summaryrefslogtreecommitdiffstats
path: root/libvpx/vp9/common/vp9_reconinter.c
blob: e722d6a3e18ff7d3f596925e2864c48cce3649fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>

#include "./vpx_scale_rtcd.h"
#include "./vpx_config.h"

#include "vpx/vpx_integer.h"

#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"

static void build_mc_border(const uint8_t *src, int src_stride,
                            uint8_t *dst, int dst_stride,
                            int x, int y, int b_w, int b_h, int w, int h) {
  // Get a pointer to the start of the real data for this row.
  const uint8_t *ref_row = src - x - y * src_stride;

  if (y >= h)
    ref_row += (h - 1) * src_stride;
  else if (y > 0)
    ref_row += y * src_stride;

  do {
    int right = 0, copy;
    int left = x < 0 ? -x : 0;

    if (left > b_w)
      left = b_w;

    if (x + b_w > w)
      right = x + b_w - w;

    if (right > b_w)
      right = b_w;

    copy = b_w - left - right;

    if (left)
      memset(dst, ref_row[0], left);

    if (copy)
      memcpy(dst + left, ref_row + x + left, copy);

    if (right)
      memset(dst + left + copy, ref_row[w - 1], right);

    dst += dst_stride;
    ++y;

    if (y > 0 && y < h)
      ref_row += src_stride;
  } while (--b_h);
}

static void inter_predictor(const uint8_t *src, int src_stride,
                            uint8_t *dst, int dst_stride,
                            const int subpel_x,
                            const int subpel_y,
                            const struct scale_factors *sf,
                            int w, int h, int ref,
                            const InterpKernel *kernel,
                            int xs, int ys) {
  sf->predict[subpel_x != 0][subpel_y != 0][ref](
      src, src_stride, dst, dst_stride,
      kernel[subpel_x], xs, kernel[subpel_y], ys, w, h);
}

void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
                               uint8_t *dst, int dst_stride,
                               const MV *src_mv,
                               const struct scale_factors *sf,
                               int w, int h, int ref,
                               const InterpKernel *kernel,
                               enum mv_precision precision,
                               int x, int y) {
  const int is_q4 = precision == MV_PRECISION_Q4;
  const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
                     is_q4 ? src_mv->col : src_mv->col * 2 };
  MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf);
  const int subpel_x = mv.col & SUBPEL_MASK;
  const int subpel_y = mv.row & SUBPEL_MASK;

  src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);

  inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
                  sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4);
}

static INLINE int round_mv_comp_q4(int value) {
  return (value < 0 ? value - 2 : value + 2) / 4;
}

static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
  MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
                              mi->bmi[1].as_mv[idx].as_mv.row +
                              mi->bmi[2].as_mv[idx].as_mv.row +
                              mi->bmi[3].as_mv[idx].as_mv.row),
             round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
                              mi->bmi[1].as_mv[idx].as_mv.col +
                              mi->bmi[2].as_mv[idx].as_mv.col +
                              mi->bmi[3].as_mv[idx].as_mv.col) };
  return res;
}

// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
                             int bw, int bh, int ss_x, int ss_y) {
  // If the MV points so far into the UMV border that no visible pixels
  // are used for reconstruction, the subpel part of the MV can be
  // discarded and the MV limited to 16 pixels with equivalent results.
  const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
  const int spel_right = spel_left - SUBPEL_SHIFTS;
  const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
  const int spel_bottom = spel_top - SUBPEL_SHIFTS;
  MV clamped_mv = {
    src_mv->row * (1 << (1 - ss_y)),
    src_mv->col * (1 << (1 - ss_x))
  };
  assert(ss_x <= 1);
  assert(ss_y <= 1);

  clamp_mv(&clamped_mv,
           xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
           xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
           xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
           xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);

  return clamped_mv;
}

static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
                                   int bw, int bh,
                                   int x, int y, int w, int h,
                                   int mi_x, int mi_y) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const MODE_INFO *mi = xd->mi[0];
  const int is_compound = has_second_ref(&mi->mbmi);
  const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
  int ref;

  for (ref = 0; ref < 1 + is_compound; ++ref) {
    const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
    struct buf_2d *const pre_buf = &pd->pre[ref];
    struct buf_2d *const dst_buf = &pd->dst;
    uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;

    // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
    // same MV (the average of the 4 luma MVs) but we could do something
    // smarter for non-4:2:0. Just punt for now, pending the changes to get
    // rid of SPLITMV mode entirely.
    const MV mv = mi->mbmi.sb_type < BLOCK_8X8
               ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
                             : mi_mv_pred_q4(mi, ref))
               : mi->mbmi.mv[ref].as_mv;

    // TODO(jkoleszar): This clamping is done in the incorrect place for the
    // scaling case. It needs to be done on the scaled MV, not the pre-scaling
    // MV. Note however that it performs the subsampling aware scaling so
    // that the result is always q4.
    // mv_precision precision is MV_PRECISION_Q4.
    const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
                                               pd->subsampling_x,
                                               pd->subsampling_y);

    uint8_t *pre;
    MV32 scaled_mv;
    int xs, ys, subpel_x, subpel_y;

    if (vp9_is_scaled(sf)) {
      pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
      scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
      xs = sf->x_step_q4;
      ys = sf->y_step_q4;
    } else {
      pre = pre_buf->buf + (y * pre_buf->stride + x);
      scaled_mv.row = mv_q4.row;
      scaled_mv.col = mv_q4.col;
      xs = ys = 16;
    }
    subpel_x = scaled_mv.col & SUBPEL_MASK;
    subpel_y = scaled_mv.row & SUBPEL_MASK;
    pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
           + (scaled_mv.col >> SUBPEL_BITS);

    inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
                    subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys);
  }
}

static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
                                              int mi_row, int mi_col,
                                              int plane_from, int plane_to) {
  int plane;
  const int mi_x = mi_col * MI_SIZE;
  const int mi_y = mi_row * MI_SIZE;
  for (plane = plane_from; plane <= plane_to; ++plane) {
    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
                                                        &xd->plane[plane]);
    const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
    const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
    const int bw = 4 * num_4x4_w;
    const int bh = 4 * num_4x4_h;

    if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
      int i = 0, x, y;
      assert(bsize == BLOCK_8X8);
      for (y = 0; y < num_4x4_h; ++y)
        for (x = 0; x < num_4x4_w; ++x)
           build_inter_predictors(xd, plane, i++, bw, bh,
                                  4 * x, 4 * y, 4, 4, mi_x, mi_y);
    } else {
      build_inter_predictors(xd, plane, 0, bw, bh,
                             0, 0, bw, bh, mi_x, mi_y);
    }
  }
}

void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
                                    BLOCK_SIZE bsize) {
  build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
                                     BLOCK_SIZE bsize) {
  build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
                                    MAX_MB_PLANE - 1);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
                                   BLOCK_SIZE bsize) {
  build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
                                    MAX_MB_PLANE - 1);
}

// TODO(jingning): This function serves as a placeholder for decoder prediction
// using on demand border extension. It should be moved to /decoder/ directory.
static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
                                       int bw, int bh,
                                       int x, int y, int w, int h,
                                       int mi_x, int mi_y) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const MODE_INFO *mi = xd->mi[0];
  const int is_compound = has_second_ref(&mi->mbmi);
  const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
  int ref;

  for (ref = 0; ref < 1 + is_compound; ++ref) {
    const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
    struct buf_2d *const pre_buf = &pd->pre[ref];
    struct buf_2d *const dst_buf = &pd->dst;
    uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;

    // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
    // same MV (the average of the 4 luma MVs) but we could do something
    // smarter for non-4:2:0. Just punt for now, pending the changes to get
    // rid of SPLITMV mode entirely.
    const MV mv = mi->mbmi.sb_type < BLOCK_8X8
               ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
                             : mi_mv_pred_q4(mi, ref))
               : mi->mbmi.mv[ref].as_mv;

    // TODO(jkoleszar): This clamping is done in the incorrect place for the
    // scaling case. It needs to be done on the scaled MV, not the pre-scaling
    // MV. Note however that it performs the subsampling aware scaling so
    // that the result is always q4.
    // mv_precision precision is MV_PRECISION_Q4.
    const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
                                               pd->subsampling_x,
                                               pd->subsampling_y);

    MV32 scaled_mv;
    int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
        subpel_x, subpel_y;
    uint8_t *ref_frame, *buf_ptr;
    const YV12_BUFFER_CONFIG *ref_buf = xd->block_refs[ref]->buf;

    // Get reference frame pointer, width and height.
    if (plane == 0) {
      frame_width = ref_buf->y_crop_width;
      frame_height = ref_buf->y_crop_height;
      ref_frame = ref_buf->y_buffer;
    } else {
      frame_width = ref_buf->uv_crop_width;
      frame_height = ref_buf->uv_crop_height;
      ref_frame = plane == 1 ? ref_buf->u_buffer : ref_buf->v_buffer;
    }

    if (vp9_is_scaled(sf)) {
      // Co-ordinate of containing block to pixel precision.
      int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
      int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));

      // Co-ordinate of the block to 1/16th pixel precision.
      x0_16 = (x_start + x) << SUBPEL_BITS;
      y0_16 = (y_start + y) << SUBPEL_BITS;

      // Co-ordinate of current block in reference frame
      // to 1/16th pixel precision.
      x0_16 = sf->scale_value_x(x0_16, sf);
      y0_16 = sf->scale_value_y(y0_16, sf);

      // Map the top left corner of the block into the reference frame.
      x0 = sf->scale_value_x(x_start + x, sf);
      y0 = sf->scale_value_y(y_start + y, sf);

      // Scale the MV and incorporate the sub-pixel offset of the block
      // in the reference frame.
      scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
      xs = sf->x_step_q4;
      ys = sf->y_step_q4;
    } else {
      // Co-ordinate of containing block to pixel precision.
      x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
      y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;

      // Co-ordinate of the block to 1/16th pixel precision.
      x0_16 = x0 << SUBPEL_BITS;
      y0_16 = y0 << SUBPEL_BITS;

      scaled_mv.row = mv_q4.row;
      scaled_mv.col = mv_q4.col;
      xs = ys = 16;
    }
    subpel_x = scaled_mv.col & SUBPEL_MASK;
    subpel_y = scaled_mv.row & SUBPEL_MASK;

    // Calculate the top left corner of the best matching block in the reference frame.
    x0 += scaled_mv.col >> SUBPEL_BITS;
    y0 += scaled_mv.row >> SUBPEL_BITS;
    x0_16 += scaled_mv.col;
    y0_16 += scaled_mv.row;

    // Get reference block pointer.
    buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
    buf_stride = pre_buf->stride;

    // Do border extension if there is motion or the
    // width/height is not a multiple of 8 pixels.
    if (scaled_mv.col || scaled_mv.row ||
        (frame_width & 0x7) || (frame_height & 0x7)) {
      // Get reference block bottom right coordinate.
      int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
      int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
      int x_pad = 0, y_pad = 0;

      if (subpel_x || (sf->x_step_q4 & SUBPEL_MASK)) {
        x0 -= VP9_INTERP_EXTEND - 1;
        x1 += VP9_INTERP_EXTEND;
        x_pad = 1;
      }

      if (subpel_y || (sf->y_step_q4 & SUBPEL_MASK)) {
        y0 -= VP9_INTERP_EXTEND - 1;
        y1 += VP9_INTERP_EXTEND;
        y_pad = 1;
      }

      // Skip border extension if block is inside the frame.
      if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width ||
          y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
        uint8_t *buf_ptr1 = ref_frame + y0 * pre_buf->stride + x0;
        // Extend the border.
        build_mc_border(buf_ptr1, pre_buf->stride, xd->mc_buf, x1 - x0 + 1,
                        x0, y0, x1 - x0 + 1, y1 - y0 + 1, frame_width,
                        frame_height);
        buf_stride = x1 - x0 + 1;
        buf_ptr = xd->mc_buf + y_pad * 3 * buf_stride + x_pad * 3;
      }
    }

    inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
                    subpel_y, sf, w, h, ref, kernel, xs, ys);
  }
}

void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
                                       BLOCK_SIZE bsize) {
  int plane;
  const int mi_x = mi_col * MI_SIZE;
  const int mi_y = mi_row * MI_SIZE;
  for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
                                                        &xd->plane[plane]);
    const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
    const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
    const int bw = 4 * num_4x4_w;
    const int bh = 4 * num_4x4_h;

    if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
      int i = 0, x, y;
      assert(bsize == BLOCK_8X8);
      for (y = 0; y < num_4x4_h; ++y)
        for (x = 0; x < num_4x4_w; ++x)
          dec_build_inter_predictors(xd, plane, i++, bw, bh,
                                     4 * x, 4 * y, 4, 4, mi_x, mi_y);
    } else {
      dec_build_inter_predictors(xd, plane, 0, bw, bh,
                                 0, 0, bw, bh, mi_x, mi_y);
    }
  }
}

void vp9_setup_dst_planes(MACROBLOCKD *xd,
                          const YV12_BUFFER_CONFIG *src,
                          int mi_row, int mi_col) {
  uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
                               src->alpha_buffer};
  const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
                          src->alpha_stride};
  int i;

  for (i = 0; i < MAX_MB_PLANE; ++i) {
    struct macroblockd_plane *const pd = &xd->plane[i];
    setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL,
                     pd->subsampling_x, pd->subsampling_y);
  }
}

void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx,
                          const YV12_BUFFER_CONFIG *src,
                          int mi_row, int mi_col,
                          const struct scale_factors *sf) {
  if (src != NULL) {
    int i;
    uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
                                 src->alpha_buffer};
    const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
                            src->alpha_stride};

    for (i = 0; i < MAX_MB_PLANE; ++i) {
      struct macroblockd_plane *const pd = &xd->plane[i];
      setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col,
                       sf, pd->subsampling_x, pd->subsampling_y);
    }
  }
}