summaryrefslogtreecommitdiffstats
path: root/libvpx/vp9/encoder/vp9_bitstream.c
blob: 87bd36c2bfa70c2feadff7217ca9fe772e4ffcec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>
#include <stdio.h>
#include <limits.h>

#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"

#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_treecoder.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_pragmas.h"

#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_subexp.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"


#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif

#ifdef ENTROPY_STATS
int intra_mode_stats[INTRA_MODES]
                    [INTRA_MODES]
                    [INTRA_MODES];
vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];

extern unsigned int active_section;
#endif


#ifdef MODE_STATS
int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];

void init_tx_count_stats() {
  vp9_zero(tx_count_32x32p_stats);
  vp9_zero(tx_count_16x16p_stats);
  vp9_zero(tx_count_8x8p_stats);
}

void init_switchable_interp_stats() {
  vp9_zero(switchable_interp_stats);
}

static void update_tx_count_stats(VP9_COMMON *cm) {
  int i, j;
  for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    for (j = 0; j < TX_SIZES; j++) {
      tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
    }
  }
  for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    for (j = 0; j < TX_SIZES - 1; j++) {
      tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
    }
  }
  for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    for (j = 0; j < TX_SIZES - 2; j++) {
      tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
    }
  }
}

static void update_switchable_interp_stats(VP9_COMMON *cm) {
  int i, j;
  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
    for (j = 0; j < SWITCHABLE_FILTERS; ++j)
      switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
}

void write_tx_count_stats() {
  int i, j;
  FILE *fp = fopen("tx_count.bin", "wb");
  fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
  fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
  fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
  fclose(fp);

  printf(
      "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
  for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    printf("  { ");
    for (j = 0; j < TX_SIZES; j++) {
      printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
    }
    printf("},\n");
  }
  printf("};\n");
  printf(
      "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
  for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    printf("  { ");
    for (j = 0; j < TX_SIZES - 1; j++) {
      printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
    }
    printf("},\n");
  }
  printf("};\n");
  printf(
      "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
  for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    printf("  { ");
    for (j = 0; j < TX_SIZES - 2; j++) {
      printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
    }
    printf("},\n");
  }
  printf("};\n");
}

void write_switchable_interp_stats() {
  int i, j;
  FILE *fp = fopen("switchable_interp.bin", "wb");
  fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
  fclose(fp);

  printf(
      "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]"
      "[SWITCHABLE_FILTERS] = {\n");
  for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
    printf("  { ");
    for (j = 0; j < SWITCHABLE_FILTERS; j++) {
      printf("%"PRId64", ", switchable_interp_stats[i][j]);
    }
    printf("},\n");
  }
  printf("};\n");
}
#endif

static INLINE void write_be32(uint8_t *p, int value) {
  p[0] = value >> 24;
  p[1] = value >> 16;
  p[2] = value >> 8;
  p[3] = value;
}

void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
                             int data, int max) {
  vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
}

static void update_mode(vp9_writer *w, int n, vp9_tree tree,
                        vp9_prob Pcur[/* n-1 */],
                        unsigned int bct[/* n-1 */][2],
                        const unsigned int num_events[/* n */]) {
  int i = 0;

  vp9_tree_probs_from_distribution(tree, bct, num_events, 0);
  n--;

  for (i = 0; i < n; ++i)
    vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]);
}

static void update_mbintra_mode_probs(VP9_COMP* const cpi,
                                      vp9_writer* const bc) {
  VP9_COMMON *const cm = &cpi->common;
  int j;
  unsigned int bct[INTRA_MODES - 1][2];

  for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
    update_mode(bc, INTRA_MODES, vp9_intra_mode_tree,
                cm->fc.y_mode_prob[j], bct,
                (unsigned int *)cpi->y_mode_count[j]);
}

static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m,
                                   TX_SIZE tx_size, BLOCK_SIZE bsize,
                                   vp9_writer *w) {
  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  const vp9_prob *tx_probs = get_tx_probs2(xd, &cpi->common.fc.tx_probs, m);
  vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
  if (bsize >= BLOCK_16X16 && tx_size != TX_4X4) {
    vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
    if (bsize >= BLOCK_32X32 && tx_size != TX_8X8)
      vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
  }
}

static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
                            vp9_writer *w) {
  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
    return 1;
  } else {
    const int skip_coeff = m->mbmi.skip_coeff;
    vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
    return skip_coeff;
  }
}

void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
  VP9_COMMON *cm = &cpi->common;
  int k;

  for (k = 0; k < MBSKIP_CONTEXTS; ++k)
    vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]);
}

static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
  write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
}

static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer *w) {
  VP9_COMMON *const cm = &cpi->common;
  unsigned int branch_ct[SWITCHABLE_FILTERS - 1][2];
  int i, j;
  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
    vp9_tree_probs_from_distribution(vp9_switchable_interp_tree, branch_ct,
                                     cm->counts.switchable_interp[j], 0);

    for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
      vp9_cond_prob_diff_update(w, &cm->fc.switchable_interp_prob[j][i],
                                branch_ct[i]);
  }

#ifdef MODE_STATS
  if (!cpi->dummy_packing)
    update_switchable_interp_stats(cm);
#endif
}

static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer *w) {
  int i, j;

  for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
    unsigned int branch_ct[INTER_MODES - 1][2];
    vp9_tree_probs_from_distribution(vp9_inter_mode_tree, branch_ct,
                                     cm->counts.inter_mode[i], NEARESTMV);

    for (j = 0; j < INTER_MODES - 1; ++j)
      vp9_cond_prob_diff_update(w, &cm->fc.inter_mode_probs[i][j],
                                branch_ct[j]);
  }
}

static void pack_mb_tokens(vp9_writer* const bc,
                           TOKENEXTRA **tp,
                           const TOKENEXTRA *const stop) {
  TOKENEXTRA *p = *tp;

  while (p < stop && p->token != EOSB_TOKEN) {
    const int t = p->token;
    const struct vp9_token *const a = vp9_coef_encodings + t;
    const vp9_extra_bit *const b = vp9_extra_bits + t;
    int i = 0;
    const vp9_prob *pp;
    int v = a->value;
    int n = a->len;
    vp9_prob probs[ENTROPY_NODES];

    if (t >= TWO_TOKEN) {
      vp9_model_to_full_probs(p->context_tree, probs);
      pp = probs;
    } else {
      pp = p->context_tree;
    }
    assert(pp != 0);

    /* skip one or two nodes */
    if (p->skip_eob_node) {
      n -= p->skip_eob_node;
      i = 2 * p->skip_eob_node;
    }

    do {
      const int bb = (v >> --n) & 1;
      vp9_write(bc, bb, pp[i >> 1]);
      i = vp9_coef_tree[i + bb];
    } while (n);

    if (b->base_val) {
      const int e = p->extra, l = b->len;

      if (l) {
        const unsigned char *pb = b->prob;
        int v = e >> 1;
        int n = l;              /* number of bits in v, assumed nonzero */
        int i = 0;

        do {
          const int bb = (v >> --n) & 1;
          vp9_write(bc, bb, pb[i >> 1]);
          i = b->tree[i + bb];
        } while (n);
      }

      vp9_write_bit(bc, e & 1);
    }
    ++p;
  }

  *tp = p + (p->token == EOSB_TOKEN);
}

static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
                            const vp9_prob *p) {
  assert(is_inter_mode(mode));
  write_token(w, vp9_inter_mode_tree, p,
              &vp9_inter_mode_encodings[inter_mode_offset(mode)]);
}


static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
                             int segment_id) {
  if (seg->enabled && seg->update_map)
    treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
}

// This function encodes the reference frame
static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
  VP9_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &cpi->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi;
  const int segment_id = mi->segment_id;
  int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
                                             SEG_LVL_REF_FRAME);
  // If segment level coding of this signal is disabled...
  // or the segment allows multiple reference frame options
  if (!seg_ref_active) {
    // does the feature use compound prediction or not
    // (if not specified at the frame/segment level)
    if (cm->comp_pred_mode == HYBRID_PREDICTION) {
      vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
                vp9_get_pred_prob_comp_inter_inter(cm, xd));
    } else {
      assert((mi->ref_frame[1] <= INTRA_FRAME) ==
                 (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY));
    }

    if (mi->ref_frame[1] > INTRA_FRAME) {
      vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
                vp9_get_pred_prob_comp_ref_p(cm, xd));
    } else {
      vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
                vp9_get_pred_prob_single_ref_p1(cm, xd));
      if (mi->ref_frame[0] != LAST_FRAME)
        vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
                  vp9_get_pred_prob_single_ref_p2(cm, xd));
    }
  } else {
    assert(mi->ref_frame[1] <= INTRA_FRAME);
    assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ==
           mi->ref_frame[0]);
  }

  // If using the prediction model we have nothing further to do because
  // the reference frame is fully coded by the segment.
}

static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
  VP9_COMMON *const cm = &cpi->common;
  const nmv_context *nmvc = &cm->fc.nmvc;
  MACROBLOCK *const x = &cpi->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  struct segmentation *seg = &cm->seg;
  MB_MODE_INFO *const mi = &m->mbmi;
  const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
  const MB_PREDICTION_MODE mode = mi->mode;
  const int segment_id = mi->segment_id;
  int skip_coeff;
  const BLOCK_SIZE bsize = mi->sb_type;
  const int allow_hp = cm->allow_high_precision_mv;

#ifdef ENTROPY_STATS
  active_section = 9;
#endif

  if (seg->update_map) {
    if (seg->temporal_update) {
      const int pred_flag = mi->seg_id_predicted;
      vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
      vp9_write(bc, pred_flag, pred_prob);
      if (!pred_flag)
        write_segment_id(bc, seg, segment_id);
    } else {
      write_segment_id(bc, seg, segment_id);
    }
  }

  skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);

  if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
    vp9_write(bc, rf != INTRA_FRAME,
              vp9_get_pred_prob_intra_inter(cm, xd));

  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
      !(rf != INTRA_FRAME &&
        (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
    write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc);
  }

  if (rf == INTRA_FRAME) {
#ifdef ENTROPY_STATS
    active_section = 6;
#endif

    if (bsize >= BLOCK_8X8) {
      write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
    } else {
      int idx, idy;
      const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
      const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
      for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
        for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
          const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
          write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]);
        }
      }
    }
    write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]);
  } else {
    vp9_prob *mv_ref_p;
    encode_ref_frame(cpi, bc);
    mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];

#ifdef ENTROPY_STATS
    active_section = 3;
#endif

    // If segment skip is not enabled code the mode.
    if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
      if (bsize >= BLOCK_8X8) {
        write_sb_mv_ref(bc, mode, mv_ref_p);
        ++cm->counts.inter_mode[mi->mode_context[rf]]
                               [inter_mode_offset(mode)];
      }
    }

    if (cm->mcomp_filter_type == SWITCHABLE) {
      const int ctx = vp9_get_pred_context_switchable_interp(xd);
      write_token(bc, vp9_switchable_interp_tree,
                  cm->fc.switchable_interp_prob[ctx],
                  &vp9_switchable_interp_encodings[mi->interp_filter]);
    } else {
      assert(mi->interp_filter == cm->mcomp_filter_type);
    }

    if (bsize < BLOCK_8X8) {
      const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
      const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
      int idx, idy;
      for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
        for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
          const int j = idy * 2 + idx;
          const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode;
          write_sb_mv_ref(bc, blockmode, mv_ref_p);
          ++cm->counts.inter_mode[mi->mode_context[rf]]
                                 [inter_mode_offset(blockmode)];

          if (blockmode == NEWMV) {
#ifdef ENTROPY_STATS
            active_section = 11;
#endif
            vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv,
                          &mi->best_mv[0].as_mv, nmvc, allow_hp);

            if (has_second_ref(mi))
              vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv,
                            &mi->best_mv[1].as_mv, nmvc, allow_hp);
          }
        }
      }
    } else if (mode == NEWMV) {
#ifdef ENTROPY_STATS
      active_section = 5;
#endif
      vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv,
                    &mi->best_mv[0].as_mv, nmvc, allow_hp);

      if (has_second_ref(mi))
        vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv,
                      &mi->best_mv[1].as_mv, nmvc, allow_hp);
    }
  }
}

static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
                              vp9_writer *bc) {
  const VP9_COMMON *const cm = &cpi->common;
  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  const struct segmentation *const seg = &cm->seg;
  MODE_INFO *m = mi_8x8[0];
  const int ym = m->mbmi.mode;
  const int segment_id = m->mbmi.segment_id;
  MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride];
  MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL;

  if (seg->update_map)
    write_segment_id(bc, seg, m->mbmi.segment_id);

  write_skip_coeff(cpi, segment_id, m, bc);

  if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
    write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc);

  if (m->mbmi.sb_type >= BLOCK_8X8) {
    const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
    const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0);
    write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
  } else {
    int idx, idy;
    const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
    const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
    for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
      for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
        int i = idy * 2 + idx;
        const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i);
        const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i);
        const int bm = m->bmi[i].as_mode;
#ifdef ENTROPY_STATS
        ++intra_mode_stats[A][L][bm];
#endif
        write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
      }
    }
  }

  write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
}

static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
                          MODE_INFO **mi_8x8, vp9_writer *bc,
                          TOKENEXTRA **tok, TOKENEXTRA *tok_end,
                          int mi_row, int mi_col, int index) {
  VP9_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  MODE_INFO *m = mi_8x8[0];

  if (m->mbmi.sb_type < BLOCK_8X8)
    if (index > 0)
      return;

  xd->mi_8x8 = mi_8x8;

  set_mi_row_col(xd, tile,
                 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
                 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
                 cm->mi_rows, cm->mi_cols);
  if (frame_is_intra_only(cm)) {
    write_mb_modes_kf(cpi, mi_8x8, bc);
#ifdef ENTROPY_STATS
    active_section = 8;
#endif
  } else {
    pack_inter_mode_mvs(cpi, m, bc);
#ifdef ENTROPY_STATS
    active_section = 1;
#endif
  }

  assert(*tok < tok_end);
  pack_mb_tokens(bc, tok, tok_end);
}

static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col,
                            PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
  VP9_COMMON *const cm = &cpi->common;
  const int ctx = partition_plane_context(cpi->above_seg_context,
                                          cpi->left_seg_context,
                                          mi_row, mi_col, bsize);
  const vp9_prob *const probs = get_partition_probs(cm, ctx);
  const int has_rows = (mi_row + hbs) < cm->mi_rows;
  const int has_cols = (mi_col + hbs) < cm->mi_cols;

  if (has_rows && has_cols) {
    write_token(w, vp9_partition_tree, probs, &vp9_partition_encodings[p]);
  } else if (!has_rows && has_cols) {
    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
    vp9_write(w, p == PARTITION_SPLIT, probs[1]);
  } else if (has_rows && !has_cols) {
    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
    vp9_write(w, p == PARTITION_SPLIT, probs[2]);
  } else {
    assert(p == PARTITION_SPLIT);
  }
}

static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile,
                           MODE_INFO **mi_8x8, vp9_writer *bc,
                           TOKENEXTRA **tok, TOKENEXTRA *tok_end,
                           int mi_row, int mi_col, BLOCK_SIZE bsize,
                           int index) {
  VP9_COMMON *const cm = &cpi->common;
  const int mis = cm->mode_info_stride;
  int bsl = b_width_log2(bsize);
  int bs = (1 << bsl) / 4;  // mode_info step for subsize
  int n;
  PARTITION_TYPE partition = PARTITION_NONE;
  BLOCK_SIZE subsize;
  MODE_INFO *m = mi_8x8[0];

  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    return;

  partition = partition_lookup[bsl][m->mbmi.sb_type];

  if (bsize < BLOCK_8X8) {
    if (index > 0)
      return;
  } else {
    write_partition(cpi, bs, mi_row, mi_col, partition, bsize, bc);
  }

  subsize = get_subsize(bsize, partition);

  switch (partition) {
    case PARTITION_NONE:
      write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0);
      break;
    case PARTITION_HORZ:
      write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0);
      if ((mi_row + bs) < cm->mi_rows)
        write_modes_b(cpi, tile, mi_8x8 + bs * mis, bc, tok, tok_end,
                      mi_row + bs, mi_col, 1);
      break;
    case PARTITION_VERT:
      write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0);
      if ((mi_col + bs) < cm->mi_cols)
        write_modes_b(cpi, tile, mi_8x8 + bs, bc, tok, tok_end,
                      mi_row, mi_col + bs, 1);
      break;
    case PARTITION_SPLIT:
      for (n = 0; n < 4; n++) {
        const int j = n >> 1, i = n & 1;
        write_modes_sb(cpi, tile, mi_8x8 + j * bs * mis + i * bs, bc,
                       tok, tok_end,
                       mi_row + j * bs, mi_col + i * bs, subsize, n);
      }
      break;
    default:
      assert(0);
  }

  // update partition context
  if (bsize >= BLOCK_8X8 &&
      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
    update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
                             mi_row, mi_col, subsize, bsize);
}

static void write_modes(VP9_COMP *cpi, const TileInfo *const tile,
                        vp9_writer* const bc,
                        TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
  VP9_COMMON *const cm = &cpi->common;
  const int mis = cm->mode_info_stride;
  int mi_row, mi_col;
  MODE_INFO **mi_8x8 = cm->mi_grid_visible;
  MODE_INFO **m_8x8;

  mi_8x8 += tile->mi_col_start + tile->mi_row_start * mis;

  for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
       mi_row += 8, mi_8x8 += 8 * mis) {
    m_8x8 = mi_8x8;
    vp9_zero(cpi->left_seg_context);
    for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
         mi_col += MI_BLOCK_SIZE, m_8x8 += MI_BLOCK_SIZE) {
      write_modes_sb(cpi, tile, m_8x8, bc, tok, tok_end, mi_row, mi_col,
                     BLOCK_64X64, 0);
    }
  }
}

static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
  vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
  vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
  unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
      cpi->common.counts.eob_branch[tx_size];
  vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
  int i, j, k, l, m;

  for (i = 0; i < BLOCK_TYPES; ++i) {
    for (j = 0; j < REF_TYPES; ++j) {
      for (k = 0; k < COEF_BANDS; ++k) {
        for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
          if (l >= 3 && k == 0)
            continue;
          vp9_tree_probs_from_distribution(vp9_coef_tree,
                                           coef_branch_ct[i][j][k][l],
                                           coef_counts[i][j][k][l], 0);
          coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
                                             coef_branch_ct[i][j][k][l][0][0];
          for (m = 0; m < UNCONSTRAINED_NODES; ++m)
            coef_probs[i][j][k][l][m] = get_binary_prob(
                                            coef_branch_ct[i][j][k][l][m][0],
                                            coef_branch_ct[i][j][k][l][m][1]);
#ifdef ENTROPY_STATS
          if (!cpi->dummy_packing) {
            int t;
            for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
              context_counters[tx_size][i][j][k][l][t] +=
                  coef_counts[i][j][k][l][t];
            context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
                eob_branch_ct[i][j][k][l];
          }
#endif
        }
      }
    }
  }
}

static void build_coeff_contexts(VP9_COMP *cpi) {
  TX_SIZE t;
  for (t = TX_4X4; t <= TX_32X32; t++)
    build_tree_distribution(cpi, t);
}

static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
                                     TX_SIZE tx_size) {
  vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
  vp9_coeff_probs_model *old_frame_coef_probs =
      cpi->common.fc.coef_probs[tx_size];
  vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
  const vp9_prob upd = DIFF_UPDATE_PROB;
  const int entropy_nodes_update = UNCONSTRAINED_NODES;
  int i, j, k, l, t;
  switch (cpi->sf.use_fast_coef_updates) {
    case 0: {
      /* dry run to see if there is any udpate at all needed */
      int savings = 0;
      int update[2] = {0, 0};
      for (i = 0; i < BLOCK_TYPES; ++i) {
        for (j = 0; j < REF_TYPES; ++j) {
          for (k = 0; k < COEF_BANDS; ++k) {
            for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
              for (t = 0; t < entropy_nodes_update; ++t) {
                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
                const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
                int s;
                int u = 0;

                if (l >= 3 && k == 0)
                  continue;
                if (t == PIVOT_NODE)
                  s = vp9_prob_diff_update_savings_search_model(
                      frame_branch_ct[i][j][k][l][0],
                      old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
                else
                  s = vp9_prob_diff_update_savings_search(
                      frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
                if (s > 0 && newp != oldp)
                  u = 1;
                if (u)
                  savings += s - (int)(vp9_cost_zero(upd));
                else
                  savings -= (int)(vp9_cost_zero(upd));
                update[u]++;
              }
            }
          }
        }
      }

      // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
      /* Is coef updated at all */
      if (update[1] == 0 || savings < 0) {
        vp9_write_bit(bc, 0);
        return;
      }
      vp9_write_bit(bc, 1);
      for (i = 0; i < BLOCK_TYPES; ++i) {
        for (j = 0; j < REF_TYPES; ++j) {
          for (k = 0; k < COEF_BANDS; ++k) {
            for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
              // calc probs and branch cts for this frame only
              for (t = 0; t < entropy_nodes_update; ++t) {
                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
                vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
                const vp9_prob upd = DIFF_UPDATE_PROB;
                int s;
                int u = 0;
                if (l >= 3 && k == 0)
                  continue;
                if (t == PIVOT_NODE)
                  s = vp9_prob_diff_update_savings_search_model(
                      frame_branch_ct[i][j][k][l][0],
                      old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
                else
                  s = vp9_prob_diff_update_savings_search(
                      frame_branch_ct[i][j][k][l][t],
                      *oldp, &newp, upd);
                if (s > 0 && newp != *oldp)
                  u = 1;
                vp9_write(bc, u, upd);
#ifdef ENTROPY_STATS
                if (!cpi->dummy_packing)
                  ++tree_update_hist[tx_size][i][j][k][l][t][u];
#endif
                if (u) {
                  /* send/use new probability */
                  vp9_write_prob_diff_update(bc, newp, *oldp);
                  *oldp = newp;
                }
              }
            }
          }
        }
      }
      return;
    }

    case 1:
    case 2: {
      const int prev_coef_contexts_to_update =
          (cpi->sf.use_fast_coef_updates == 2 ?
           PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS);
      const int coef_band_to_update =
          (cpi->sf.use_fast_coef_updates == 2 ?
           COEF_BANDS >> 1 : COEF_BANDS);
      int updates = 0;
      int noupdates_before_first = 0;
      for (i = 0; i < BLOCK_TYPES; ++i) {
        for (j = 0; j < REF_TYPES; ++j) {
          for (k = 0; k < COEF_BANDS; ++k) {
            for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
              // calc probs and branch cts for this frame only
              for (t = 0; t < entropy_nodes_update; ++t) {
                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
                vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
                int s;
                int u = 0;
                if (l >= 3 && k == 0)
                  continue;
                if (l >= prev_coef_contexts_to_update ||
                    k >= coef_band_to_update) {
                  u = 0;
                } else {
                  if (t == PIVOT_NODE)
                    s = vp9_prob_diff_update_savings_search_model(
                        frame_branch_ct[i][j][k][l][0],
                        old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
                  else
                    s = vp9_prob_diff_update_savings_search(
                        frame_branch_ct[i][j][k][l][t],
                        *oldp, &newp, upd);
                  if (s > 0 && newp != *oldp)
                    u = 1;
                }
                updates += u;
                if (u == 0 && updates == 0) {
                  noupdates_before_first++;
#ifdef ENTROPY_STATS
                  if (!cpi->dummy_packing)
                    ++tree_update_hist[tx_size][i][j][k][l][t][u];
#endif
                  continue;
                }
                if (u == 1 && updates == 1) {
                  int v;
                  // first update
                  vp9_write_bit(bc, 1);
                  for (v = 0; v < noupdates_before_first; ++v)
                    vp9_write(bc, 0, upd);
                }
                vp9_write(bc, u, upd);
#ifdef ENTROPY_STATS
                if (!cpi->dummy_packing)
                  ++tree_update_hist[tx_size][i][j][k][l][t][u];
#endif
                if (u) {
                  /* send/use new probability */
                  vp9_write_prob_diff_update(bc, newp, *oldp);
                  *oldp = newp;
                }
              }
            }
          }
        }
      }
      if (updates == 0) {
        vp9_write_bit(bc, 0);  // no updates
      }
      return;
    }

    default:
      assert(0);
  }
}

static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
  const TX_MODE tx_mode = cpi->common.tx_mode;

  vp9_clear_system_state();

  // Build the cofficient contexts based on counts collected in encode loop
  build_coeff_contexts(cpi);

  update_coef_probs_common(bc, cpi, TX_4X4);

  // do not do this if not even allowed
  if (tx_mode > ONLY_4X4)
    update_coef_probs_common(bc, cpi, TX_8X8);

  if (tx_mode > ALLOW_8X8)
    update_coef_probs_common(bc, cpi, TX_16X16);

  if (tx_mode > ALLOW_16X16)
    update_coef_probs_common(bc, cpi, TX_32X32);
}

static void encode_loopfilter(struct loopfilter *lf,
                              struct vp9_write_bit_buffer *wb) {
  int i;

  // Encode the loop filter level and type
  vp9_wb_write_literal(wb, lf->filter_level, 6);
  vp9_wb_write_literal(wb, lf->sharpness_level, 3);

  // Write out loop filter deltas applied at the MB level based on mode or
  // ref frame (if they are enabled).
  vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);

  if (lf->mode_ref_delta_enabled) {
    // Do the deltas need to be updated
    vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
    if (lf->mode_ref_delta_update) {
      // Send update
      for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
        const int delta = lf->ref_deltas[i];

        // Frame level data
        if (delta != lf->last_ref_deltas[i]) {
          lf->last_ref_deltas[i] = delta;
          vp9_wb_write_bit(wb, 1);

          assert(delta != 0);
          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
          vp9_wb_write_bit(wb, delta < 0);
        } else {
          vp9_wb_write_bit(wb, 0);
        }
      }

      // Send update
      for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
        const int delta = lf->mode_deltas[i];
        if (delta != lf->last_mode_deltas[i]) {
          lf->last_mode_deltas[i] = delta;
          vp9_wb_write_bit(wb, 1);

          assert(delta != 0);
          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
          vp9_wb_write_bit(wb, delta < 0);
        } else {
          vp9_wb_write_bit(wb, 0);
        }
      }
    }
  }
}

static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
  if (delta_q != 0) {
    vp9_wb_write_bit(wb, 1);
    vp9_wb_write_literal(wb, abs(delta_q), 4);
    vp9_wb_write_bit(wb, delta_q < 0);
  } else {
    vp9_wb_write_bit(wb, 0);
  }
}

static void encode_quantization(VP9_COMMON *cm,
                                struct vp9_write_bit_buffer *wb) {
  vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
  write_delta_q(wb, cm->y_dc_delta_q);
  write_delta_q(wb, cm->uv_dc_delta_q);
  write_delta_q(wb, cm->uv_ac_delta_q);
}


static void encode_segmentation(VP9_COMP *cpi,
                                struct vp9_write_bit_buffer *wb) {
  int i, j;

  struct segmentation *seg = &cpi->common.seg;

  vp9_wb_write_bit(wb, seg->enabled);
  if (!seg->enabled)
    return;

  // Segmentation map
  vp9_wb_write_bit(wb, seg->update_map);
  if (seg->update_map) {
    // Select the coding strategy (temporal or spatial)
    vp9_choose_segmap_coding_method(cpi);
    // Write out probabilities used to decode unpredicted  macro-block segments
    for (i = 0; i < SEG_TREE_PROBS; i++) {
      const int prob = seg->tree_probs[i];
      const int update = prob != MAX_PROB;
      vp9_wb_write_bit(wb, update);
      if (update)
        vp9_wb_write_literal(wb, prob, 8);
    }

    // Write out the chosen coding method.
    vp9_wb_write_bit(wb, seg->temporal_update);
    if (seg->temporal_update) {
      for (i = 0; i < PREDICTION_PROBS; i++) {
        const int prob = seg->pred_probs[i];
        const int update = prob != MAX_PROB;
        vp9_wb_write_bit(wb, update);
        if (update)
          vp9_wb_write_literal(wb, prob, 8);
      }
    }
  }

  // Segmentation data
  vp9_wb_write_bit(wb, seg->update_data);
  if (seg->update_data) {
    vp9_wb_write_bit(wb, seg->abs_delta);

    for (i = 0; i < MAX_SEGMENTS; i++) {
      for (j = 0; j < SEG_LVL_MAX; j++) {
        const int active = vp9_segfeature_active(seg, i, j);
        vp9_wb_write_bit(wb, active);
        if (active) {
          const int data = vp9_get_segdata(seg, i, j);
          const int data_max = vp9_seg_feature_data_max(j);

          if (vp9_is_segfeature_signed(j)) {
            vp9_encode_unsigned_max(wb, abs(data), data_max);
            vp9_wb_write_bit(wb, data < 0);
          } else {
            vp9_encode_unsigned_max(wb, data, data_max);
          }
        }
      }
    }
  }
}


static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
  VP9_COMMON *const cm = &cpi->common;

  // Mode
  vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
  if (cm->tx_mode >= ALLOW_32X32)
    vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);

  // Probabilities
  if (cm->tx_mode == TX_MODE_SELECT) {
    int i, j;
    unsigned int ct_8x8p[TX_SIZES - 3][2];
    unsigned int ct_16x16p[TX_SIZES - 2][2];
    unsigned int ct_32x32p[TX_SIZES - 1][2];


    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
      tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
      for (j = 0; j < TX_SIZES - 3; j++)
        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
    }

    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
      tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
      for (j = 0; j < TX_SIZES - 2; j++)
        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
                                  ct_16x16p[j]);
    }

    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
      tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
      for (j = 0; j < TX_SIZES - 1; j++)
        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
                                  ct_32x32p[j]);
    }
#ifdef MODE_STATS
    if (!cpi->dummy_packing)
      update_tx_count_stats(cm);
#endif
  }
}

static void write_interp_filter_type(INTERPOLATION_TYPE type,
                                     struct vp9_write_bit_buffer *wb) {
  const int type_to_literal[] = { 1, 0, 2, 3 };

  vp9_wb_write_bit(wb, type == SWITCHABLE);
  if (type != SWITCHABLE)
    vp9_wb_write_literal(wb, type_to_literal[type], 2);
}

static void fix_mcomp_filter_type(VP9_COMP *cpi) {
  VP9_COMMON *const cm = &cpi->common;

  if (cm->mcomp_filter_type == SWITCHABLE) {
    // Check to see if only one of the filters is actually used
    int count[SWITCHABLE_FILTERS];
    int i, j, c = 0;
    for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
      count[i] = 0;
      for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
        count[i] += cm->counts.switchable_interp[j][i];
      c += (count[i] > 0);
    }
    if (c == 1) {
      // Only one filter is used. So set the filter at frame level
      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
        if (count[i]) {
          cm->mcomp_filter_type = i;
          break;
        }
      }
    }
  }
}

static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
  int min_log2_tile_cols, max_log2_tile_cols, ones;
  vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);

  // columns
  ones = cm->log2_tile_cols - min_log2_tile_cols;
  while (ones--)
    vp9_wb_write_bit(wb, 1);

  if (cm->log2_tile_cols < max_log2_tile_cols)
    vp9_wb_write_bit(wb, 0);

  // rows
  vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
  if (cm->log2_tile_rows != 0)
    vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
}

static int get_refresh_mask(VP9_COMP *cpi) {
    // Should the GF or ARF be updated using the transmitted frame or buffer
#if CONFIG_MULTIPLE_ARF
    if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
        !cpi->refresh_alt_ref_frame) {
#else
    if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
        !cpi->use_svc) {
#endif
      // Preserve the previously existing golden frame and update the frame in
      // the alt ref slot instead. This is highly specific to the use of
      // alt-ref as a forward reference, and this needs to be generalized as
      // other uses are implemented (like RTC/temporal scaling)
      //
      // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
      // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
      // be done outside of the recode loop.
      return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
             (cpi->refresh_golden_frame << cpi->alt_fb_idx);
    } else {
      int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
      // Determine which ARF buffer to use to encode this ARF frame.
      if (cpi->multi_arf_enabled) {
        int sn = cpi->sequence_number;
        arf_idx = (cpi->frame_coding_order[sn] < 0) ?
            cpi->arf_buffer_idx[sn + 1] :
            cpi->arf_buffer_idx[sn];
      }
#endif
      return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
             (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
             (cpi->refresh_alt_ref_frame << arf_idx);
    }
}

static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
  VP9_COMMON *const cm = &cpi->common;
  vp9_writer residual_bc;

  int tile_row, tile_col;
  TOKENEXTRA *tok[4][1 << 6], *tok_end;
  size_t total_size = 0;
  const int tile_cols = 1 << cm->log2_tile_cols;
  const int tile_rows = 1 << cm->log2_tile_rows;

  vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) *
             mi_cols_aligned_to_sb(cm->mi_cols));

  tok[0][0] = cpi->tok;
  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
    if (tile_row)
      tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
                         cpi->tok_count[tile_row - 1][tile_cols - 1];

    for (tile_col = 1; tile_col < tile_cols; tile_col++)
      tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
                                cpi->tok_count[tile_row][tile_col - 1];
  }

  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
      TileInfo tile;

      vp9_tile_init(&tile, cm, 0, tile_col);
      tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];

      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
        vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
      else
        vp9_start_encode(&residual_bc, data_ptr + total_size);

      write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
      assert(tok[tile_row][tile_col] == tok_end);
      vp9_stop_encode(&residual_bc);
      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
        // size of this tile
        write_be32(data_ptr + total_size, residual_bc.pos);
        total_size += 4;
      }

      total_size += residual_bc.pos;
    }
  }

  return total_size;
}

static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
  VP9_COMMON *const cm = &cpi->common;

  const int scaling_active = cm->width != cm->display_width ||
                             cm->height != cm->display_height;
  vp9_wb_write_bit(wb, scaling_active);
  if (scaling_active) {
    vp9_wb_write_literal(wb, cm->display_width - 1, 16);
    vp9_wb_write_literal(wb, cm->display_height - 1, 16);
  }
}

static void write_frame_size(VP9_COMP *cpi,
                             struct vp9_write_bit_buffer *wb) {
  VP9_COMMON *const cm = &cpi->common;
  vp9_wb_write_literal(wb, cm->width - 1, 16);
  vp9_wb_write_literal(wb, cm->height - 1, 16);

  write_display_size(cpi, wb);
}

static void write_frame_size_with_refs(VP9_COMP *cpi,
                                       struct vp9_write_bit_buffer *wb) {
  VP9_COMMON *const cm = &cpi->common;
  int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
                                      cpi->alt_fb_idx};
  int i, found = 0;

  for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
    YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
    found = cm->width == cfg->y_crop_width &&
            cm->height == cfg->y_crop_height;

    // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
    // in a better way.
    if (cpi->use_svc) {
      found = 0;
    }
    vp9_wb_write_bit(wb, found);
    if (found) {
      break;
    }
  }

  if (!found) {
    vp9_wb_write_literal(wb, cm->width - 1, 16);
    vp9_wb_write_literal(wb, cm->height - 1, 16);
  }

  write_display_size(cpi, wb);
}

static void write_sync_code(struct vp9_write_bit_buffer *wb) {
  vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
  vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
  vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
}

static void write_uncompressed_header(VP9_COMP *cpi,
                                      struct vp9_write_bit_buffer *wb) {
  VP9_COMMON *const cm = &cpi->common;

  vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);

  // bitstream version.
  // 00 - profile 0. 4:2:0 only
  // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
  vp9_wb_write_bit(wb, cm->version);
  vp9_wb_write_bit(wb, 0);

  vp9_wb_write_bit(wb, 0);
  vp9_wb_write_bit(wb, cm->frame_type);
  vp9_wb_write_bit(wb, cm->show_frame);
  vp9_wb_write_bit(wb, cm->error_resilient_mode);

  if (cm->frame_type == KEY_FRAME) {
    const COLOR_SPACE cs = UNKNOWN;
    write_sync_code(wb);
    vp9_wb_write_literal(wb, cs, 3);
    if (cs != SRGB) {
      vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
      if (cm->version == 1) {
        vp9_wb_write_bit(wb, cm->subsampling_x);
        vp9_wb_write_bit(wb, cm->subsampling_y);
        vp9_wb_write_bit(wb, 0);  // has extra plane
      }
    } else {
      assert(cm->version == 1);
      vp9_wb_write_bit(wb, 0);  // has extra plane
    }

    write_frame_size(cpi, wb);
  } else {
    const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
                                              cpi->alt_fb_idx};
    if (!cm->show_frame)
      vp9_wb_write_bit(wb, cm->intra_only);

    if (!cm->error_resilient_mode)
      vp9_wb_write_literal(wb, cm->reset_frame_context, 2);

    if (cm->intra_only) {
      write_sync_code(wb);

      vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
      write_frame_size(cpi, wb);
    } else {
      int i;
      vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
      for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
        vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
        vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
      }

      write_frame_size_with_refs(cpi, wb);

      vp9_wb_write_bit(wb, cm->allow_high_precision_mv);

      fix_mcomp_filter_type(cpi);
      write_interp_filter_type(cm->mcomp_filter_type, wb);
    }
  }

  if (!cm->error_resilient_mode) {
    vp9_wb_write_bit(wb, cm->refresh_frame_context);
    vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
  }

  vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);

  encode_loopfilter(&cm->lf, wb);
  encode_quantization(cm, wb);
  encode_segmentation(cpi, wb);

  write_tile_info(cm, wb);
}

static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
  VP9_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  FRAME_CONTEXT *const fc = &cm->fc;
  vp9_writer header_bc;

  vp9_start_encode(&header_bc, data);

  if (xd->lossless)
    cm->tx_mode = ONLY_4X4;
  else
    encode_txfm_probs(cpi, &header_bc);

  update_coef_probs(cpi, &header_bc);

#ifdef ENTROPY_STATS
  active_section = 2;
#endif

  vp9_update_skip_probs(cpi, &header_bc);

  if (!frame_is_intra_only(cm)) {
    int i;
#ifdef ENTROPY_STATS
    active_section = 1;
#endif

    update_inter_mode_probs(cm, &header_bc);
    vp9_zero(cm->counts.inter_mode);

    if (cm->mcomp_filter_type == SWITCHABLE)
      update_switchable_interp_probs(cpi, &header_bc);

    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
      vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
                                cpi->intra_inter_count[i]);

    if (cm->allow_comp_inter_inter) {
      const int comp_pred_mode = cpi->common.comp_pred_mode;
      const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
      const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;

      vp9_write_bit(&header_bc, use_compound_pred);
      if (use_compound_pred) {
        vp9_write_bit(&header_bc, use_hybrid_pred);
        if (use_hybrid_pred)
          for (i = 0; i < COMP_INTER_CONTEXTS; i++)
            vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
                                      cpi->comp_inter_count[i]);
      }
    }

    if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
      for (i = 0; i < REF_CONTEXTS; i++) {
        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
                                  cpi->single_ref_count[i][0]);
        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
                                  cpi->single_ref_count[i][1]);
      }
    }

    if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
      for (i = 0; i < REF_CONTEXTS; i++)
        vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
                                  cpi->comp_ref_count[i]);

    update_mbintra_mode_probs(cpi, &header_bc);

    for (i = 0; i < PARTITION_CONTEXTS; ++i) {
      unsigned int bct[PARTITION_TYPES - 1][2];
      update_mode(&header_bc, PARTITION_TYPES, vp9_partition_tree,
                  fc->partition_prob[i], bct,
                  (unsigned int *)cpi->partition_count[i]);
    }

    vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc);
  }

  vp9_stop_encode(&header_bc);
  assert(header_bc.pos <= 0xffff);

  return header_bc.pos;
}

void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
  uint8_t *data = dest;
  size_t first_part_size;
  struct vp9_write_bit_buffer wb = {data, 0};
  struct vp9_write_bit_buffer saved_wb;

  write_uncompressed_header(cpi, &wb);
  saved_wb = wb;
  vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size

  data += vp9_rb_bytes_written(&wb);

  vp9_compute_update_table();

#ifdef ENTROPY_STATS
  if (cm->frame_type == INTER_FRAME)
    active_section = 0;
  else
    active_section = 7;
#endif

  vp9_clear_system_state();  // __asm emms;

  first_part_size = write_compressed_header(cpi, data);
  data += first_part_size;
  vp9_wb_write_literal(&saved_wb, first_part_size, 16);

  data += encode_tiles(cpi, data);

  *size = data - dest;
}

#ifdef ENTROPY_STATS
static void print_tree_update_for_type(FILE *f,
                                       vp9_coeff_stats *tree_update_hist,
                                       int block_types, const char *header) {
  int i, j, k, l, m;

  fprintf(f, "const vp9_coeff_prob %s = {\n", header);
  for (i = 0; i < block_types; i++) {
    fprintf(f, "  { \n");
    for (j = 0; j < REF_TYPES; j++) {
      fprintf(f, "  { \n");
      for (k = 0; k < COEF_BANDS; k++) {
        fprintf(f, "    {\n");
        for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
          fprintf(f, "      {");
          for (m = 0; m < ENTROPY_NODES; m++) {
            fprintf(f, "%3d, ",
                    get_binary_prob(tree_update_hist[i][j][k][l][m][0],
                                    tree_update_hist[i][j][k][l][m][1]));
          }
          fprintf(f, "},\n");
        }
        fprintf(f, "},\n");
      }
      fprintf(f, "    },\n");
    }
    fprintf(f, "  },\n");
  }
  fprintf(f, "};\n");
}

void print_tree_update_probs() {
  FILE *f = fopen("coefupdprob.h", "w");
  fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");

  print_tree_update_for_type(f, tree_update_hist[TX_4X4],   BLOCK_TYPES,
                             "vp9_coef_update_probs_4x4[BLOCK_TYPES]");
  print_tree_update_for_type(f, tree_update_hist[TX_8X8],   BLOCK_TYPES,
                             "vp9_coef_update_probs_8x8[BLOCK_TYPES]");
  print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
                             "vp9_coef_update_probs_16x16[BLOCK_TYPES]");
  print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
                             "vp9_coef_update_probs_32x32[BLOCK_TYPES]");

  fclose(f);
  f = fopen("treeupdate.bin", "wb");
  fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
  fclose(f);
}
#endif