefully.
However, EAS defines 0x80000000 to denote “unknown length”. So, in order that files
recorded to OutputStream can be played back with EAS, currently the header fields are set to
0x80000000 when recording to OutputStream.

2.3.13 Capture
In MMAPI terms, Capture means live capture from an audio input device. Capturing in MMAPI
is done by opening a player with a magic locator “capture://audio”, which also allows selection
of the audio device and capture format. This player will control the capture device, and when
started, it will capture live audio data and immediately play it. Usually, a RecordControl is
used to store the captured audio data.

10/26

MMAPI support for EAS

The implementation assumes that captured audio data needs to be buffered by the host
implementation. For the Windows implementation, this is not strictly necessary, since the
WaveIn module already buffers data.

Capture is entirely implemented in native, therefore the DataSourceCapture class, which is
used for capture, does not provide any audio data.

The capture device is opened along with the “normal” stream open. It is opened in STREAM
mode. The Render thread is used to read data from the capture device and write it to the
stream. Therefore, the handle to the stream is stored in MMAPI_DATA_STRUCT's field
captureStream. This assumes that only one stream is capturing at any given time.

2.3.14 TCK Compatibility
This implementation was not tested with Sun's compatibility test suite. For an official port of
MMAPI, an implementation must pass the TCK.

2.4 Known Problems

2.4.1 WAVE playback issues
1. Distorted 8-bit files: it is assumed to be a bug in EAS (interpreting 8-bit files as

signed).

2. Fast Forward/Rewind does not work: Streaming WAVE playback (i.e. the data is
downloaded while the file is already played) will not allow to change the playback
position before the still buffered audio data, and after the already buffered data. The
only exception is that you can rewind to the beginning, where the implementation will
reopen the http stream and reinitialize EAS.

3. Repositioning will always position to 0: it is believed that this is a problem in EAS.

2.4.2 Recording Issues
1. When recording to a wave file, while playing a wave file, the header has a wrong

format and causes distorted, slow or fast playback: this is due to a missing
implementation of EAS_GetWaveFmtChunk(). A default format of 16-bit mono at
8000Hz will be assumed, unless you capture, where the capture format will be used for
all subsequent recordings. Undefine the symbol
MMAPI_DEBUG_USE_FORMAT_QUERY_STUB in eas_mmapi_config.h when
EAS_GetWaveFmtChunk() is correctly implemented.

2. Recording to OutputStream generates corrupt header: This is due to the
0x80000000 flag for “unknown length” required by EAS. See Recording 2.3.12 above,
and the symbolic constant MMAPI_CAPTURE_STREAMING_WORKAROUND in
eas_mmapi_config.h and its usage in eas_mmapi.c for more information.

11/26

MMAPI support for EAS

2.4.3 Capture time limit
Due to EAS' current internal handling of streaming wave files, capture is limited to
0x7FFFFFFF samples. In practice, this limit should rarely be encountered.

2.4.4 Buffer Underrun handling
Currently, the host implementation handles buffer underruns in STREAM mode by filling some
0 into the buffer. This will prevent that EAS closes down a stream only because streaming
cannot keep up providing data. This brings 3 problems:

1. The underrun is not faded out, so an abrupt change to silence can cause a click.

2. 8-bit files usually use unsigned samples, so the inserted 0 will be interpreted as -128
samples. This will produce loud clicks at the beginning and end of the inserted data,
and treat the speaker badly.

3. The private circular buffer for recording to OutputStream must not provide 0's, because
there is no other synchronization, and the OutputStream would get endlessly filled with
zeroes. To prevent this, a special flag in the MMAPI_MediaBuffer structure
(noSilenceOnUnderrun) is used to prevent the host STREAM implementation to do any
underrun handling if this flag is set.

All such underrun handling is only used if the symbolic constant
MMAPI_PROVIDE_SILENCE_ON_UNDERRUN is defined in eas_mmapi_config.h.

2.4.5 ToneControl crash
When using interactive MIDI from the device://midi special locator (Simple Tones), the
emulator crashes. This seems to be a bug in the latest EAS release. It worked until, including,
the release from 7/20.

2.4.6 Hanging Notes with JTS files or ToneControl
This seems to be an issue in EAS: when locating during JTS or ToneControl playback, single
notes may hang and continue to play until the player is closed.

2.5 Troubleshooting

2.5.1 Enabling Debugging
The following places are used to enable debugging:

1. %BASE%\make\Defs.gmk: modify to have this line:
SONIVOX_DEBUG = true

2. Set EAS debugging level in eas_mmapi_config.h:
#define MMAPI_DEBUG_EAS_DEBUG_LEVEL 2

12/26

MMAPI support for EAS

3. private DEBUG fields in the following classes: DataSourceCapture, EAS,
EventDispatcher, ManagerEAS, PlayerBase, PlayerEAS, PlayTone.

4. More debugging in eas_mmapi.c:
SONIVOX_DEBUG_RENDER: debug output in the render function
SONIVOX_DEBUG_STATE: more debugging of the current player state

5. More debugging in eas_mmapi_host.c:
SONIVOX_DEBUG_IO: debug read/write calls

6. eas_mmapi_config.h also provides some other debugging flags. Use with care!

7. To activate debugging in the “mmademo” test MIDlet, set DEBUG to true in
%BASE%\test\mmademo\src\example\mmademo\Utils.java.

2.5.2 Stuttering wave playback
If you encounter this, then streaming is not fast enough to keep up with the rate that EAS
reads the wave data from the host interface. Increasing the wave stream buffers
(MMAPI_STREAM_CIRCULAR_BUFFER_SIZE in eas_mmapi_config.h and
STREAM_BUFFER_SIZE in Config.java) should help.

13/26

MMAPI support for EAS

3 Windows Test Workspace
The test workspace embeds Sonivox's MMAPI implementation into Sun's publicly available
MIDP 2.0 RI and Sun's publicly available CLDC VM (the KVM). Make sure to understand the
license when downloading Sun's source code. You may get involuntarily “tainted”.

The build is embedded into the MIDP build by using hooks provided by the MIDP build
system, and some magic where the hooks were not sufficient.

3.1 Development Tools

3.1.1 CYGWIN
Install Cygwin from http://www.cygwin.com/ to e.g. C:\cygwin

Choose the default files (BASE), plus:

– Archive*

– Devel\make

– Devel\libiconv

– Devel\mktemp

– Utils\bzip2

– Utils\cygutils

For the build, add C:\cygwin\bin to the PATH:

set PATH=C:\cygwin\bin;%PATH%

3.1.2 Microsoft Visual C++
Install Visual Studio or Visual C++. This is necessary for compilation of the native C files. It
should be possible to compile with GCC (some Makefile tweaking necessary), but this is not
tested.

For the build, add VC to the PATH:

For Visual Studio 2003 .NET:

call "C:\Program Files\Microsoft Visual Studio .NET
 2003\Common7\Tools\vsvars32.bat"

For Visual C++ 2005 Express Edition (you may need to adapt paths):

call "C:\Program Files\Microsoft Visual Studio 8\VC\vcvarsall.bat"
echo Adding platform SDK (missing in VC 2005 Express)
set SDKDIR=C:\Program Files\Microsoft Platform SDK
set INCLUDE=%SDKDIR%\include;%INCLUDE%

14/26

MMAPI support for EAS

set LIB=%SDKDIR%\lib;%LIB%

3.1.3 Sun's JDK 1.3.1
Download Sun's JDK 1.3.1 from http://java.sun.com/j2se/1.3/download.html
and install to C:\JDK1.3.1

If you install to another directory, need to set ALT_BOOTDIR before compiling, e.g.

set ALT_BOOTDIR=C:/Sun/jdk1.3.1

NOTE: use forward slashes as directory separator

3.2 Workspace Setup
The development workspace contains Sonivox's source files and the source files of Sun's
RI's.

Create an arbitrary directory where the workspace will be installed, e.g. C:\MMAPI (avoid
spaces in the name). In the following, this base directory will be referred to as %BASE%.

3.2.1 Sonivox's MMAPI Files
Unzip sonivox_mmapi.zip to %BASE%. It'll create these dirs with subdirs and files:

%BASE%\make # makefiles

%BASE%\Sonivox\mmapi\classes # Sonivox's MMAPI Java files

%BASE%\Sonivox\mmapi\native # Sonivox's MMAPI native C files

%BASE%\Sonivox\java_lib # MIDP lib for Java development
 # tools integration (optional)

%BASE%\test # test MIDlet

3.2.2 Sonivox's EAS Files
Unzip/copy Sonivox's EAS workspace (EASWin32Lib.zip) to %BASE%\Sonivox so that it'll
create at least these 2 required dirs:

%BASE%\Sonivox\docs # EAS documentation

%BASE%\Sonivox\host_src # EAS .h and .c files

%BASE%\Sonivox\lib # EAS library in easwt.lib

If the EAS files should be picked up from a different location, use this define:

set ALT_EAS_DIR=C:/My_EAS_Workspace

15/26

MMAPI support for EAS

This requires that C:/My_EAS_Workspace/host_src and C:/My_EAS_Workspace/lib
exist.

NOTE: use forward slashes as directory separator.

3.2.3 KVM Source Code
Download Sun's CLDC 1.0.4 Reference Implementation (RI) from
http://java.sun.com/products/cldc/ . it'll be saved as j2me_cldc-1_0_4-src-
winunix.zip .

Extract it in %BASE%\Sun so that it'll create

%BASE%\Sun\j2me_cldc

%BASE%\Sun\j2me_cldc\api

%BASE%\Sun\j2me_cldc\bin

...

Overriding this location is possible with ALT_KVM_DIR (again, use forward slashes as
directory separator).

3.2.4 MIDP 2.0 RI Source Code
Download MIDP 2.0 from http://java.sun.com/products/midp/ . It'll be saved as
midp-2_0-src-windows-i686.zip .

Extract it in %BASE%\Sun so that it'll create

%BASE%\Sun\midp2.0fcs

%BASE%\Sun\midp2.0fcs\appdb

%BASE%\Sun\midp2.0fcs\bin

...

Overriding this location is possible with ALT_MIDP_DIR (also here, use forward slashes as
directory separator).

3.3 Building the Emulator
The MIDP RI creates a phone emulator which can be used to test MIDP's features. This
workspace will create a MIDP phone emulator with the EAS and Sonivox's MMAPI
implementation embedded.

Compilation uses GNU Make, supplied with the Cygwin installation. The bootstrap Makefile is

16/26

MMAPI support for EAS

in %BASE%\make\Makefile. It sets some constants, changes the current directory and
delegates to %BASE%\make\Build.Makefile.gmk.

3.3.1 Make
Change directory to %BASE%\make and run make.

During the build, you will see several “deprecated” messages from the Java compiler. These
messages are OK and cannot be circumvented.

All build output goes to %BASE%\build.

I use this script in %BASE% to initiate the build:

@echo off

set PATH=C:\cygwin\bin;%PATH%

call "C:\Program Files\Microsoft Visual Studio 8\VC\vcvarsall.bat"

echo Adding platform SDK (missing in VC 2005 Express)

set SDKDIR=C:\Program Files\Microsoft Platform SDK

set INCLUDE=%SDKDIR%\include;%INCLUDE%

set LIB=%SDKDIR%\lib;%LIB%

rem set ALT_BOOTDIR=E:/JDKs/jdk1.3.1_07

cd make

make

3.3.2 Other Make Targets
1. all or midp: full build

2. clean: remove the entire build output directory

3. midp_quick: can be called after a successful full build to only recompile the C files
(using 2 concurrent compile processes to benefit of dual core machines).

3.4 Run the Emulator
The emulator's executable is %BASE%\build\bin\midp.exe. It can be started without
command line arguments without much benefit.

17/26

MMAPI support for EAS

3.4.1 Run mmademo
The directory %BASE%\test contains a MMAPI demo application: mmademo. It is taken from
Sun's WTK, downloadable (including source) from
http://java.sun.com/products/sjwtoolkit/ . The mmademo is considerably
improved for extended testing. To run the emulator with the mmademo pre-installed, run this
batch script from %BASE%:

set MMAPI=test\mmademo\bin
set NAME=mmademo
set MIDP=build\bin\midp.exe
%MIDP% -heapsize 2000k \
 -classpath %MMAPI%\%NAME%.jar
 -descriptor %MMAPI%\%NAME%Test.jad

3.4.2 Simple Tones
The first applet in mmademo is Simple Tones. It provides 4 test apps:

1. Short Single Tone: uses Manager.playTone() to play a short beep.

2. Long Single Tone: uses Manager.playTone() to play a long beep.

3. Short MIDI event: uses the device://midi player to play a chord, using
MIDIControl.shortMidiEvent().

4. A small interactive MIDI app that maps all numeric phone keys to GM drum sounds,
using MIDIControl.shortMidiEvent() from a device://midi player.

3.4.3 Simple Player
In the mmademo, choose the Simple Player. It'll present a list of pre-configured media which
you can choose to test the MMAPI implementation. After selection of the media file, the player
screen is displayed and the file is played back. If everything works smoothly. Use the numeric
keypad's keys to conveniently control the player:

– 2 toggle start/stop (Player.start()/Player.stop())

– 1 rewind 10 seconds (or left cursor) (Player.setMediaTime())

– 3 fast forward 10 seconds (or right cursor) (Player.setMediaTime())

– Up/Down: transpose (if available) (PitchControl)

– * or # (/): volume down/up (VolumeControl)

– 0: mute/unmute (VolumeControl)

– 4/6 to reduce/increase playback rate (RateControl)

– 5: stop and rewind to the beginning

Use the menu to access additional functionality:

18/26

MMAPI support for EAS

– toggle loop mode (no repetitions, 3 repetitions, infinite) [Player.setLoop()]

– access meta data [MetaDataControl]

– fine tune rate, pitch, volume.

– record to file [RecordControl]

You can also enter an own URL to play back media from your server, or local files with the file
protocol.

3.4.4 Adapt mmademo
To change the list of pre-configured files and URL's for the player, edit
%MMAPI%\%NAME%.jad with a text editor. A useful jad file is %MMAPI%\mmademoTest.jad,
which has a useful selection of media files for testing the MMAPI implementation. The http
files are on the private server of Florian Bomers.

You can use the WTK to conveniently patch/modify the mmademo, build the jar (preverifier
necessary!), and/or get other demos to run on the Sonivox MIDP emulator. For debugging, it
is useful to set the DEBUG flag to true in mmademo\src\example\mmademo\Utils.java.

For compiling mmademo, open it as a project. Then select from the menu Project|Build. This
will compile the Java source files and preverify them for the KVM. If that's successful, choose
Project|Package|Create Package. This will create the mmademo.jar in the bin directory.

The WTK also has some documentation of the mmademo example application in
C:\WTK22\docs\UserGuide.pdf, chapter Application Documentations\A6.mmademo.

3.5 Feature Tests
This chapter will show how to test each feature. All the tests are done with the mmademo
(chapter 3.4), running the mmademoTest.jad file.

3.5.1 Protocol support
1. The http protocol is tested directly with the corresponding media entries.

2. For the file protocol, use “Enter URL” and enter a local filename, prefixed with “file://”,
e.g. “file://C:\Media\test.wav”.

3. The media files marked with [jar] pseudo-protocol are taken from the dsitribution jar,
and therefore they serve to test opening a player with an InputStream (i.e.
Manager.createPlayer(InputStream, String).

4. The two capture entries in the playlist test the capture pseudo protocol, one without
and one with parameters to define the capture audio format. When a capture player is
active, you should hear the captured audio data on the speakers, with a slight delay.
The capture player will use Windows' default device.

19/26

MMAPI support for EAS

3.5.2 Encoding Support
The encodings audio/x-wav, audio/midi and audio/xmf can be tested with the respective
files in Simple Player. The audio/x-tone-seq type can be tested with the ring tone files.

3.5.3 Streaming Sampled Audio
Every wave file is played back in streaming mode. If the file fits entirely into memory, it is
converted to a “Memory” file. Currently, the memory is approx. 50KB. So for short wave files,
it is possible to jump to any position, use the loop feature, etc. For larger files, repositioning is
only possible in the limits of the currently buffered audio data.

This does not apply to files opened from file.

3.5.4 MIDI/mXMF
All MIDI and (m)XMF files are loaded first into native memory, and then played (MEMORY
host type). This does not apply to files opened from file.

3.5.5 Manager.playTone
To test Manager.playTone, use the first MIDlet, SimpleTones. The first 2 menu entries will
use Manager.playTone to play a short/long tone.

3.5.6 Tone Sequence
Tone sequences can be playaed back in 2 different ways: by opening a .jts file in the player,
or by using ToneControl (see below). To test .jts support, open the horrible Beethoven
rendition, listed as “JTS ringtone [jar]”.

3.5.7 Interactive MIDI (MIDIControl without query support)
See MIDIControl below.

3.5.8 Audio Recording (write streamed audio to file)
See RecordControl below.

3.5.9 VolumeControl
Volume control can be tested at any time by clicking on the * (softer), 0 (toggle mute) and #
(louder) keys. Furthermore, there is a graphical “Volume” chooser in the menu.

20/26

MMAPI support for EAS

3.5.10 StopTimeControl
Test the functionality of StopTimeControl by playing a media file longer than 5 seconds and
selecting “Stop in 5 seconds” from the menu. After 5 seconds, playback should stop.

3.5.11 TempoControl for MIDI and/or Tone
This is not implemented in EAS. If it was available, it could be tested with a corresponding
entry in the menu. This entry is only displayed if the player supports TempoControl.

3.5.12 PitchControl for MIDI and/or Tone
Open a MIDI or Tone file and press the up/down keys: pitch should shift up or down. There is
also a “Pitch” selector in the menu.

3.5.13 RateControl for MIDI and/or Tone
Open a MIDI or Tone file and use the 4 (slower) and 6 (faster) keys, or use the menu's “Rate”
function.

3.5.14 ToneControl
ToneControl enables to play jts files from an array: first a player is retrieved from Manager
with the TONE_DEVICE_LOCATOR magic locator. This player cannot be started unless a
ToneControl is retrieved from it and it is fed with a jts sequence from a byte array.

The Simple Player has a RTTTL to JTS converter, which uses ToneControl to create a player
with the converted RTTTL file. Therefore it is sufficient to open a RTTTL file (must have .txt
extension) in Simple Player to test usage of ToneControl. The playlist entry “ToneControl
ringtone [http]” will load such an RTTTL file and it can be used to test the implementation of
ToneControl.

3.5.15 MIDIControl
There are 2 ways to retrieve a MIDIControl instance:

1) by way of the magic locator “device://midi” (Manager.MIDI_DEVICE_LOCATOR).

2) by way of retrieving a MIDIControl from an existing MIDI file player.

The first way is tested with the Simple Tones applet: “Short MIDI event” and “MMAPI
Drummer” will both use MIDIControl from the magic locator.

The second way is tested by opening a MIDI file in the Simple Player (e.g. MIDI scale), then
choose “MIDIControl Test” from the menu. It will retrieve a MIDIControl from the player. If you
hear a chord being played, then the test is successful.

21/26

MMAPI support for EAS

3.5.16 MetaDataControl
Simple Player displays any meta data if you select “Meta Data” from the menu of a player.

3.5.17 RecordControl
RecordControl will record the currently playing audio stream to a file or an OutputStream. This
works for any playback of audio/-x-wav encoding. In the current implementation this means
WAVE playback and capture.

For testing recording to a file, open a capture player, or a wave file player, start playback
and choose “Start Recording”. In the following field choose “file://C:\recording.wav”. From now
on, everything that is played, is also written to the file. You can stop the player, rewind, etc.
Only if you choose “Stop Recording” from the player menu will the file be finalized. If you quit
the player before doing so, the recorded file will probably be useless (this is according to the
spec). After selecting “Stop Recording”, go back to the Simple Player playlist and open the
3rd entry, “WAV C:\recording.wav” which will then play the just recorded audio data.

For testing recording to an OutputStream, open a audio/x-wav player as above, then as
recording URL type “rms:/record.wav” (or any name with this pseudo protocol and this
extension). RMS is a MIDP specific storage accessible from J2ME instead of a real file
system. Once recording is started, all audio data is written to a ByteArrayOutputStream, so
make sure to not record for a long time, otherwise you'll risk an OutOfMemoryException and
the recording will be corrupt. When you choose “Stop Recording”, a RMS record store is
created, and the ByteArrayOutputStream, converted to an array, is written to the record store.
Upon successful completion, the record store index is displayed. To play back the file, go
back to the Simple Player play list, and choose “Browse RMS”. You should see the entry
“record.wav”. Selecting it will display the index to which you just recorded, along with its size
in bytes. Selecting it will play the file. In the RMS browser you can also delete record stores.

3.5.18 RateControl for audio
Currently, this is not implemented by EAS. If it will be, you can use the same test procedure
as for testing RateControl for MIDI/Tone.

3.5.19 Synchronization of two streams (GetTimeBase/SetTimeBase)
The Simple Player does not provide any means to test this functionality.

3.5.20 Security
Security is only implemented as stub and cannot be tested. It usually requires cooperation
with the MIDP implementation (e.g. to hook into any security related functions and display a
corresponding choice to the user, as is done in the test emulator for http connections).

22/26

MMAPI support for EAS

4 Extending the Implementation

4.1 Enabling TempoControl
For TempoControl, stubs are implementred. This is the class ControlTempo in package
com.sonivox.mmapi. To enable it, set Config.HAS_MIDITONE_TEMPOCONTROL to true.
Then, in the native file eas_mmapi_config.h, uncomment the line which defines the symbol
MMAPI_HAS_TEMPO_CONTROL. You will have to adapt eas_mmapi.c to use the correct
function name for the equivalent EAS functions for setting/getting the tempo in milli-bpm.

4.2 Adding a new protocol
Quick check list:

1. Add a new PROTO_* constant in Constants.java

2. If you want to make this an optional protocol, add a switch HAS_* to Config.java.

3. If it will use Java based audio data, create a new DataSource implementation, based
on DataSourceBase.

4. In the class ManagerEAS, add support for the new protocol in the methods
getSupportedContentTypes() and getSupportedProtocols(). Add code to create the
specific data source at the bottom of createPlayer(String). There you also may need to
add special handling (as is done for the capture and device pseudo protocols).

5. In PlayerEAS, you will probably need to add handling of your protocol in method
realizeImpl().

6. If you need to add a new content type, see bwlo “Adding a new Content Type”

7. If you need to add a new player type, see below “Adding a new File Type”

4.3 Adding a new Content Type
Quick check list:

1. Constants.java: add the constants for the content type(s)

2. if necessary, add the file extension(s) for the content type

3. in ManagerEAS.getSupportedContentTypes(), and
ManagerEAS.getSupportedProtocols(), add support for this new content type

4. in ManagerEAS.guessContentType() add code for matching extension to the new
content type(s)

23/26

MMAPI support for EAS

4.4 Adding a new File Type
Quick check list:

1. Config.java: add a feature selector of the scheme HAS_*_PLAYBACK, e.g.
HAS_XMF_PLAYBACK

2. Possibly add the content type(s) matching this file type (see 4.3)

3. in class PlayerEAS, add a new TYPE_* constant for this new file type

4. in ManagerEAS.getPlayerType() add code to return the new player type

5. in PlayerEAS.getMode(), add code for selecting the stream mode for this file type.
Larger streamable file types should have STREAM mode, all others MEMORY.

6. if this file type supports any controls, modify PlayerEAS.getControlImpl()

4.5 Adding meta data types
The native layer is independent of the available meta data types in EAS. However, the Java
layer needs to be updated for new meta data types:

4.5.1 EAS.java
In EAS.java, update the list of METADATA_ constants with the new types.

4.5.2 ControlMetaData.java
Check and update the function metaDataConstantToKey() that translates EAS meta data
constants to String. Make sure to consult the specification of MMAPI's MetaDataControl to
check for MMAPI's pre-defined meta data types.

4.6 Adding a Capture Format
The current implementation only allows PCM, 8-bit unsigned, 16 bit signed little endian, in
mono or stereo as capture formats. To add support for other formats (e.g. ADPCM, ulaw,
etc.), follow the following steps:

4.6.1 EAS.java
If a new encoding is required, add a new constant for the encoding in the format of
CAPTURE_ENCODING_*.

4.6.2 DataSourceCapture.java
This is the class that parses the locator. Add support for the new format in the method
parseLocator(). Use the EAS.CAPTURE_ENCODING_* constants for the encoding.

24/26

MMAPI support for EAS

4.6.3 eas_mmapi.h
Add the equivalent encoding constant to the MMAPI_CAPTURE_ENCODING enumeration.

4.6.4 eas_mmapi.c
Verify that MMAPI_OpenCapture() correctly works with the new format.

4.6.5 eas_mmapi_wave.h and eas_mmapi_wave.c
If modifying a WAVE format, add the code to construct the correct fmt_ chunk in the function
WAVE_FillFormat(). If you require a new WAVE encoding, define the corresponding
WAVE_FORMAT_TAG_* and extend the “case” statement in WAVE_FillFormat(). You may
need to adapt WAVE_WriteHeaderImpl() and FlipWaveHeader() to write extended header
information.

4.7 Changing the default Capture Format
MMAPI's capture is initiated with a special locator “capture://audio”. The capture audio format
can be encoded in the URL, but if not, the implementation provides a default capture format.
This default format is hardcoded as constants in class DataSourceCapture.java. It must be
asserted that at least the default capture format works on the target platform.

4.8 Adding Java security
Security in MMAPI is implemented by throwing the respective exceptions upon a security
violation. A stub class, com.sonivox.mmapi.Security, is included where security checks can
be made. This class provides stub methods for checking locators from which players are
about to be created. Also, starting recording can be intercepted.

For user friendly security implementation, a tighter integration with the MIDP implementation
is necessary.

4.9 Changing Settings in the Make System
Most defines and settings for the build are found in %BASE%\make\Defs.gmk. Additional
defines can be added to the constant SONIVOX_DEFINES. New EAS source files can be
added to the constant SONIVOX_EAS_SRC. %BASE%\make\Sonivox.gmk contains the main
integration of Sonivox's MMAPI implementation. It is unlikely that you need to change
anything here. Sonivox-post.gmk contains more code to integrate the Sonivox MMAPI
implementation into the MIDP reference implementation.

25/26

MMAPI support for EAS

5 Acronyms

Acronym Expanded name Notes
ABB Audio Building Block Subset of MMAPI, part of MIDP 2.0
API Application Programming Interface
BPM beats per minute
CDC Connected Device Configuration Mid-size J2ME (PDA's)
CLDC Connected, Limited Device Configuration Smallest J2ME (cell phones)
EAS Embedded Audio Synthesis
I/O Input/Output
J2ME Java 2, Micro Edition
JDK Java Development Kit
JNI Java Native Interface
JVM Java Virtual Machine
KNI KVM Native Interface
KVM K Virtual Machine Sun's VM for CLDC
MIDlets Applications for MIDP
MIDP Mobile Information Device Profile
MMAPI Mobile Media API
PDA Personal Digital Assistant
RI reference implementation
TCK Technology Compatibility Kit Sun's test suite to approve

compatibility
WTK Wireless Toolkit Sun's latest binary MIDP RI

26/26

	1Overview
	2Architecture
	2.1General Limitations
	2.2Workspace Layout
	2.2.1mmapi/classes/com
	2.2.2mmapi/classes/javax
	2.2.3mmapi/native

	2.3Notes about the Code
	2.3.1TODO and FIXME marks
	2.3.2DEBUG flags
	2.3.3Java Package Encapsulation / Code Security
	2.3.4Java Field Initialization
	2.3.5File Character Encoding
	2.3.6Native/Java Encapsulation
	2.3.7General Commands
	2.3.8Usage of Host Functions from eas_mmapi.c
	2.3.9Looping support
	2.3.10Duration handling
	2.3.11Manager.playTone
	2.3.12Recording
	2.3.13Capture
	2.3.14TCK Compatibility

	2.4Known Problems
	2.4.1WAVE playback issues
	2.4.2Recording Issues
	2.4.3Capture time limit
	2.4.4Buffer Underrun handling
	2.4.5ToneControl crash
	2.4.6Hanging Notes with JTS files or ToneControl

	2.5Troubleshooting
	2.5.1Enabling Debugging
	2.5.2Stuttering wave playback

	3Windows Test Workspace
	3.1Development Tools
	3.1.1CYGWIN
	3.1.2Microsoft Visual C++
	3.1.3Sun's JDK 1.3.1

	3.2Workspace Setup
	3.2.1Sonivox's MMAPI Files
	3.2.2Sonivox's EAS Files
	3.2.3KVM Source Code
	3.2.4MIDP 2.0 RI Source Code

	3.3Building the Emulator
	3.3.1Make
	3.3.2Other Make Targets

	3.4Run the Emulator
	3.4.1Run mmademo
	3.4.2Simple Tones
	3.4.3Simple Player
	3.4.4Adapt mmademo

	3.5Feature Tests
	3.5.1Protocol support
	3.5.2Encoding Support
	3.5.3Streaming Sampled Audio
	3.5.4MIDI/mXMF
	3.5.5Manager.playTone
	3.5.6Tone Sequence
	3.5.7Interactive MIDI (MIDIControl without query support)
	3.5.8Audio Recording (write streamed audio to file)
	3.5.9VolumeControl
	3.5.10StopTimeControl
	3.5.11TempoControl for MIDI and/or Tone
	3.5.12PitchControl for MIDI and/or Tone
	3.5.13RateControl for MIDI and/or Tone
	3.5.14ToneControl
	3.5.15MIDIControl
	3.5.16MetaDataControl
	3.5.17RecordControl
	3.5.18RateControl for audio
	3.5.19Synchronization of two streams (GetTimeBase/SetTimeBase)
	3.5.20Security

	4Extending the Implementation
	4.1Enabling TempoControl
	4.2Adding a new protocol
	4.3Adding a new Content Type
	4.4Adding a new File Type
	4.5Adding meta data types
	4.5.1EAS.java
	4.5.2ControlMetaData.java

	4.6Adding a Capture Format
	4.6.1EAS.java
	4.6.2DataSourceCapture.java
	4.6.3eas_mmapi.h
	4.6.4eas_mmapi.c
	4.6.5eas_mmapi_wave.h and eas_mmapi_wave.c

	4.7Changing the default Capture Format
	4.8Adding Java security
	4.9Changing Settings in the Make System

	5Acronyms

