summaryrefslogtreecommitdiffstats
path: root/libvpx/test/dct32x32_test.cc
blob: 1e792da8d24c5b6affca495bc7732433e30a6189 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"

extern "C" {
#include "./vpx_config.h"
#include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h"
}

#include "vpx/vpx_integer.h"

using libvpx_test::ACMRandom;

namespace {
#ifdef _MSC_VER
static int round(double x) {
  if (x < 0)
    return static_cast<int>(ceil(x - 0.5));
  else
    return static_cast<int>(floor(x + 0.5));
}
#endif

const int kNumCoeffs = 1024;
const double kPi = 3.141592653589793238462643383279502884;
void reference_32x32_dct_1d(const double in[32], double out[32], int stride) {
  const double kInvSqrt2 = 0.707106781186547524400844362104;
  for (int k = 0; k < 32; k++) {
    out[k] = 0.0;
    for (int n = 0; n < 32; n++)
      out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
    if (k == 0)
      out[k] = out[k] * kInvSqrt2;
  }
}

void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
                            double output[kNumCoeffs]) {
  // First transform columns
  for (int i = 0; i < 32; ++i) {
    double temp_in[32], temp_out[32];
    for (int j = 0; j < 32; ++j)
      temp_in[j] = input[j*32 + i];
    reference_32x32_dct_1d(temp_in, temp_out, 1);
    for (int j = 0; j < 32; ++j)
      output[j * 32 + i] = temp_out[j];
  }
  // Then transform rows
  for (int i = 0; i < 32; ++i) {
    double temp_in[32], temp_out[32];
    for (int j = 0; j < 32; ++j)
      temp_in[j] = output[j + i*32];
    reference_32x32_dct_1d(temp_in, temp_out, 1);
    // Scale by some magic number
    for (int j = 0; j < 32; ++j)
      output[j + i * 32] = temp_out[j] / 4;
  }
}

typedef void (*fwd_txfm_t)(const int16_t *in, int16_t *out, int stride);
typedef void (*inv_txfm_t)(const int16_t *in, uint8_t *out, int stride);

class Trans32x32Test : public PARAMS(fwd_txfm_t, inv_txfm_t, int) {
 public:
  virtual ~Trans32x32Test() {}
  virtual void SetUp() {
    fwd_txfm_ = GET_PARAM(0);
    inv_txfm_ = GET_PARAM(1);
    version_  = GET_PARAM(2);  // 0: high precision forward transform
                               // 1: low precision version for rd loop
  }

  virtual void TearDown() { libvpx_test::ClearSystemState(); }

 protected:
  int version_;
  fwd_txfm_t fwd_txfm_;
  inv_txfm_t inv_txfm_;
};

TEST_P(Trans32x32Test, AccuracyCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  uint32_t max_error = 0;
  int64_t total_error = 0;
  const int count_test_block = 1000;
  DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);

  for (int i = 0; i < count_test_block; ++i) {
    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < kNumCoeffs; ++j) {
      src[j] = rnd.Rand8();
      dst[j] = rnd.Rand8();
      test_input_block[j] = src[j] - dst[j];
    }

    REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
    REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));

    for (int j = 0; j < kNumCoeffs; ++j) {
      const uint32_t diff = dst[j] - src[j];
      const uint32_t error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }
  }

  if (version_ == 1) {
    max_error /= 2;
    total_error /= 45;
  }

  EXPECT_GE(1u, max_error)
      << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";

  EXPECT_GE(count_test_block, total_error)
      << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
}

TEST_P(Trans32x32Test, CoeffCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;

  DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);

  for (int i = 0; i < count_test_block; ++i) {
    for (int j = 0; j < kNumCoeffs; ++j)
      input_block[j] = rnd.Rand8() - rnd.Rand8();

    const int stride = 32;
    vp9_fdct32x32_c(input_block, output_ref_block, stride);
    REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));

    if (version_ == 0) {
      for (int j = 0; j < kNumCoeffs; ++j)
        EXPECT_EQ(output_block[j], output_ref_block[j])
            << "Error: 32x32 FDCT versions have mismatched coefficients";
    } else {
      for (int j = 0; j < kNumCoeffs; ++j)
        EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
            << "Error: 32x32 FDCT rd has mismatched coefficients";
    }
  }
}

TEST_P(Trans32x32Test, MemCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 2000;

  DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);

  for (int i = 0; i < count_test_block; ++i) {
    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < kNumCoeffs; ++j) {
      input_block[j] = rnd.Rand8() - rnd.Rand8();
      input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255;
    }
    if (i == 0)
      for (int j = 0; j < kNumCoeffs; ++j)
        input_extreme_block[j] = 255;
    if (i == 1)
      for (int j = 0; j < kNumCoeffs; ++j)
        input_extreme_block[j] = -255;

    const int stride = 32;
    vp9_fdct32x32_c(input_extreme_block, output_ref_block, stride);
    REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, stride));

    // The minimum quant value is 4.
    for (int j = 0; j < kNumCoeffs; ++j) {
      if (version_ == 0) {
        EXPECT_EQ(output_block[j], output_ref_block[j])
            << "Error: 32x32 FDCT versions have mismatched coefficients";
      } else {
        EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
            << "Error: 32x32 FDCT rd has mismatched coefficients";
      }
      EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j]))
          << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
      EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
          << "Error: 32x32 FDCT has coefficient larger than "
          << "4*DCT_MAX_VALUE";
    }
  }
}

TEST_P(Trans32x32Test, InverseAccuracy) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
  DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);

  for (int i = 0; i < count_test_block; ++i) {
    double out_r[kNumCoeffs];

    // Initialize a test block with input range [-255, 255]
    for (int j = 0; j < kNumCoeffs; ++j) {
      src[j] = rnd.Rand8();
      dst[j] = rnd.Rand8();
      in[j] = src[j] - dst[j];
    }

    reference_32x32_dct_2d(in, out_r);
    for (int j = 0; j < kNumCoeffs; ++j)
      coeff[j] = round(out_r[j]);
    REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
    for (int j = 0; j < kNumCoeffs; ++j) {
      const int diff = dst[j] - src[j];
      const int error = diff * diff;
      EXPECT_GE(1, error)
          << "Error: 32x32 IDCT has error " << error
          << " at index " << j;
    }
  }
}

using std::tr1::make_tuple;

INSTANTIATE_TEST_CASE_P(
    C, Trans32x32Test,
    ::testing::Values(
        make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, 0),
        make_tuple(&vp9_fdct32x32_rd_c, &vp9_idct32x32_1024_add_c, 1)));

#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
    SSE2, Trans32x32Test,
    ::testing::Values(
        make_tuple(&vp9_fdct32x32_sse2,
                   &vp9_idct32x32_1024_add_sse2, 0),
        make_tuple(&vp9_fdct32x32_rd_sse2,
                   &vp9_idct32x32_1024_add_sse2, 1)));
#endif
}  // namespace