summaryrefslogtreecommitdiffstats
path: root/libvpx/vp9/encoder/vp9_ratectrl.c
blob: d3a9529a94daa16a7439d0b1e5aad87dc0cda748 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include <math.h>

#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"

#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50

// Bits Per MB at different Q (Multiplied by 512)
#define BPER_MB_NORMBITS    9

static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
    { 1, 2, 3, 4, 5 };

// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double vp9_convert_qindex_to_q(int qindex) {
  // Convert the index to a real Q value (scaled down to match old Q values)
  return vp9_ac_quant(qindex, 0) / 4.0;
}

int vp9_gfboost_qadjust(int qindex) {
  const double q = vp9_convert_qindex_to_q(qindex);
  return (int)((0.00000828 * q * q * q) +
               (-0.0055 * q * q) +
               (1.32 * q) + 79.3);
}

static int kfboost_qadjust(int qindex) {
  const double q = vp9_convert_qindex_to_q(qindex);
  return (int)((0.00000973 * q * q * q) +
               (-0.00613 * q * q) +
               (1.316 * q) + 121.2);
}

int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
                    double correction_factor) {

  const double q = vp9_convert_qindex_to_q(qindex);
  int enumerator = frame_type == KEY_FRAME ? 4000000 : 2500000;

  // q based adjustment to baseline enumerator
  enumerator += (int)(enumerator * q) >> 12;
  return (int)(0.5 + (enumerator * correction_factor / q));
}

void vp9_save_coding_context(VP9_COMP *cpi) {
  CODING_CONTEXT *const cc = &cpi->coding_context;
  VP9_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &cpi->mb.e_mbd;

  // Stores a snapshot of key state variables which can subsequently be
  // restored with a call to vp9_restore_coding_context. These functions are
  // intended for use in a re-code loop in vp9_compress_frame where the
  // quantizer value is adjusted between loop iterations.

  cc->nmvc = cm->fc.nmvc;
  vp9_copy(cc->nmvjointcost,  cpi->mb.nmvjointcost);
  vp9_copy(cc->nmvcosts,  cpi->mb.nmvcosts);
  vp9_copy(cc->nmvcosts_hp,  cpi->mb.nmvcosts_hp);

  vp9_copy(cc->inter_mode_probs, cm->fc.inter_mode_probs);

  vp9_copy(cc->y_mode_prob, cm->fc.y_mode_prob);
  vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob);
  vp9_copy(cc->partition_prob, cm->fc.partition_prob);

  vp9_copy(cc->segment_pred_probs, xd->seg.pred_probs);

  vp9_copy(cc->intra_inter_prob, cm->fc.intra_inter_prob);
  vp9_copy(cc->comp_inter_prob, cm->fc.comp_inter_prob);
  vp9_copy(cc->single_ref_prob, cm->fc.single_ref_prob);
  vp9_copy(cc->comp_ref_prob, cm->fc.comp_ref_prob);

  vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
             cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));

  vp9_copy(cc->last_ref_lf_deltas, xd->lf.last_ref_deltas);
  vp9_copy(cc->last_mode_lf_deltas, xd->lf.last_mode_deltas);

  vp9_copy(cc->coef_probs, cm->fc.coef_probs);
  vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob);
  cc->tx_probs = cm->fc.tx_probs;
  vp9_copy(cc->mbskip_probs, cm->fc.mbskip_probs);
}

void vp9_restore_coding_context(VP9_COMP *cpi) {
  CODING_CONTEXT *const cc = &cpi->coding_context;
  VP9_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &cpi->mb.e_mbd;

  // Restore key state variables to the snapshot state stored in the
  // previous call to vp9_save_coding_context.

  cm->fc.nmvc = cc->nmvc;
  vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
  vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
  vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);

  vp9_copy(cm->fc.inter_mode_probs, cc->inter_mode_probs);

  vp9_copy(cm->fc.y_mode_prob, cc->y_mode_prob);
  vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob);
  vp9_copy(cm->fc.partition_prob, cc->partition_prob);

  vp9_copy(xd->seg.pred_probs, cc->segment_pred_probs);

  vp9_copy(cm->fc.intra_inter_prob, cc->intra_inter_prob);
  vp9_copy(cm->fc.comp_inter_prob, cc->comp_inter_prob);
  vp9_copy(cm->fc.single_ref_prob, cc->single_ref_prob);
  vp9_copy(cm->fc.comp_ref_prob, cc->comp_ref_prob);

  vpx_memcpy(cm->last_frame_seg_map,
             cpi->coding_context.last_frame_seg_map_copy,
             (cm->mi_rows * cm->mi_cols));

  vp9_copy(xd->lf.last_ref_deltas, cc->last_ref_lf_deltas);
  vp9_copy(xd->lf.last_mode_deltas, cc->last_mode_lf_deltas);

  vp9_copy(cm->fc.coef_probs, cc->coef_probs);
  vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob);
  cm->fc.tx_probs = cc->tx_probs;
  vp9_copy(cm->fc.mbskip_probs, cc->mbskip_probs);
}

void vp9_setup_key_frame(VP9_COMP *cpi) {
  VP9_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &cpi->mb.e_mbd;

  vp9_setup_past_independence(cm, xd);

  // interval before next GF
  cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
  /* All buffers are implicitly updated on key frames. */
  cpi->refresh_golden_frame = 1;
  cpi->refresh_alt_ref_frame = 1;
}

void vp9_setup_inter_frame(VP9_COMP *cpi) {
  VP9_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &cpi->mb.e_mbd;
  if (cm->error_resilient_mode || cm->intra_only)
    vp9_setup_past_independence(cm, xd);

  assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
  cm->fc = cm->frame_contexts[cm->frame_context_idx];
}

static int estimate_bits_at_q(int frame_kind, int q, int mbs,
                              double correction_factor) {
  const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor));

  // Attempt to retain reasonable accuracy without overflow. The cutoff is
  // chosen such that the maximum product of Bpm and MBs fits 31 bits. The
  // largest Bpm takes 20 bits.
  return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs
                           : (bpm * mbs) >> BPER_MB_NORMBITS;
}


static void calc_iframe_target_size(VP9_COMP *cpi) {
  // boost defaults to half second
  int target;

  // Clear down mmx registers to allow floating point in what follows
  vp9_clear_system_state();  // __asm emms;

  // New Two pass RC
  target = cpi->per_frame_bandwidth;

  if (cpi->oxcf.rc_max_intra_bitrate_pct) {
    int max_rate = cpi->per_frame_bandwidth
                 * cpi->oxcf.rc_max_intra_bitrate_pct / 100;

    if (target > max_rate)
      target = max_rate;
  }

  cpi->this_frame_target = target;
}


//  Do the best we can to define the parameters for the next GF based
//  on what information we have available.
//
//  In this experimental code only two pass is supported
//  so we just use the interval determined in the two pass code.
static void calc_gf_params(VP9_COMP *cpi) {
  // Set the gf interval
  cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}


static void calc_pframe_target_size(VP9_COMP *cpi) {
  const int min_frame_target = MAX(cpi->min_frame_bandwidth,
                                   cpi->av_per_frame_bandwidth >> 5);
  if (cpi->refresh_alt_ref_frame) {
    // Special alt reference frame case
    // Per frame bit target for the alt ref frame
    cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
    cpi->this_frame_target = cpi->per_frame_bandwidth;
  } else {
    // Normal frames (gf,and inter)
    cpi->this_frame_target = cpi->per_frame_bandwidth;
  }

  // Sanity check that the total sum of adjustments is not above the maximum allowed
  // That is that having allowed for KF and GF penalties we have not pushed the
  // current interframe target to low. If the adjustment we apply here is not capable of recovering
  // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
  // a longer time span via other buffer / rate control mechanisms.
  if (cpi->this_frame_target < min_frame_target)
    cpi->this_frame_target = min_frame_target;

  if (!cpi->refresh_alt_ref_frame)
    // Note the baseline target data rate for this inter frame.
    cpi->inter_frame_target = cpi->this_frame_target;

  // Adjust target frame size for Golden Frames:
  if (cpi->frames_till_gf_update_due == 0) {
    const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
                                          : cpi->oxcf.fixed_q;

    cpi->refresh_golden_frame = 1;

    calc_gf_params(cpi);

    // If we are using alternate ref instead of gf then do not apply the boost
    // It will instead be applied to the altref update
    // Jims modified boost
    if (!cpi->source_alt_ref_active) {
      if (cpi->oxcf.fixed_q < 0) {
        // The spend on the GF is defined in the two pass code
        // for two pass encodes
        cpi->this_frame_target = cpi->per_frame_bandwidth;
      } else {
        cpi->this_frame_target =
          (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0)
           * cpi->last_boost) / 100;
      }
    } else {
      // If there is an active ARF at this location use the minimum
      // bits on this frame even if it is a constructed arf.
      // The active maximum quantizer insures that an appropriate
      // number of bits will be spent if needed for constructed ARFs.
      cpi->this_frame_target = 0;
    }
  }
}


void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
  const int q = cpi->common.base_qindex;
  int correction_factor = 100;
  double rate_correction_factor;
  double adjustment_limit;

  int projected_size_based_on_q = 0;

  // Clear down mmx registers to allow floating point in what follows
  vp9_clear_system_state();  // __asm emms;

  if (cpi->common.frame_type == KEY_FRAME) {
    rate_correction_factor = cpi->key_frame_rate_correction_factor;
  } else {
    if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
      rate_correction_factor = cpi->gf_rate_correction_factor;
    else
      rate_correction_factor = cpi->rate_correction_factor;
  }

  // Work out how big we would have expected the frame to be at this Q given
  // the current correction factor.
  // Stay in double to avoid int overflow when values are large
  projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q,
                                                 cpi->common.MBs,
                                                 rate_correction_factor);

  // Work out a size correction factor.
  // if ( cpi->this_frame_target > 0 )
  //  correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
  if (projected_size_based_on_q > 0)
    correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;

  // More heavily damped adjustment used if we have been oscillating either side of target
  switch (damp_var) {
    case 0:
      adjustment_limit = 0.75;
      break;
    case 1:
      adjustment_limit = 0.375;
      break;
    case 2:
    default:
      adjustment_limit = 0.25;
      break;
  }

  // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
  if (correction_factor > 102) {
    // We are not already at the worst allowable quality
    correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
    rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);

    // Keep rate_correction_factor within limits
    if (rate_correction_factor > MAX_BPB_FACTOR)
      rate_correction_factor = MAX_BPB_FACTOR;
  }
  // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
  else if (correction_factor < 99) {
    // We are not already at the best allowable quality
    correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
    rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);

    // Keep rate_correction_factor within limits
    if (rate_correction_factor < MIN_BPB_FACTOR)
      rate_correction_factor = MIN_BPB_FACTOR;
  }

  if (cpi->common.frame_type == KEY_FRAME)
    cpi->key_frame_rate_correction_factor = rate_correction_factor;
  else {
    if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
      cpi->gf_rate_correction_factor = rate_correction_factor;
    else
      cpi->rate_correction_factor = rate_correction_factor;
  }
}


int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
  int q = cpi->active_worst_quality;

  int i;
  int last_error = INT_MAX;
  int target_bits_per_mb;
  int bits_per_mb_at_this_q;
  double correction_factor;

  // Select the appropriate correction factor based upon type of frame.
  if (cpi->common.frame_type == KEY_FRAME)
    correction_factor = cpi->key_frame_rate_correction_factor;
  else {
    if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
      correction_factor = cpi->gf_rate_correction_factor;
    else
      correction_factor = cpi->rate_correction_factor;
  }

  // Calculate required scaling factor based on target frame size and size of frame produced using previous Q
  if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
    target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS;       // Case where we would overflow int
  else
    target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;

  i = cpi->active_best_quality;

  do {
    bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i,
                                                 correction_factor);

    if (bits_per_mb_at_this_q <= target_bits_per_mb) {
      if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
        q = i;
      else
        q = i - 1;

      break;
    } else {
      last_error = bits_per_mb_at_this_q - target_bits_per_mb;
    }
  } while (++i <= cpi->active_worst_quality);

  return q;
}


static int estimate_keyframe_frequency(VP9_COMP *cpi) {
  int i;

  // Average key frame frequency
  int av_key_frame_frequency = 0;

  /* First key frame at start of sequence is a special case. We have no
   * frequency data.
   */
  if (cpi->key_frame_count == 1) {
    /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
     * whichever is smaller.
     */
    int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
    av_key_frame_frequency = (int)cpi->output_framerate * 2;

    if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
      av_key_frame_frequency = cpi->oxcf.key_freq;

    cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
      = av_key_frame_frequency;
  } else {
    unsigned int total_weight = 0;
    int last_kf_interval =
      (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;

    /* reset keyframe context and calculate weighted average of last
     * KEY_FRAME_CONTEXT keyframes
     */
    for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
      if (i < KEY_FRAME_CONTEXT - 1)
        cpi->prior_key_frame_distance[i]
          = cpi->prior_key_frame_distance[i + 1];
      else
        cpi->prior_key_frame_distance[i] = last_kf_interval;

      av_key_frame_frequency += prior_key_frame_weight[i]
                                * cpi->prior_key_frame_distance[i];
      total_weight += prior_key_frame_weight[i];
    }

    av_key_frame_frequency /= total_weight;

  }
  return av_key_frame_frequency;
}


void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
  // Clear down mmx registers to allow floating point in what follows
  vp9_clear_system_state();

  cpi->frames_since_key = 0;
  cpi->key_frame_count++;
}


void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
                                   int *frame_over_shoot_limit) {
  // Set-up bounds on acceptable frame size:
  if (cpi->oxcf.fixed_q >= 0) {
    // Fixed Q scenario: frame size never outranges target (there is no target!)
    *frame_under_shoot_limit = 0;
    *frame_over_shoot_limit  = INT_MAX;
  } else {
    if (cpi->common.frame_type == KEY_FRAME) {
      *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8;
      *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
    } else {
      if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
        *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8;
        *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
      } else {
        // Stron overshoot limit for constrained quality
        if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
          *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
          *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
        } else {
          *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8;
          *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
        }
      }
    }

    // For very small rate targets where the fractional adjustment
    // (eg * 7/8) may be tiny make sure there is at least a minimum
    // range.
    *frame_over_shoot_limit += 200;
    *frame_under_shoot_limit -= 200;
    if (*frame_under_shoot_limit < 0)
      *frame_under_shoot_limit = 0;
  }
}


// return of 0 means drop frame
int vp9_pick_frame_size(VP9_COMP *cpi) {
  VP9_COMMON *cm = &cpi->common;

  if (cm->frame_type == KEY_FRAME)
    calc_iframe_target_size(cpi);
  else
    calc_pframe_target_size(cpi);

  return 1;
}