summaryrefslogtreecommitdiffstats
path: root/libvpx/vp9/encoder/vp9_segmentation.c
blob: 9d3e6dc125bfc7fa6740cea393ae0e188bc5917f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include <limits.h>

#include "vpx_mem/vpx_mem.h"

#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_tile_common.h"

#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_segmentation.h"

void vp9_enable_segmentation(struct segmentation *seg) {
  seg->enabled = 1;
  seg->update_map = 1;
  seg->update_data = 1;
}

void vp9_disable_segmentation(struct segmentation *seg) {
  seg->enabled = 0;
}

void vp9_set_segmentation_map(VP9_COMP *cpi, unsigned char *segmentation_map) {
  struct segmentation *const seg = &cpi->common.seg;

  // Copy in the new segmentation map
  vpx_memcpy(cpi->segmentation_map, segmentation_map,
             (cpi->common.mi_rows * cpi->common.mi_cols));

  // Signal that the map should be updated.
  seg->update_map = 1;
  seg->update_data = 1;
}

void vp9_set_segment_data(struct segmentation *seg,
                          signed char *feature_data,
                          unsigned char abs_delta) {
  seg->abs_delta = abs_delta;

  vpx_memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));

  // TBD ?? Set the feature mask
  // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
  //            sizeof(cpi->mb.e_mbd.segment_feature_mask));
}
void vp9_disable_segfeature(struct segmentation *seg, int segment_id,
                            SEG_LVL_FEATURES feature_id) {
  seg->feature_mask[segment_id] &= ~(1 << feature_id);
}

void vp9_clear_segdata(struct segmentation *seg, int segment_id,
                       SEG_LVL_FEATURES feature_id) {
  seg->feature_data[segment_id][feature_id] = 0;
}

// Based on set of segment counts calculate a probability tree
static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) {
  // Work out probabilities of each segment
  const int c01 = segcounts[0] + segcounts[1];
  const int c23 = segcounts[2] + segcounts[3];
  const int c45 = segcounts[4] + segcounts[5];
  const int c67 = segcounts[6] + segcounts[7];

  segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67);
  segment_tree_probs[1] = get_binary_prob(c01, c23);
  segment_tree_probs[2] = get_binary_prob(c45, c67);
  segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
  segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
  segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
  segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
}

// Based on set of segment counts and probabilities calculate a cost estimate
static int cost_segmap(int *segcounts, vp9_prob *probs) {
  const int c01 = segcounts[0] + segcounts[1];
  const int c23 = segcounts[2] + segcounts[3];
  const int c45 = segcounts[4] + segcounts[5];
  const int c67 = segcounts[6] + segcounts[7];
  const int c0123 = c01 + c23;
  const int c4567 = c45 + c67;

  // Cost the top node of the tree
  int cost = c0123 * vp9_cost_zero(probs[0]) +
             c4567 * vp9_cost_one(probs[0]);

  // Cost subsequent levels
  if (c0123 > 0) {
    cost += c01 * vp9_cost_zero(probs[1]) +
            c23 * vp9_cost_one(probs[1]);

    if (c01 > 0)
      cost += segcounts[0] * vp9_cost_zero(probs[3]) +
              segcounts[1] * vp9_cost_one(probs[3]);
    if (c23 > 0)
      cost += segcounts[2] * vp9_cost_zero(probs[4]) +
              segcounts[3] * vp9_cost_one(probs[4]);
  }

  if (c4567 > 0) {
    cost += c45 * vp9_cost_zero(probs[2]) +
            c67 * vp9_cost_one(probs[2]);

    if (c45 > 0)
      cost += segcounts[4] * vp9_cost_zero(probs[5]) +
              segcounts[5] * vp9_cost_one(probs[5]);
    if (c67 > 0)
      cost += segcounts[6] * vp9_cost_zero(probs[6]) +
              segcounts[7] * vp9_cost_one(probs[6]);
  }

  return cost;
}

static void count_segs(VP9_COMP *cpi, const TileInfo *const tile,
                       MODE_INFO **mi_8x8,
                       int *no_pred_segcounts,
                       int (*temporal_predictor_count)[2],
                       int *t_unpred_seg_counts,
                       int bw, int bh, int mi_row, int mi_col) {
  VP9_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  int segment_id;

  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    return;

  xd->mi = mi_8x8;
  segment_id = xd->mi[0]->mbmi.segment_id;

  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);

  // Count the number of hits on each segment with no prediction
  no_pred_segcounts[segment_id]++;

  // Temporal prediction not allowed on key frames
  if (cm->frame_type != KEY_FRAME) {
    const BLOCK_SIZE bsize = mi_8x8[0]->mbmi.sb_type;
    // Test to see if the segment id matches the predicted value.
    const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
                                                   bsize, mi_row, mi_col);
    const int pred_flag = pred_segment_id == segment_id;
    const int pred_context = vp9_get_pred_context_seg_id(xd);

    // Store the prediction status for this mb and update counts
    // as appropriate
    xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
    temporal_predictor_count[pred_context][pred_flag]++;

    if (!pred_flag)
      // Update the "unpredicted" segment count
      t_unpred_seg_counts[segment_id]++;
  }
}

static void count_segs_sb(VP9_COMP *cpi, const TileInfo *const tile,
                          MODE_INFO **mi_8x8,
                          int *no_pred_segcounts,
                          int (*temporal_predictor_count)[2],
                          int *t_unpred_seg_counts,
                          int mi_row, int mi_col,
                          BLOCK_SIZE bsize) {
  const VP9_COMMON *const cm = &cpi->common;
  const int mis = cm->mi_stride;
  int bw, bh;
  const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;

  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    return;

  bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type];
  bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type];

  if (bw == bs && bh == bs) {
    count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
               t_unpred_seg_counts, bs, bs, mi_row, mi_col);
  } else if (bw == bs && bh < bs) {
    count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
               t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
    count_segs(cpi, tile, mi_8x8 + hbs * mis, no_pred_segcounts,
               temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
               mi_row + hbs, mi_col);
  } else if (bw < bs && bh == bs) {
    count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
               t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
    count_segs(cpi, tile, mi_8x8 + hbs,
               no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts,
               hbs, bs, mi_row, mi_col + hbs);
  } else {
    const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
    int n;

    assert(bw < bs && bh < bs);

    for (n = 0; n < 4; n++) {
      const int mi_dc = hbs * (n & 1);
      const int mi_dr = hbs * (n >> 1);

      count_segs_sb(cpi, tile, &mi_8x8[mi_dr * mis + mi_dc],
                    no_pred_segcounts, temporal_predictor_count,
                    t_unpred_seg_counts,
                    mi_row + mi_dr, mi_col + mi_dc, subsize);
    }
  }
}

void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
  VP9_COMMON *const cm = &cpi->common;
  struct segmentation *seg = &cm->seg;

  int no_pred_cost;
  int t_pred_cost = INT_MAX;

  int i, tile_col, mi_row, mi_col;

  int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
  int no_pred_segcounts[MAX_SEGMENTS] = { 0 };
  int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };

  vp9_prob no_pred_tree[SEG_TREE_PROBS];
  vp9_prob t_pred_tree[SEG_TREE_PROBS];
  vp9_prob t_nopred_prob[PREDICTION_PROBS];

  const int mis = cm->mi_stride;
  MODE_INFO **mi_ptr, **mi;

  // Set default state for the segment tree probabilities and the
  // temporal coding probabilities
  vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
  vpx_memset(seg->pred_probs, 255, sizeof(seg->pred_probs));

  // First of all generate stats regarding how well the last segment map
  // predicts this one
  for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
    TileInfo tile;

    vp9_tile_init(&tile, cm, 0, tile_col);
    mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
    for (mi_row = 0; mi_row < cm->mi_rows;
         mi_row += 8, mi_ptr += 8 * mis) {
      mi = mi_ptr;
      for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
           mi_col += 8, mi += 8)
        count_segs_sb(cpi, &tile, mi, no_pred_segcounts,
                      temporal_predictor_count, t_unpred_seg_counts,
                      mi_row, mi_col, BLOCK_64X64);
    }
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(no_pred_segcounts, no_pred_tree);
  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (!frame_is_intra_only(cm)) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree);
    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);

    // Add in the cost of the signaling for each prediction context.
    for (i = 0; i < PREDICTION_PROBS; i++) {
      const int count0 = temporal_predictor_count[i][0];
      const int count1 = temporal_predictor_count[i][1];

      t_nopred_prob[i] = get_binary_prob(count0, count1);

      // Add in the predictor signaling cost
      t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
                     count1 * vp9_cost_one(t_nopred_prob[i]);
    }
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    seg->temporal_update = 1;
    vpx_memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree));
    vpx_memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
  } else {
    seg->temporal_update = 0;
    vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
  }
}

void vp9_reset_segment_features(struct segmentation *seg) {
  // Set up default state for MB feature flags
  seg->enabled = 0;
  seg->update_map = 0;
  seg->update_data = 0;
  vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
  vp9_clearall_segfeatures(seg);
}